• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 13
  • 10
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Random walk on uniform spanning tree and loop-erased random walk / 一様スパニングツリーとループ除去ランダムウォークの上のランダムウォーク

Satomi, Watanabe 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25436号 / 情博第874号 / 新制||情||146(附属図書館) / 京都大学大学院情報学研究科先端数理科学専攻 / (主査)准教授 白石 大典, 教授 磯 祐介, 教授 木上 淳 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
12

Étude de la marche aléatoire biaisée en milieu aléatoire

Laliberté, Nicolas 11 1900 (has links)
No description available.
13

Théorèmes limite pour un processus de Galton-Watson multi-type en environnement aléatoire indépendant / Limit theorems for a multi-type Galton-Watson process in random independent environment

Pham, Thi Da Cam 05 December 2018 (has links)
La théorie des processus de branchement multi-type en environnement i.i.d. est considérablement moins développée que dans le cas univarié, et les questions fondamentales ne sont pas résolues en totalité à ce jour. Les réponses exigent une compréhension profonde du comportement des produits des matrices i.i.d. à coefficients positifs. Sous des hypothèses assez générales et lorsque les fonctions génératrices de probabilité des lois de reproduction sont “linéaire fractionnaires”, nous montrons que la probabilité de survie à l’instant n du processus de branchement multi-type en environnement aléatoire est proportionnelle à 1/√n lorsque n → ∞. La démonstration de ce résultat suit l’approche développée pour étudier les processus de branchement uni-variés en environnement aléatoire i. i. d. Il utilise de façon cruciale des résultats récents portant sur les fluctuations des normes de produits de matrices aléatoires i.i.d. / The theory of multi-type branching process in i.i.d. environment is considerably less developed than for the univariate case, and fundamental questions are up to date unsolved. Answers demand a solid understanding of the behavior of products of i.i.d. matrices with non-negative entries. Under mild assumptions, when the probability generating functions of the reproduction laws are fractional-linear, the survival probability of the multi-type branching process in random environment up to moment n is proportional to 1/√n as n → ∞. Techniques for univariate branching process in random environment and methods from the theory of products of i.i.d. random matrices are required.
14

Applications des processus de Lévy et processus de branchement à des études motivées par l'informatique et la biologie

Bansaye, Vincent 14 November 2008 (has links) (PDF)
Dans une première partie, j'étudie un processus de stockage de données en temps continu où le disque dur est identifié à la droite réelle. Ce modèle est une version continu du problème original de Parking de Knuth. Ici l'arrivée des fichiers est Poissonienne et le fichier se stocke dans les premiers espaces libres à droite de son point d'arrivée, quitte à se fragmenter. Dans un premier temps, je construis le modèle et donne une caractérisation géométrique et analytique de la partie du disque recouverte au temps t. Ensuite j'étudie les régimes asymptotiques au moment de saturation du disque. Enfin, je décris l'évolution en temps d'un block de données typique. La deuxième partie est constituée de l'étude de processus de branchement, motivée par des questions d'infection cellulaire. Dans un premier temps, je considère un processus de branchement en environnement aléatoire sous-critique, et détermine les théorèmes limites en fonction de la population initiale, ainsi que des propriétes sur les environnements, les limites de Yaglom et le Q-processus. Ensuite, j'utilise ce processus pour établir des résultats sur un modèle décrivant la prolifération d'un parasite dans une cellule en division. Je détermine la probabilité de guérison, le nombre asymptotique de cellules inféctées ainsi que les proportions asymptotiques de cellules infectées par un nombre donné de parasites. Ces différents résulats dépendent du régime du processus de branchement en environnement aléatoire. Enfin, j'ajoute une contamination aléatoire par des parasites extérieures.
15

Vieillissement pour la marche aléatoire biaisée sur des conductances aléatoires dans l'hyper-grille à d dimensions

Davignon, Thomas 10 1900 (has links)
No description available.
16

Marches aléatoires en environnement aléatoire faiblement elliptique / Random walks in weakly elliptic random environment

