• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 34
  • 4
  • Tagged with
  • 85
  • 57
  • 39
  • 30
  • 29
  • 24
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Etude du modèle des variétés roulantes et de sa commandabilité.

Kokkonen, Petri 27 November 2012 (has links) (PDF)
Nous étudions la commandabilité du système de contrôle décrivant le procédé de roulement, sans glissement ni pivotement, de deux variétés riemanniennes n-dimensionnelles, l'une sur l'autre. Ce modèle est étroitement associé aux concepts de développement et d'holonomie des variétés, et il se généralise au cas de deux variétés affines. Les contributions principales sont celles données dans quatre articles, attachés à la fin de la thèse.Le premier d'entre eux "Rolling manifolds and Controllability : the 3D case"traite le cas où les deux variétés sont 3-dimensionelles. Nous donnons alors, la liste des cas possibles pour lesquelles le système n'est pas commandable.Dans le deuxième papier "Rolling manifolds on space forms", l'une des deux variétés est supposée être de courbure constante. On peut alors réduire l'étude de commandabilité à l'étude du groupe d'holonomie d'une certaine connexion vectorielle et on démontre, par exemple, que si la variété à courbure constante est une sphère n-dimensionelle et si ce groupe de l'holonomie n'agit pas transitivement, alors l'autre variété est en fait isométrique à la sphère.Le troisième article "A Characterization of Isometries between Riemannian Manifolds by using Development along Geodesic Triangles" décrit, en utilisant le procédé de roulement (ou développement) le long des lacets, une version alternative du théorème de Cartan-Ambrose-Hicks, qui caractérise, entre autres, les isométries riemanniennes. Plus précisément, on prouve que si on part d'une certaine orientation initiale, et si on ne roule que le long des lacets basés au point initial (associé à cette orientation), alors les deux variétés sont isométriques si (et seulement si) les chemins tracés par le procédé de roulement sur l'autre variété, sont tous des lacets.Finalement, le quatrième article "Rolling Manifolds without Spinning" étudie le procédé de roulement et sa commandabilité dans le cas où l'on ne peut pas pivoter. On caractérise alors les structures de toutes les orbites possibles en termes des groupes d'holonomie des variétés en question. On montre aussi qu'il n'existe aucune structure de fibré principal sur l'espace d'état tel que la distribution associée à ce modèle devienne une distribution principale, ce qui est à comparer notamment aux résultats du deuxième article.Par ailleurs, dans la troisième partie de cette thèse, nous construisons soigneusement le modèle de roulement dans le cadre plus général des variétés affines, ainsi que dans celui des variétés riemanniennes de dimensiondifférente.
32

Flot de Ricci sans borne supérieure sur la courbure et géométrie de certains espaces métriques

Richard, Thomas 21 September 2012 (has links) (PDF)
Le flot de Ricci, introduit par Hamilton au début des années 80, a montré sa valeur pour étudier la topologie et la géométrie des variétés riemanniennes lisses. Il a ainsi permis de démontrer la conjecture de Poincaré (Perelman, 2003) et le théorème de la sphère différentiable (Brendle et Schoen, 2008). Cette thèse s'intéresse aux applications du flot de Ricci à des espaces métriques à courbure minorée peu lisses. On définit en particulier ce que signifie pour un flot de Ricci d'avoir pour condition initiale un espace métrique. Dans le Chapitre 2, on présente certains travaux de Simon permettant de construire un flot de Ricci pour certains espaces métriques de dimension 3. On démontre aussi deux applications de cette construction : un théorème de finitude en dimension 3 et une preuve alternative d'un théorème de Cheeger et Colding en dimension 3. Dans le Chapitre 3, on s'intéresse à la dimension 2. On montre que pour les surfaces singulières à courbure minorée (au sens d'Alexandrov), on peut définir un flot de Ricci et que celui-ci est unique. Ceci permet de montrer que l'application qui à une surface associe son flot de Ricci est continue par rapport aux perturbations Gromov-Hausdorff de la condition initiale. Le Chapitre 4 généralise une partie de ces méthodes en dimension quelconque. On doit y considérer des conditions de courbure autres que les usuelles minorations de la courbure de Ricci ou de la courbure sectionnelle. Les méthodes mises en place permettent de construire un flot de Ricci pour certains espaces métriques non effondrés limites de variétés dont l'opérateur de courbure est minoré. On montre aussi que sous certaines hypothèses de non-effondrement, les variétés à opérateur de courbure presque positif portent une métrique à opérateur de courbure positif ou nul.
33

