• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hauptstudie zur Erfassung von interindividuellen und intraindividuellen Effekten adjuvanter rezeptiver medizinischer Musiktherapie bei Glaukompatienten (glaucoma chronicum simplex)

Bertelmann, Thomas Unknown Date (has links) (PDF)
Marburg, Univ., Diss., 2009
2

Die Entwicklung rezeptiver Felder und neuronaler Karten im visuellen Kortex / The development of receptive fields and neural maps in visual cortex

Mayer, Norbert Michael 01 November 2000 (has links)
No description available.
3

Der produktionsorientierte Umgang mit literarischen Texten im gymnasialen DaF-Unterricht : Eine komparative Studie von drei Lehrwerken / Literature in second language acquisition. A factor to enhancing productive skills?

Dahl, Jennie January 2021 (has links)
Which role do literature and literary texts have in the second language education inthe upper secondary school in Sweden? The aim of this study is to find out, howoften literary texts and literature appear in German textbooks and how they areprocessed in the language teaching. Which pedagogical and didactical cultures aredominating in the textbooks? What does the second language learner come toknow and how does the learner acquire this knowledge? The thesis of the study isbased on an adoption that we have to work hard with production in the secondlanguage education. Can we promote the empowerment, the spoken productionand the written production with literary text in the second language acquisition ordo we just promote the extensive reading?
4

Temporal slowness as an unsupervised learning principle

Berkes, Pietro 31 January 2006 (has links)
In dieser Doktorarbeit untersuchen wir zeitliche Langsamkeit als Prinzip für die Selbstorganisation des sensorischen Kortex sowie für computer-basierte Mustererkennung. Wir beginnen mit einer Einführung und Diskussion dieses Prinzips und stellen anschliessend den Slow Feature Analysis (SFA) Algorithmus vor, der das matemathisches Problem für diskrete Zeitreihen in einem endlich dimensionalen Funktionenraum löst. Im Hauptteil der Doktorarbeit untersuchen wir zeitliche Langsamkeit als Lernprinzip für rezeptive Felder im visuellen Kortex. Unter Verwendung von SFA werden Transformationsfunktionen gelernt, die, angewendet auf natürliche Bildsequenzen, möglichst langsam variierende Merkmale extrahieren. Die Funktionen können als nichtlineare raum-zeitliche rezeptive Felder interpretiert und mit Neuronen im primären visuellen Kortex (V1) verglichen werden. Wir zeigen, dass sie viele Eigenschaften von komplexen Zellen in V1 besitzen, nicht nur die primären, d.h. Gabor-ähnliche optimale Stimuli und Phaseninvarianz, sondern auch sekundäre, wie Richtungsselektivität, nicht-orthogonale Inhibition sowie End- und Seiteninhibition. Diese Resultate zeigen, dass ein einziges unüberwachtes Lernprinzip eine solche Mannigfaltigkeit an Eigenschaften begründen kann. Für die Analyse der mit SFA gelernten nichtlinearen Funktionen haben wir eine Reihe mathematischer und numerischer Werkzeuge entwickelt, mit denen man die quadratischen Formen als rezeptive Felder charakterisieren kann. Wir erweitern sie im weiteren Verlauf, um sie von allgemeinerem Interesse für theoretische und physiologische Modelle zu machen. Den Abschluss dieser Arbeit bildet die Anwendung des Prinzips der zeitlichen Langsamkeit auf Mustererkennungsprobleme. Die fehlende zeitliche Struktur in dieser Problemklasse erfordert eine Modifikation des SFA-Algorithmus. Wir stellen eine alternative Formulierung vor und wenden diese auf eine Standard-Datenbank von handgeschriebenen Ziffern an. / In this thesis we investigate the relevance of temporal slowness as a principle for the self-organization of the visual cortex and for technical applications. We first introduce and discuss this principle and put it into mathematical terms. We then define the slow feature analysis (SFA) algorithm, which solves the mathematical problem for multidimensional, discrete time series in a finite dimensional function space. In the main part of the thesis we apply temporal slowness as a learning principle of receptive fields in the visual cortex. Using SFA we learn the input-output functions that, when applied to natural image sequences, vary as slowly as possible in time and thus optimize the slowness objective. The resulting functions can be interpreted as nonlinear spatio-temporal receptive fields and compared to neurons in the primary visual cortex (V1). We find that they reproduce (qualitatively and quantitatively) many of the properties of complex cells in V1, not only the two basic ones, namely a Gabor-like optimal stimulus and phase-shift invariance, but also secondary ones like direction selectivity, non-orthogonal inhibition, end-inhibition and side-inhibition. These results show that a single unsupervised learning principle can account for a rich repertoire of receptive field properties. In order to analyze the nonlinear functions learned by SFA in our model, we developed a set of mathematical and numerical tools to characterize quadratic forms as receptive fields. We expand them in a successive chapter to be of more general interest for theoretical and physiological models. We conclude this thesis by showing the application of the temporal slowness principle to pattern recognition. We reformulate the SFA algorithm such that it can be applied to pattern recognition problems that lack of a temporal structure and present the optimal solutions in this case. We then apply the system to a standard handwritten digits database with good performance.
5

