• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 34
  • 4
  • Tagged with
  • 85
  • 57
  • 39
  • 30
  • 29
  • 24
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métrique sur le fibré unitaire tangent au plan hyperbolique

Nsanzamahoro, Pierre Claver January 2016 (has links)
RÉSUMÉ: Toute variété différentiable $M$ admet une métrique dite métrique riemannienne.\\ En définissant $\mathbb{H}=\lbrace z\in\mathbb{C}: Im(z)>0\rbrace$, on peut munir de $\mathbb{H}$ d'une métrique riemannienne $ds^{2}=\frac{dzd\bar{z}}{(Im(z))^{2}}=\frac{dx^{2}+dy^{2}}{y^{2}}$.\\ Muni de cette métrique, $\mathbb{H}$ est une variété riemannienne à la quelle on associe le fibré tangent, $T\mathbb{H}$ ainsi que le fibré unitaire tangent, $T^{1}\mathbb{H}$. Les éléments de $T^{1}\mathbb{H}$ peuvent être exprimés, de façon bijective, en termes des éléments du groupe PSL(2,$\mathbb{R}$) dont l'action sur $T^{1}\mathbb{H}$ est transitive et libre.\\ La métrique définie sur $M$ (en particulier sur $M=\mathbb{H}$) permet de définir sur $TM$ (en particulier sur $T^{1}\mathbb{H}$) une métrique connue sous le nom de métrique de Sasaki.
2

Géométrie de Cartan et pré-géodésiques de type lumière

Francoeur, Dominik January 2014 (has links)
Après un survol de la théorie des géométries de Klein, nous présentons les rudiments de la géométrie de Cartan, qui généralise celle de Klein de la même manière que la géométrie riemannienne généralise la géométrie euclidienne. Ensuite, nous présentons la correspondance entre les géométries pseudo-riemanniennes et les géométries de Cartan sans torsion modélisées sur l'espace pseudo-euclidien. Nous utilisons cette correspondance pour montrer dans le langage de la géométrie de Cartan que les pré-géodésiques de type lumière d'une variété pseudo-riemannienne sont les mêmes pour toutes les métriques pseudo-riemanniennes dans la même classe d'équivalence conforme. Enfin, nous obtenons une seconde preuve de ce résultat, cette fois-ci en utilisant la correspondance entre les géométries conformes et les géométries de Cartan normales modélisées sur l'univers d'Einstein.
3

Constante systolique et variétés plates

Elmir, Chady 13 May 2009 (has links) (PDF)
Dans cette thèse on étudie la géométrie systolique des variétés de Bieberbach. La \emph{systole} d'une variété riemannienne compacte et non simplement connexe $(M^n,g)$ est l'infimum des longueurs des courbes fermées non contractiles; le \emph{rapport systolique} est le quotient $(\mathrm{systole})^n/\mathrm{volume}$. Un résultat fondamental de Gromov assure que si $M^n$ est essentielle, il existe une constante $c(M)$ strictement positive telle que, pour toute métrique $g$ sur $M^n$: $Vol(M,g) \geq c(M) Sys(M,g)^n$. Les surfaces compactes autres que $S^2$ sont essentielles, et le théorème de Gromov est une généralisation profonde des mêmes résultats pour le tore $T^2$ (C. Loewner), pour le plan projectif (M. Pu) et pour la bouteille de Klein (C. Bavard). Pour ces variétés la constante $c(M)$ est bien connu mais en dimension supérieure, on ne connait pratiquement rien en dehors de l'existence de cette constante. Nous nous intéressons aux variétés de Bieberbach de dimension 3, c'est à dire aux variétés compactes de dimension 3 qui portent une métrique riemannienne plate, qui ne sont pas des tores et démontrons que les métriques plates ne sont pas optimales pour le rapport systolique.
4

Phénomène de concentration pour des<br />problèmes non linéaires issus de la géométrie