Flots géométriques d'ordre quatre et pincement intégral de la courbure

Bour, Vincent 11 July 2012 (has links) (PDF)
On étudie des flots géométriques d'ordre quatre sur des variétés riemanniennes compactes, qui apparaissent naturellement comme flots de gradient de fonctionnelles quadratiques en la courbure. Lorsque la constante de Yamabe reste minorée par une constante strictement positive le long du flot, on montre que la variété ne s'effondre pas, et qu'une suite de métriques dilatées au voisinage d'un temps singulier converge vers une variété complète qui modélise la singularité. En particulier, en dimension quatre, cette hypothèse est vérifiée pour une certaine classe de flots de gradients, du moment que l'énergie initiale est inférieure à une constante explicite. Les singularités de ces flots sont alors modélisées par des variétés complètes et non compactes, dont le tenseur de Bach et la courbure scalaire s'annulent. En combinant une formule de Weitzenböck avec l'inégalité de Sobolev induite par la positivité de la constante de Yamabe, on montre une série de résultats de rigidité pour des métriques dont la courbure est intégralement pincée. En particulier, on prouve un théorème de rigidité pour les variétés de dimension quatre à tenseur de Bach et à courbure scalaire nuls, qui implique que les singularités de notre classe de flots de gradient ne peuvent exister que si l'énergie initiale est supérieure à une certaine constante. Dans le cas contraire, ces flots existent pour tous temps positifs et convergent vers une métrique à courbure sectionnelle constante et positive. On retrouve ainsi un "théorème de la sphère" pour les variétés compactes de dimension quatre dont la courbure est intégralement pincée. En appliquant cette même méthode aux formes harmoniques d'une variété à courbure intégralement pincée, on démontre une version intégrale du théorème de Bochner-Weitzenböck. On en déduit l'annulation des nombres de Betti sous diverses conditions de pincement intégral, et on caractérise les cas d'égalité.
34

Mass transportation in sub-Riemannian structures admitting singular minimizing geodesics / Transport optimal sur les structures sous-Riemanniennes admettant des géodésiques minimisantes singulières

Badreddine, Zeinab 04 December 2017 (has links)
Cette thèse est consacrée à l’étude du problème de transport de Monge pour le coût quadratique en géométrie sous-Riemannienne et des conditions essentielles à l’obtention des résultats d’existence et et d’unicité de solutions. Ces travaux consistent à étendre ces résultats au cas des structures sous-Riemanniennes admettant des géodésiques minimisantes singulières. Dans une première partie, on développe des techniques inspirées de travaux de Cavalletti et Huesmann pour d’obtenir des résultats significatifs pour des structures de rang 2 en dimension 4. Dans une deuxième partie, on étudie des outils analytiques de la h-semiconcavité de la distance sousriemannienne et on montre comment ce type de régularité peut aboutit à l’obtention d’existence et d’unicité de solutions dans un cas général. / This thesis is devoted to the study of the Monge transport problem for the quadratic cost in sub-Riemannian geometry and the essential conditions to obtain existence and uniqueness of solutions. These works consist in extending these results to the case of sub-Riemannian structures admitting singular minimizing geodesics. In a first part, we develop techniques inspired by works by Cavalletti and Huesmann in order to obtain significant results for structures of rank 2 in dimension 4. In a second part, we study analytical tools of the h-semiconcavity of the sub-Riemannian distance and we show how this type of regularity can lead to the well-posedness of the Monge problem in general cases.
35

Probability on the spaces of curves and the associated metric spaces via information geometry; radar applications / Probabilités sur les espaces de chemins et dans les espaces métriques associés via la géométrie de l’information ; applications radar