Modelling closed-loop receptive fields: On the formation and utility of receptive fields in closed-loop behavioural systems / Entwicklung rezeptiver Felder in autonom handelnden, rückgekoppelten Systemen

Kulvicius, Tomas 20 April 2010 (has links)
No description available.
6

A plastic multilayer network of the early visual system inspired by the neocortical circuit

Teichmann, Michael 25 October 2018 (has links)
The ability of the visual system for object recognition is remarkable. A better understanding of its processing would lead to better computer vision systems and could improve our understanding of the underlying principles which produce intelligence. We propose a computational model of the visual areas V1 and V2, implementing a rich connectivity inspired by the neocortical circuit. We combined the three most important cortical plasticity mechanisms. 1) Hebbian synaptic plasticity to learn the synapse strengths of excitatory and inhibitory neurons, including trace learning to learn invariant representations. 2) Intrinsic plasticity to regulate the neurons responses and stabilize the learning in deeper layers. 3) Structural plasticity to modify the connections and to overcome the bias for the learnings from the initial definitions. Among others, we show that our model neurons learn comparable receptive fields to cortical ones. We verify the invariant object recognition performance of the model. We further show that the developed weight strengths and connection probabilities are related to the response correlations of the neurons. We link the connection probabilities of the inhibitory connections to the underlying plasticity mechanisms and explain why inhibitory connections appear unspecific. The proposed model is more detailed than previous approaches. It can reproduce neuroscientific findings and fulfills the purpose of the visual system, invariant object recognition. / Das visuelle System des Menschen hat die herausragende Fähigkeit zur invarianten Objekterkennung. Ein besseres Verständnis seiner Arbeitsweise kann zu besseren Computersystemen für das Bildverstehen führen und könnte darüber hinaus unser Verständnis von den zugrundeliegenden Prinzipien unserer Intelligenz verbessern. Diese Arbeit stellt ein Modell der visuellen Areale V1 und V2 vor, welches eine komplexe, von den Strukturen des Neokortex inspirierte, Verbindungsstruktur integriert. Es kombiniert die drei wichtigsten kortikalen Plastizitäten: 1) Hebbsche synaptische Plastizität, um die Stärke der exzitatorischen und inhibitorischen Synapsen zu lernen, welches auch „trace“-Lernen, zum Lernen invarianter Repräsentationen, umfasst. 2) Intrinsische Plastizität, um das Antwortverhalten der Neuronen zu regulieren und damit das Lernen in tieferen Schichten zu stabilisieren. 3) Strukturelle Plastizität, um die Verbindungen zu modifizieren und damit den Einfluss anfänglicher Festlegungen auf das Lernergebnis zu reduzieren. Neben weiteren Ergebnissen wird gezeigt, dass die Neuronen des Modells vergleichbare rezeptive Felder zu Neuronen des visuellen Kortex erlernen. Ebenso wird die Leistungsfähigkeit des Modells zur invariante Objekterkennung verifiziert. Des Weiteren wird der Zusammenhang von Gewichtsstärke und Verbindungswahrscheinlichkeit zur Korrelation der Aktivitäten der Neuronen aufgezeigt. Die gefundenen Verbindungswahrscheinlichkeiten der inhibitorischen Neuronen werden in Zusammenhang mit der Funktionsweise der inhibitorischen Plastizität gesetzt, womit erklärt wird warum inhibitorische Verbindungen unspezifisch erscheinen. Das vorgestellte Modell ist detaillierter als vorangegangene Arbeiten. Es ermöglicht neurowissenschaftliche Erkenntnisse nachzuvollziehen, wobei es ebenso die Hauptleistung des visuellen Systems erbringt, invariante Objekterkennung. Darüber hinaus ermöglichen sein Detailgrad und seine Selbstorganisationsprinzipien weitere neurowissenschaftliche Erkenntnisse und die Modellierung komplexerer Modelle der Verarbeitung im Gehirn.

Page generated in 0.4003 seconds