Mahmoudi, Fethi 23 September 2005 (has links) (PDF)
L'objet de cette thèse est l'étude d'un phénomène de concentration pour une série de problèmes non linéaires issus de la géométrie : l'existence d'hypersurfaces plongées dans une variété Riemannienne dont la r-courbure moyenne est constante. (La r-courbure moyenne d'une hypersurface est la rième fonction symétrique de la<br />courbure principale de l'hyersurface). Nous donnons dans cette thèse quelques résultats d'existence de telles hypersurfaces. En outre, les exemples que nous construisons mettent en évidence un phénomène de concentration le long de sous variétés, phénomène<br />associé à un phénomène de résonance qui rend l'analyse de ces objets particulièrement délicate et que l'on rencontre dans l'étude de nombreux autres problèmes non-linéaires, équation de Schrödinger non linéaire, problème de perturbations singulière,<br />système de réaction-diffusion,...
5

Géométrie de Cartan et pré-géodésiques de type lumière

Francoeur, Dominik January 2014 (has links)
Après un survol de la théorie des géométries de Klein, nous présentons les rudiments de la géométrie de Cartan, qui généralise celle de Klein de la même manière que la géométrie riemannienne généralise la géométrie euclidienne. Ensuite, nous présentons la correspondance entre les géométries pseudo-riemanniennes et les géométries de Cartan sans torsion modélisées sur l'espace pseudo-euclidien. Nous utilisons cette correspondance pour montrer dans le langage de la géométrie de Cartan que les pré-géodésiques de type lumière d'une variété pseudo-riemannienne sont les mêmes pour toutes les métriques pseudo-riemanniennes dans la même classe d'équivalence conforme. Enfin, nous obtenons une seconde preuve de ce résultat, cette fois-ci en utilisant la correspondance entre les géométries conformes et les géométries de Cartan normales modélisées sur l'univers d'Einstein.
6

Approche modulaire sur les espaces de formes, géométrie sous-riemannienne et anatomie computationnelle / Modular approach on shape spaces, Sub-Riemannian geometry and computational anatomy