Le Brigant, Alice 04 July 2017 (has links)
Nous nous intéressons à la comparaison de formes de courbes lisses prenant leurs valeurs dans une variété riemannienne M. Dans ce but, nous introduisons une métrique riemannienne invariante par reparamétrisations sur la variété de dimension infinie des immersions lisses dans M. L’équation géodésique est donnée et les géodésiques entre deux courbes sont construites par tir géodésique. La structure quotient induite par l’action du groupe des reparamétrisations sur l’espace des courbes est étudiée. À l’aide d’une décomposition canonique d’un chemin dans un fibré principal, nous proposons un algorithme qui construit la géodésique horizontale entre deux courbes et qui fournit un matching optimal. Dans un deuxième temps, nous introduisons une discrétisation de notre modèle qui est elle-même une structure riemannienne sur la variété de dimension finie Mn+1 des "courbes discrètes" définies par n + 1 points, où M est de courbure sectionnelle constante. Nous montrons la convergence du modèle discret vers le modèle continu, et nous étudions la géométrie induite. Des résultats de simulations dans la sphère, le plan et le demi-plan hyperbolique sont donnés. Enfin, nous donnons le contexte mathématique nécessaire à l’application de l’étude de formes dans une variété au traitement statistique du signal radar, où des signaux radars localement stationnaires sont représentés par des courbes dans le polydisque de Poincaré via la géométrie de l’information. / We are concerned with the comparison of the shapes of open smooth curves that take their values in a Riemannian manifold M. To this end, we introduce a reparameterization invariant Riemannian metric on the infinite-dimensional manifold of these curves, modeled by smooth immersions in M. We derive the geodesic equation and solve the boundary value problem using geodesic shooting. The quotient structure induced by the action of the reparametrization group on the space of curves is studied. Using a canonical decomposition of a path in a principal bundle, we propose an algorithm that computes the horizontal geodesic between two curves and yields an optimal matching. In a second step, restricting to base manifolds of constant sectional curvature, we introduce a detailed discretization of the Riemannian structure on the space of smooth curves, which is itself a Riemannian metric on the finite-dimensional manifold Mn+1 of "discrete curves" given by n + 1 points. We show the convergence of the discrete model to the continuous model, and study the induced geometry. We show results of simulations in the sphere, the plane, and the hyperbolic halfplane. Finally, we give the necessary framework to apply shape analysis of manifold-valued curves to radar signal processing, where locally stationary radar signals are represented by curves in the Poincaré polydisk using information geometry.
36

Quantisation of the Laplacian and a Curved Version of Geometric Quantisation

Meyer, Julien 29 August 2016 (has links)
Let (E,h) be a holomorphic, Hermitian vector bundle over a polarized manifold. We provide a canonical quantisation of the Laplacian operator acting on sections of the bundle of Hermitian endomorphisms of E. If E is simple we obtain an approximation of the eigenvalues and eigenspaces of the Laplacian. In the case when the bundle E is the trivial line bundle, we quantise solutions to the heat equation on the manifold. Furthermore we show that geometric quantisation can be seen as the differential of a natural map between two Riemannian manifolds. Motivated by this fact we compute its next order approximation, namely its Hessian. / Option Mathématique du Doctorat en Sciences / info:eu-repo/semantics/nonPublished
37

Line element and variational methods for color difference metrics / Lignes géodésiques et méthodes différentielles pour les métriques de différence couleur