Bouchet, Élodie 30 June 2014 (has links)
Cette thèse est dédiée à l'étude des marches aléatoires en milieu aléatoire sur Zd. On s'intéresse tout particulièrement aux environnements qui sont elliptiques, mais pas uniformément elliptiques, et qui peuvent donc contenir des pièges sur lesquels la marche passe beaucoup de temps. Le premier résultat de cette thèse (chapitre 4) concerne les environnements de Dirichlet, qui forment une sous-classe de marches aléatoires en milieu aléatoire présentant des propriétés remarquables. On se place en dimension d≥ 3 et on étudie le cas où les pièges dus à la non-uniforme ellipticité sont prépondérants. Dans ce contexte, on montre l'équivalence des points de vue statique et dynamique pour une marche accélérée. Ceci permet de compléter les résultats de transience et récurrence directionnelles obtenus par Sabot, et de donner le degré polynomial de l'éloignement de la marche par rapport à l'origine dans le cas sous-balistique et transient. On se place ensuite (chapitre 5) dans le cas des marches transientes dans une direction, et on étudie les conditions sur la loi de l'environnement nécessaires pour assurer l'existence de moments pour les temps de renouvellement. On améliore ainsi les résultats obtenus par Campos et Ramírez. Dans la dernière partie (chapitre 6), on étudie les conditions d'application du théorème central limite quenched dans le cas des marches aléatoires balistiques. Sous la condition supplémentaire (T), on affaiblit les hypothèses sur l'intégrabilité des temps de renouvellement des travaux de Rassoul-Agha et Seppäläinen et de Berger et Zeitouni : on arrive à la condition E (τ12+ε) < +∞ (pour le théorème annealed la condition optimale est E (τ12) < +∞) / In this thesis we study random walks in random environment on Zd. We are particularly interested in environments that are elliptic, but not uniformly elliptic. Those environments can contain traps on which the walk spends a lot of time. The first results in this thesis (chapter 4) deal with the particular case of Dirichlet environments. Random walks in Dirichlet environment form a sub-class of random walks in random environment with specific properties. We consider dimensions d 3 and we study the behavior of the walk when the traps created by the non-uniform ellipticity play an important part. In this context, we show the equivalence between the static and dynamic points of view for an accelerated walk. This completes the results of directional transience and recurrence obtained by Sabot, and it allows to find the polynomial order of the magnitude of the walk’s displacement in the sub-ballistic transient case. Then (chapter 5) we consider the case of directionally transient walks, and we study the conditions on the law of the environment that ensure the existence of moments for the regeneration times. We thus improve the results obtained by Campos and Ramírez. In the last section (chapter 6), we consider the case of ballistic random walks and we study the conditions under which a quenched central limit theorem holds. Under the additional assumption (T), we weaken the integrability of the regeneration times necessary for the works of Rassoul- Agha and Seppäläinen, and Berger and Zeitouni. We obtain the condition E (τ12+ε) < +∞ (whereas for the annealed theorem, the optimal condition is E (τ12) < +∞)
17

Quelques contributions à l'étude des marches aléatoires en milieu aléatoire / Contributions to the study of random walks in random environments