Gris, Barbara 05 December 2016 (has links)
Dans cette thèse, nous développons un nouveau modèle de déformation pour étudier les formes. Les déformations, et les difféomorphismes en particulier, jouent un rôle fondamental dans l'étude statistique de formes, comme un moyen de mesurer et d'interpréter les différences entre des objets similaires. Les difféomorphismes résultent généralement d'une intégration d'un flot régulier de champs de vitesses, dont les paramètres n'ont jamais encore vraiment permis de contrôler localement les déformations. Nous proposons un nouveau modèle dans lequel les champs de vitesses sont construits grâce à la combinaison de quelques champs de vecteurs locaux et interprétables. Ces champs de vecteurs sont générés à l'aide d'une structure que nous appelons module de déformation. Un module de déformation génère un champ de vecteurs d'un type particulier (e.g. homothétie) choisi à l'avance: cela permet d'incorporer des contraintes dans le modèle de déformation. Ces contraintes peuvent correspondre à un savoir que l'on a sur les formes étudiées, ou à un point de vue à partir duquel on veut étudier ces formes. Dans un premier chapitre nous définissons les modules de déformation et nous en donnons des exemples variés. Nous expliquons également comment construire facilement un module de déformation adapté à des contraintes complexes en combinant des modules de déformations simples. Ensuite nous construisons des grandes déformations modulaires en tant que flot de champs de vecteurs générés par un module de déformation. Les champs de vecteurs générés par un module de déformation sont paramétrés par deux variables : une géométrique (descripteur géométrique) et une de contrôle. Nous associons également un coût à chaque couple de descripteur géométrique et de contrôle. Dans un deuxième chapitre nous expliquons comment utiliser un module de déformation donné pour étudier des formes. Nous construisons tout d'abord une structure sous-Riemannienne sur l'espace défini comme le produit de l'espace de formes et de celui des descripteurs géométriques. La métrique sous-Riemannienne vient du coût choisi : nous munissons le nouvel espace d'une métrique choisie, qui en générale n'est pas le pull-back d'une métrique sur les champs de vecteurs mais tient compte la manière dont les champs de vecteurs sont construits à partir des contraintes. Grâce à cette structure nous définissons une distance sous-Riemannienne et nous montrons l'existence des géodésiques (trajectoires dont la longueur vaut la distance entre les points de départ et d'arrivée). L'étude des géodésiques se ramène à un problème de contrôle optimal, elles peuvent être obtenues grâce à un formalisme Hamiltonien. En particulier nous montrons qu'elles peuvent être paramétrées par une variable initiale, le moment. Après cela nous présentons les grandes déformations modulaires optimales transportant une forme source sur une forme cible. Nous définissons également l'atlas modulaire d'une population de formes par la donnée d'une forme moyenne et d'une grande déformation modulaire par forme. Dans la discussion nous étudions un modèle alternatif dans lequel les géodésiques sont paramétrées en dimension plus petite. Dans un troisième chapitre nous présentons l'algorithme implémenté pour obtenir les grandes déformations ainsi que la descente de gradient estimant les atlas. Dans un dernier chapitre nous présentons plusieurs exemples numériques grâce auxquels nous étudions certains aspects de notre modèle. En particulier nous montrons que le choix du module de déformation utilisé influence la forme moyenne, et que choisir un module de déformation adapté permet d'effectuer simultanément des recalages rigides et non linéaires. Dans le dernier exemple nous étudions des formes sans a priori, nous utilisons donc un module correspondant à des contraintes faibles et nous montrons que l'atlas obtenu est toujours intéressant. / This thesis is dedicated to the development of a new deformation model to study shapes. Deformations, and diffeormophisms in particular, have played a tremendous role in the field of statistical shape analysis, as a proxy to measure and interpret differences between similar objects but with different shapes. Diffeomorphisms usually result from the integration of a flow of regular velocity fields, whose parameters have not enabled so far a full control of the local behaviour of the deformation. We propose a new model in which velocity fields are built on the combination of a few local and interpretable vector fields. These vector fields are generated thanks to a structure which we name deformation module. Deformation modules generate vector fields of a particular type (e.g. a scaling) chosen in advance: they allow to incorporate a constraint in the deformation model. These constraints can correspond either to an additional knowledge one would have on the shapes under study, or to a point of view from which one would want to study these shapes. In a first chapter we introduce this notion of deformation module and we give several examples to show how diverse they can be. We also explain how one can easily build complex deformation modules adapted to complex constraints by combining simple deformation modules. Then we introduce the construction of modular large deformations as flow of vector fields generated by a deformation module. Vector fields generated by a deformation module are parametrized by two variables: a geometrical one named geometrical descriptor and a control one. We build large deformations so that the geometrical descriptor follows the deformation of the ambient space. Then defining a modular large deformation corresponds to defining an initial geometrical descriptor and a trajectory of controls. We also associate a notion of cost for each couple of geometrical descriptor and control. In a second chapter we explain how we can use a given deformation module to study data shapes. We first build a sub-Riemannian structure on the space defined as the product of the data shape space and the space of geometrical descriptors. The sub-Riemannian metric comes from the chosen cost: we equip the new (shape) space with a chosen metric, which is not in general the pull-back of a metric on vector fields but takes into account the way vector fields are built with the chosen constraints. Thanks to this structure we define a sub-Riemannian distance on this new space and we show the existence, under some mild assumptions, of geodesics (trajectories whose length equals the distance between the starting and ending points). The study of geodesics amounts to an optimal control problem, and they can be estimated thanks to an Hamiltonian framework: in particular we show that they can be parametrized by an initial variable named momentum. Afterwards we introduce optimal modular large deformations transporting a source shape into a target shape. We also define the modular atlas of a population of shapes which is made of a mean shape, and one modular large deformation per shape. In the discussion we study an alternative model where geodesics are parametrized in lower dimension. In a third chapter we present the algorithm that was implemented in order to compute these modular large deformations and the gradient descent to estimate the optimal ones as well as mean shapes. In a last chapter we introduce several numerical examples thanks to which we study specific aspects of our model. In particular we show that the choice of the used deformation module influences the form of the estimated mean shape, and that by choosing an adapted deformation module we are able to perform in a satisfying and robust way simultaneously rigid and non linear registration. In the last example we study shapes without any prior knowledge, then we use a module corresponding to weak constraints and we show that the atlas computation still gives interesting results.
7

Mosaïques de Poisson-Voronoï sur une variété riemannienne / Poisson-Voronoi tessellation in a Riemannian manifold