Pant, Dibakar Raj 17 February 2012 (has links)
Afin de pouvoir apparier de manière précise les couleurs il est essentiel de prendre en compte la sensibilité visuelle à percevoir de petites différences de couleur. Les petites différences de couleur peuvent être mesurées par des ellipses qui décrivent les différences justes observables (just noticeable difference - JND). Ces ellipses décrivent la faculté du Système Visuel Humain à discriminer des couleurs très peu différentes. D'un point de vue mathématique, ces ellipses peuvent être modélisées par une fonction différentielle positive de forme quadratique, caractéristique de ce que l'on appelle communément une métrique Riemannienne. La métrique Riemannienne peut être considérée comme un outil utile pour évaluer l'adéquation, la robustesse et la précision, d'un espace couleur ou d'une métrique couleur, à décrire, à mesurer, correctement les différences de couleur telles qu'elles sont perçues par le Système Visuel Humain. L'un des particularités de cette métrique est qu'elle modélise la plus petite distance qui sépare deux couleurs dans un espace couleur par une ligne géodésique. Selon l'hypothèse de Schrödinger les lignes géodésiques qui partent d'un point neutre d'une surface de luminosité constante décrivent des courbes de teinte constante. Les contours de chrominance (chroma) forment alors des courbes fermées à intervalles constants à partir de ce point neutre situées à une distance constante des lignes géodésiques associées à ces teintes constances. Cette hypothèse peut être utilisée pour tester la robustesse, la précision, des formules mathématiques utilisées pour mesurer des différences couleur (color difference formulas) et pour prédire quelle valeurs peuvent prendre tel ou tel attribut perceptuel, ex. la teinte et la saturation (hue and chroma), ou telle distribution de stimulus couleur, dans n'importe quel espace couleur. Dans cette thèse, nous présentons une méthode qui permet de modéliser les éléments de ligne (lignes géodésiques), correspondants aux formules mathématiques Delta E * ab, Delta E * uv, OSA-UCS Delta EE utilisées pour mesurer des différences couleur, ainsi que les éléments de ligne correspondants à l'approximation infinitésimales du CIEDE2000. La pertinence de ces quatre formules mathématiques a été évaluée par comparaison, dans différents plans de représentation chromatique, des ellipses prédites et des ellipses expérimentalement obtenues par observation visuelle. Pour chacune de ces formules mathématiques, nous avons également testé l'hypothèse de Schrödinger, en calculant à partir de la métrique Riemannienne, les lignes géodésiques de teinte et les contours de chroma associés, puis en comparant les courbes calculées dans l'espace couleur CIELAB avec celles obtenues dans le système Munsell. Les résultats que nous avons obtenus démontrent qu'aucune de ces formules mathématiques ne prédit précisément les différences de couleur telles qu'elles sont perçues par le Système Visuel Humain. Ils démontrent également que les deux dernières formules en date, OSA-UCS Delta EE et l'approximation infinitésimale du CIEDE2000, ne sont pas plus précises que les formules conventionnelles calculées à partir des espaces couleur CIELAB et CIELUV, quand on se réfère au système Munsell (Munsell color order system) / Visual sensitivity to small color difference is an important factor for precision color matching. Small color differences can be measured by the line element theory in terms of color distances between a color point and neighborhoods of points in a color space. This theory gives a smooth positive definite symmetric metric tensor which describes threshold of color differences by ellipsoids in three dimensions and ellipses in two dimensions. The metric tensor is also known as the Riemannian metric tensor. In regard to the color differences, there are many color difference formulas and color spaces to predict visual difference between two colors but, it is still challenging due to the nonexistence of a perfect uniform color space. In such case, the Riemannian metric tensor can be used as a tool to study the performance of various color spaces and color difference metrics for measuring the perceptual color differences. It also computes the shortest length or the distance between any two points in a color space. The shortest length is called a geodesic. According to Schrödinger's hypothesis geodesics starting from the neutral point of a surface of constant brightness correspond to the curves of constant hue. The chroma contours are closed curves at constant intervals from the origin measured as the distance along the constant hue geodesics. This hypothesis can be utilized to test the performance of color difference formulas to predict perceptual attributes (hue and chroma) and distribution of color stimulus in any color space. In this research work, a method to formulate line element models of color difference formulas the ΔE*ab, the ΔE*uv, the OSA-UCS ΔEE and infinitesimal approximation of CIEDE2000 (ΔE00) is presented. The Jacobian method is employed to transfer their Riemannian metric tensors in other color spaces. The coefficients of such metric tensors are used to compute ellipses in two dimensions. The performance of these four color difference formulas is evaluated by comparing computed ellipses with experimentally observed ellipses in different chromaticity diagrams. A method is also developed for comparing the similarity between a pair of ellipses. The technique works by calculating the ratio of the area of intersection and the area of union of a pair of ellipses. Similarly, at a fixed value of lightness L*, hue geodesics originating from the achromatic point and their corresponding chroma contours of the above four formulas in the CIELAB color space are computed by solving the Euler-Lagrange equations in association with their Riemannian metrics. They are compared with with the Munsell chromas and hue circles at the Munsell values 3, 5 and 7. The result shows that neither formulas are fully perfect for matching visual color difference data sets. However, Riemannized ΔE00 and the ΔEE formulas measure the visual color differences better than the ΔE*ab and the ΔE*uv formulas at local level. It is interesting to note that the latest color difference formulas like the OSA-UCS ΔEE and the Riemannized ΔE00 do not show better performance to predict hue geodesics and chroma contours than the conventional CIELAB and CIELUV color difference formulas and none of these formulas fit the Munsell data accurately
38