Tournier, Laurent 25 June 2010 (has links)
Les marches aléatoires en milieu aléatoire ont suscité un vif intérêt au cours de ces dernières années, tant en sciences appliquées, comme moyen notamment d'affiner des modèles par une prise en compte des fluctuations de l'environnement, qu'en mathématiques, de par la multiplicité et la richesse des comportements qu'elles présentent. Cette thèse est dédiée à l'étude de divers aspects de la transience des marches aléatoires en milieu aléatoire. Elle est composée de deux parties, la première consacrée au cas des environnements de Dirichlet sur Z^d, la seconde au régime transient sous-diffusif sur Z. La loi de Dirichlet apparaît naturellement du fait de son lien avec les marches renforcées. Certaines de ses spécificités permettent de plus d'obtenir des résultats sensiblement plus précis qu'en général. On démontre ainsi tout d'abord une caractérisation de l'intégrabilité des temps de sortie de parties finies de graphes quelconques, qui permet de raffiner un critère de balisticité dans Z^d. On prouve également que les marches aléatoires en environnement de Dirichlet sont transientes directionnellement, avec probabilité positive, dès que les paramètres ne sont pas symétriques. En dimension 1, la thèse se focalise sur le rôle des vallées profondes de l'environnement, en fournissant une nouvelle preuve du théorème de Kesten-Kozlov-Spitzer dans le cas sous-diffusif basée sur l'étude fine du comportement de la marche. Outre une meilleure compréhension de l'émergence de la loi limite, cette preuve a l'avantage de fournir la valeur explicite de ses paramètres. / Random walks in random environment have raised a great interest in the last few years, both among applied scientists, notably as a way to refine models by taking fluctuations of the surrounding environment into account, and among mathematicians, because of the variety and wealth of behaviours they display. This thesis aims at the study of miscellaneous aspects of the transience of random walks in random environment. A first part is dedicated to Dirichlet environments on Z^d and a second one to the transient subdiffusive regime on Z. Random walks in Dirichlet environment arise naturally as an equivalent model for oriented-edge reinforced reinforced random walks. Its specificities also allow for sensibly sharper results than in the general case. We thus prove a characterization of the integrability of exit times out of finite subsets of arbitrary graphs, which enables us to refine a ballisticity criterion on Z^d. We also prove that these random walks are transient with positive probability as soon as the parameters are non-symmetric. In dimension 1, the thesis focuses on the role of the deep valleys of the environment. We give a new proof of Kesten-Kozlov-Spitzer theorem in the subdiffusive regime based on a fine study of the behaviour of the walk. Together with a better understanding of the origin of the limit law, this proof also provides its explicit parameters.
18

Problèmes de diffusion pour des chaînes d’oscillateurs harmoniques perturbées / Diffusion problems for perturbed harmonic chains

Simon, Marielle 17 June 2014 (has links)
L'équation de la chaleur est un phénomène macroscopique, émergeant après une limite d’échelle diffusive (en espace et en temps) d’un système d'oscillateurs couplés. Lorsque les interactions entre oscillateurs sont linéaires, l'énergie évolue de manière balistique, et la conductivité thermique est infinie. Certaines non-linéarités doivent donc apparaître au niveau microscopique, si l’on espère observer une diffusion normale. Pour apporter de l'ergodicité, on ajoute à la dynamique déterministe une perturbation stochastique qui conserve l'énergie. En premier lieu nous étudions la dynamique Hamiltonienne d'un système d'oscillateurs linéaires, perturbé par un bruit stochastique dégénéré conservatif. Ce dernier transforme à des temps aléatoires les vitesses en leurs opposées. On montre que l'évolution macroscopique du système est caractérisée par un système parabolique non-linéaire couplé pour les deux lois de conservation du modèle. Ensuite, nous supposons que les oscillateurs évoluent en environnement aléatoire. La perturbation stochastique est très dégénérée, et on prouve que le champ de fluctuations de l'énergie à l'équilibre converge vers un processus d'Ornstein-Uhlenbeck généralisé dirigé par l’équation de la chaleur.Il est désormais connu que les systèmes unidimensionnels présentent une diffusion anormale lorsque le moment total est conservé en plus de l'énergie. Dans une troisième partie, on considère deux perturbations, l'une préservant le moment, l'autre détruisant cette conservation. En faisant décroître l'intensité de la seconde perturbation, on observe une transition de phase entre un régime de diffusion normale et un régime de superdiffusion. / The heat equation is known to be a macroscopic phenomenon, emerging after a diffusive rescaling of space and time. In linear systems of interacting oscillators, the energy ballistically disperses and the thermal conductivity is infinite. Since the Fourier law is not valid for linear interactions, non-linearities in the microscopic dynamics are needed. In order to bring ergodicity to the system, we superpose a stochastic energy conserving perturbation to the underlying deterministic dynamics.In the first part we study the Hamiltonian dynamics of linear coupled oscillators, which are perturbed by a degenerate conservative stochastic noise. The latter flips the sign of the velocities at random times. The evolution yields two conservation laws (the energy and the length of the chain), and the macroscopic behavior is given by a non-linear parabolic system.Then, we suppose the harmonic oscillators to evolve in a random environment, in addition to be stochastically perturbed. The noise is very degenerate, and we prove a macroscopic behavior that holds at equilibrium: precisely, energy fluctuations at equilibrium evolve according to an infinite dimensional Ornstein-Uhlenbeck process driven by the linearized heat equation.Finally, anomalous behaviors have been observed for one-dimensional systems which preserve momentum in addition to the energy. In the third part, we consider two different perturbations, the first one preserving the momentum, and the second one destroying that new conservation law. When the intensity of the second noise is decreasing, we observe (in a suitable time scale) a phase transition between a regime of normal diffusion and a regime of super-diffusion.
19