Chapron, Aurélie 20 November 2018 (has links)
Une mosaïque de Poisson-Voronoï est une partition aléatoire de l'espace euclidien en polyèdres, appelés cellules, obtenue à partir d'un ensemble aléatoire discret de points appelés germes. A chaque germe correspond une cellule, qui est l'ensemble des points de l'espace qui sont plus proches de ce germes que des autres germes. Ces modèles sont souvent utilisées dans divers domaines tels que la biologie, les télécommunications, l'astronomie, etc. Les caractéristiques de ces mosaïques et des cellules associées ont été largement étudiées dans l'espace euclidien mais les travaux sur les mosaïques de Voronoï dans un cadre non-euclidien sont rares.Dans cette thèse, on étend la définition de mosaïque de Voronoï à une variétériemannienne de dimension finie et on s'intéresse aux caractéristiques des cellules associées. Plus précisément, on mesure dans un premier temps l'influence que peut avoir la géométrie locale de la variété, c'est-à-dire les courbures sur les caractéristiques moyennes d'une cellule, comme son volume ou son nombre de sommets, en calculant des développements asymptotiques des ces caractéristiques moyennes à grande intensité. Dans un deuxième temps, on s'interroge sur la possibilité de retrouver la géométrie locale de la variété à partir des caractéristiques combinatoires de la mosaïque sur la variété. En particulier, on établit desthéorèmes limites, quand l'intensité du processus des germes tend vers l'infini, pour le nombre de sommets de la mosaïque dans une fenêtre, ce qui permet de construire un estimateur de la courbure et d'en donner quelques propriétés.Les principaux résultats de cette thèse reposent sur la combinaison de méthodesprobabilistes et de techniques issues de la géométrie différentielle. / A Poisson-Voronoi tessellation is a random partition of the Euclidean space intopolytopes, called cells, obtained from a discrete set of points called germs. To each germ corresponds a cell which is the set of the points of the space which are closer to this germ than to the other germs. These models are often used in several domains such as biology, telecommunication, astronomy, etc. The caracteristics of these tessellations and cells have been widely studied in the Euclidean space but only a few works concerns non-Euclidean Voronoi tessellation. In this thesis, we extend the definition of Poisson-Voronoi tessellation to a Riemannian manifold with finite dimension and we study the caracteristics of the associated cells. More precisely, we first measure the influence of the local geometry of the manifold, namely the curvatures, on the caracteristics of the cells, e.g. the mean volume or the mean number of vertices. Second, we aim to recover the local geometry of the manifold from the combinatorial properties of the tessellation on the manifolds. In particular, we establish limit theorems for the number of vertices of the tessellation, when the intensity of the process of the germs tends to infinity. This leads to the construction of an estimator of the curvature of the manifold and makes it possible to derive some properties of it. The main results of this thesis relies on the combination of stochastic methods and techniques from the differential geometry theory.
8

Etude asymptotique et transcendance de la fonction<br />valeur en contrôle optimal. Catégorie log-exp en géométrie sous-Riemannienne dans le cas Martinet.

Trélat, Emmanuel 13 December 2000 (has links) (PDF)
Le thème central de cette thèse est l'étude et le rôle des<br />trajectoires anormales en théorie du contrôle optimal.<br /><br />Après avoir rappelé quelques résultats fondamentaux en contrôle<br />optimal, on étudie l'optimalité des<br />anormales pour des systèmes affines mono-entrée avec contrainte<br />sur le contrôle, d'abord pour le problème du temps optimal, puis<br />pour un coût quelconque à temps final fixé ou non.<br />On étend cette théorie aux<br />systèmes sous-Riemanniens de rang 2, montrant qu'on se ramène<br />à un système affine du type précédent.<br />Ces résultats montrent que,<br />sous des conditions générales, une trajectoire anormale est<br />\it{isolée} parmi toutes les solutions du système ayant les mêmes<br />conditions aux limites, et donc \it{localement optimale}, jusqu'à<br />un premier point dit \it{conjugué} que l'on peut caractériser.<br /><br />On s'intéresse ensuite<br />au comportement asymptotique et à la<br />régularité de la fonction valeur associée à un système affine<br />analytique avec un coût quadratique. On montre que, en<br />l'absence de trajectoire<br />anormale minimisante, la fonction valeur est<br />\it{sous-analytique et continue}. S'il existe une anormale<br />minimisante, on sort de la catégorie sous-analytique en général,<br />notamment en géométrie sous-Riemannienne. La présence d'une<br />anormale minimisante est responsable de la \it{non-propreté} de<br />l'application exponentielle, ce qui provoque un phénomène de<br />\it{tangence} des ensembles de niveaux de la fonction valeur par<br />rapport à la direction anormale. Dans le cas affine mono-entrée<br />ou sous-Riemannien de rang 2, on décrit précisément ce<br />contact, et on en déduit une partition de la<br />sphère sous-Riemannienne au voisinage de l'anormale<br />en deux secteurs appelés \it{secteur<br />$L^\infty$} et \it{secteur $L^2$}.\\ <br />La question de transcendance est étudiée dans le cas<br />sous-Riemannien de Martinet où la distribution est<br />$\Delta=\rm{Ker }(dz-\f{y^2}{2}dx)$. On montre que<br />pour une métrique générale graduée d'ordre $0$~:<br />$g=(1+\alpha y)^2dx^2+(1+\beta x+\gamma y)^2dy^2$,<br />les sphères de petit rayon<br />\it{ne sont pas sous-analytiques}. Dans le cas général<br />intégrable où $g=a(y)dx^2+c(y)dy^2$, avec $a$ et $c$ analytiques,<br />les sphères de Martinet appartiennent à la<br />\it{catégorie log-exp}.
9