Géométrie sous-riemannienne en dimension infinie et applications à l'analyse mathématique des formes / Infinite dimensional sub-Riemannian geometry and applications to shape analysis

Arguillere, Sylvain 10 July 2014 (has links)
Cette thèse est dédiée à l’étude de la géométrie sous-riemannienne en dimension infinie, et à ses applications à l’analyse des déformations par difféomorphismes. La première partie du manuscrit est un résumé détaillé des travaux effectués. La seconde compile les articles rédigés pendant ces trois dernières années. On étend d’abord à la dimension infinie le cadre de la géométrie sous-riemannienne classique, en établissant notamment des conditions assurant l’existence d’un flot géodésique. Puis, on applique ces résultats aux structures sous-riemanniennes fortes et invariantes à droite sur le groupe des difféomorphismes d’une variété. On définit ensuite rigoureusement les espaces de formes, notion jusqu’alors assez vague dans la littérature. Il s’agit de variétés de Banach sur lesquelles un groupe de difféomorphismes a une action satisfaisant certaines propriétés. On construit alors diverses structures sous-riemanniennes sur ces espaces de formes grâce à cette action. Enfin, on ajoute des contraintes aux déformations possibles et on formule les problèmes d’analyse de formes dans un cadre relevant de la théorie du contrôle optimal en dimension infinie. On démontre un principe du maximum de type Pontryagin adapté à ce contexte, permettant d’établir les équations géodésiques contraintes. Des algorithmes pour la recherche de déformations optimales sont ensuite développés et appuyés par des simulations numériques dans le chapitre 7. Ils unifient et étendent des méthodes précédemment établies pour l’analyse de formes dans le domaine de l’image. / This manuscript is dedicated to the study of infinite dimensional sub-Riemannian geometry and its applications to shape analysis using dieomorphic deformations. The first part is a detailed summary of our work, while the second part combines the articles we wrote during the last three years. We first extend the framework of sub- Riemannian geometry to infinite dimensions, establishing conditions that ensure the existence of a Hamiltonian geodesic flow. We then apply these results to strong right- invariant sub-Riemannian structures on the group of diffeomorphisms of a manifold. We then define rigorously the abstract concept shape spaces. A shape space is a Banach manifold on which the group of diffeomorphisms of a manifold acts in a way that satisfy certain properties. We then define several sub-Riemannian structures on these shape spaces using this action, and study these. Finally, we add constraints to the possible deformations, and formulate shape analysis problems in an infinite dimensional control theoritic framework. We prove a Pontryagin maximum principle adapted to this context, establishing the constrained geodesic equations. Algorithms for fin- ding optimal deformations are then developped, supported by numerical simulations. These algorithms extend and unify previously established methods in shape analysis.
39