Modèles de dynamique des populations dans un environnement aléatoire / Models of populations dynamic in a random environment

Ed-Darraz, Abdelkarim 20 November 2015 (has links)
Les travaux réalisés dans cette thèse abordent certaines questions relatives à la dynamique des populations dans un environnement aléatoire. L'environnement aléatoire est décrit par un processus Markovien à valeurs dans un espace fini et qui, en appliquant certaines forces sur le choix des taux vitaux, dirigera la dynamique de la population. Lorsque la dynamique est modélisée par un processus de naissance et de mort, on répondra à la question : quand est-ce qu'on a une extinction presque sûre d'une population ? (Bacaër and EdDarraz, 2014). Lorsque la dynamique est déterministe, nous avons démontré un résultat bien connu pour la taille finale d'une épidémie (Ed-Darraz and Khaladi, 2015) Bacaër N, Ed-Darraz A (2014) On linear birth-and-death processes in a random environment. J Math Biol. 69 (1) :73-90 Ed-Darraz A, Khaladi M (2015) On the final epidemic size in random environnement, Math. Biosc 266 : 10-14. / This thesis addresses some issues associated with population dynamics in random environment. Random environment is described by a Markov process with values in a finite space and which, involve certain forces on the choice of vital rates, will lead the population dynamics. When the dynamic is modeled by a birth and death process, we will answer the question : When almost surely extinction settled ? (Bacaër and Ed-Darraz, 2014). In (Ed-Darraz and Khaladi, 2015) we are interested to the final size of an epidemic in random environment. J Math Biol. 69 (1) :73-90 Ed-Darraz A, Khaladi M (2015) On the final epidemic size in random environnement, Math. Biosc 266 : 10-14.
20

Pièges et vieillissement pour les marches aléatoires sur des environnements aléatoires hautement irréguliers : phénoménologie et étude de cas

Davignon, Élise 11 1900 (has links)
Nous présentons d’abord une introduction au sujet des marches aléatoires en milieux aléatoires. Nous nous penchons en particulier sur les phénomènes de ralentissement, et plus précisément sur la propriété de vieillissement qu’exhibent plusieurs de ces systèmes lorsque les paramètres sont tels qu’ils conduisent l’environnement aléatoire à produire fréquemment des « pièges », soient des structures qui retiennent la marche aléatoire dans la même région de l’environnement pour de longues durées de temps. Nous illustrons ces notions à l’aide de résultats connus pour deux modèles. Nous présentons par la suite une preuve pour une propriété de vieillissement dans le cas de la marche aléatoire biaisée sur les conductances aléatoires à queues lourdes dans la grille infinie hyper-cubique à d dimensions, qui est le sujet d’un article en attente de publication. / We first present an introduction to the topic of random walks on random environments (RWRE). In particular, we look at slow-down phenomena and, more specifically, ageing properties exhibited by multiple such systems when parameters are chosen such that the random environment frequently produces large “traps”: structures that hold up the progress of the random walk by keeping it in the same region of the environment for long periods of time. We illustrate these behaviours by presenting known results for two such models. We then present a proof for an ageing property in the case of the biased random walk on heavy-tailed random conductances in the infinite hyper-cubic lattice in d dimensions; this is the subject of a research article pending publication.

Page generated in 0.098 seconds