Géométrie et optimisation riemannienne pour la diagonalisation conjointe : application à la séparation de sources d'électroencéphalogrammes / Riemannian geometry and optimization for approximate joint diagonalization : application to source separation of electroencephalograms

Bouchard, Florent 22 November 2018 (has links)
La diagonalisation conjointe approximée d’un ensemble de matrices permet de résoudre le problème de séparation aveugle de sources et trouve de nombreuses applications, notamment pour l’électroencéphalographie, une technique de mesure de l’activité cérébrale.La diagonalisation conjointe se formule comme un problème d’optimisation avec trois composantes : le choix du critère à minimiser, la contrainte de non-dégénérescence de la solution et l’algorithme de résolution.Les approches existantes considèrent principalement deux critères, les moindres carrés et la log-vraissemblance.Elles sont spécifiques à une contrainte et se restreignent à un seul type d’algorithme de résolution.Dans ce travail de thèse, nous proposons de formuler le problème de diagonalisation conjointe selon un modèle géométrique, qui généralise les travaux précédents et permet de définir des critères inédits, notamment liés à la théorie de l’information.Nous proposons également d’exploiter l’optimisation riemannienne et nousdéfinissons un ensemble d’outils qui permet de faire varier les trois composantes indépendamment, créant ainsi de nouvelles méthodes et révélant l’influence des choix de modélisation.Des expériences numériques sur des données simulées et sur des enregistrements électroencéphalographiques montrent que notre approche par optimisation riemannienne donne des résultats compétitifs par rapport aux méthodes existantes.Elles indiquent aussi que les deux critères traditionnels ne sont pas les meilleurs dans toutes les situations. / The approximate joint diagonalisation of a set of matrices allows the solution of the blind source separation problem and finds several applications, for instance in electroencephalography, a technique for measuring brain activity.The approximate joint diagonalisation is formulated as an optimization problem with three components: the choice of the criterion to be minimized, the non-degeneracy constraint on the solution and the solving algorithm.Existing approaches mainly consider two criteria, the least-squares and the log-likelihood.They are specific to a constraint and are limited to only one type of solving algorithms.In this thesis, we propose to formulate the approximate joint diagonalisation problem in a geometrical fashion, which generalizes previous works and allows the definition of new criteria, particularly those linked to information theory.We also propose to exploit Riemannian optimisation and we define tools that allow to have the three components varying independently, creating in this way new methods and revealing the influence of the choice of the model.Numerical experiments on simulated data as well as on electroencephalographic recordings show that our approach by means of Riemannian optimisation gives results that are competitive as compared to existing methods.They also indicate that the two traditional criteria do not perform best in all situations.
10

Les groupes cycliques discrets d'isométries du bidisque

Perron, Stéphanie January 2015 (has links)
Dans ce mémoire, on présente un espace de la géométrie hyperbolique, le bidisque. On y parle de la géométrie du bidisque et pour ce faire on expose en détail la géométrie du plan hyperbolique. Ensuite, on présente les groupes d’isométries du bidisque pour lesquels on décrit les groupes d’isométrie du plan hyperbolique. Enfin, on donne des conditions nécessaires et suffisantes pour que des sous-groupes cycliques d’isométries du bidisque soient discrets.

Page generated in 0.0647 seconds