Génération de maillages anisotropes / Anisotropic mesh generation

Rouxel-Labbé, Mael 16 December 2016 (has links)
Nous étudions dans cette thèse la génération de maillages anisotropes basée sur la triangulation de Delaunay et le diagramme de Voronoi. Nous considérons tout d'abord les maillages anisotropes localement uniformes, développés par Boissonnat, Wormser et Yvinec. Bien que l'aspect théorique de cette approche soit connu, son utilité pratique n'a été que peu explorée. Une étude empirique exhaustive est présentée et révèle les avantages, mais aussi les inconvénients majeurs de cette méthode. Dans un second temps, nous étudions les diagrammes de Voronoi anisotropes définis par Labelle et Shewchuk. Nous donnons des conditions suffisantes sur un ensemble de points pour que le dual du diagramme soit une triangulation plongée en toute dimension ; un algorithme générant de tels ensembles est conçu. Ce diagramme est utilisé pour concevoir un algorithme qui génère efficacement un maillage anisotrope pour des domaines de dimension intrinsèque faible plongés dans des espaces de dimension large. Notre algorithme est prouvable, mais les résultats sont décevants. Enfin, nous présentons le diagramme de Voronoi Riemannien discret, qui utilise des avancées récentes dans l'estimation de distances géodésiques et dont le calcul est grandement accéléré par l'utilisation d'un graphe anisotrope. Nous donnons des conditions suffisantes pour que notre structure soit combinatoirement équivalente au diagramme de Voronoi Riemannien et que son dual utilisant des simplexes droits mais aussi courbes est une triangulation plongée en toute dimension. Nous obtenons de bien meilleurs résultats que pour nos autres techniques, mais dont l'utilité reste limitée / In this thesis, we study the generation of anisotropic meshes using the concepts of Delaunay triangulations and Voronoi diagrams. We first consider the framework of locally uniform anisotropic meshes introduced by Boissonnat, Wormser and Yvinec. Despite known theoretical guarantees, the practicality of this approach has only been hardly studied. An exhaustive empirical study is presented and reveals the strengths but also the overall impracticality of the method. In a second part, we investigate the anisotropic Voronoi diagram introduced by Labelle and Shewchuk and give conditions on a set of seeds such that the corresponding diagram has a dual that is an embedded triangulation in any dimension; an algorithm to generate such sets is devised. Using the same diagram, we propose an algorithm to generate efficiently anisotropic triangulations of low-dimensional manifolds embedded in high-dimensional spaces. Our algorithm is provable, but produces disappointing results. Finally, we study Riemannian Voronoi diagrams and introduce discrete Riemannian Voronoi diagrams, which employ recent developments in the numerical computation of geodesic distances and whose computation is accelerated through the use of an underlying anisotropic graph structure. We give conditions that guarantee that our discrete structure is combinatorially equivalent to the Riemannian Voronoi diagram and that its dual is an embedded triangulation, using both straight and curved simplices. We obtain significantly better results than with our other methods, but the overall utility of
40

Methods and algorithms to learn spatio-temporal changes from longitudinal manifold-valued observations / Méthodes et algorithmes pour l’apprentissage de modèles d'évolution spatio-temporels à partir de données longitudinales sur une variété

Schiratti, Jean-Baptiste 23 January 2017 (has links)
Dans ce manuscrit, nous présentons un modèle à effets mixtes, présenté dans un cadre Bayésien, permettant d'estimer la progression temporelle d'un phénomène biologique à partir d'observations répétées, à valeurs dans une variété Riemannienne, et obtenues pour un individu ou groupe d'individus. La progression est modélisée par des trajectoires continues dans l'espace des observations, que l'on suppose être une variété Riemannienne. La trajectoire moyenne est définie par les effets mixtes du modèle. Pour définir les trajectoires de progression individuelles, nous avons introduit la notion de variation parallèle d'une courbe sur une variété Riemannienne. Pour chaque individu, une trajectoire individuelle est construite en considérant une variation parallèle de la trajectoire moyenne et en reparamétrisant en temps cette parallèle. Les transformations spatio-temporelles sujet-spécifiques, que sont la variation parallèle et la reparamétrisation temporelle sont définnies par les effets aléatoires du modèle et permettent de quantifier les changements de direction et vitesse à laquelle les trajectoires sont parcourues. Le cadre de la géométrie Riemannienne permet d'utiliser ce modèle générique avec n'importe quel type de données définies par des contraintes lisses. Une version stochastique de l'algorithme EM, le Monte Carlo Markov Chains Stochastic Approximation EM (MCMC-SAEM), est utilisé pour estimer les paramètres du modèle au sens du maximum a posteriori. L'utilisation du MCMC-SAEM avec un schéma numérique permettant de calculer le transport parallèle est discutée dans ce manuscrit. De plus, le modèle et le MCMC-SAEM sont validés sur des données synthétiques, ainsi qu'en grande dimension. Enfin, nous des résultats obtenus sur différents jeux de données liés à la santé. / We propose a generic Bayesian mixed-effects model to estimate the temporal progression of a biological phenomenon from manifold-valued observations obtained at multiple time points for an individual or group of individuals. The progression is modeled by continuous trajectories in the space of measurements, which is assumed to be a Riemannian manifold. The group-average trajectory is defined by the fixed effects of the model. To define the individual trajectories, we introduced the notion of « parallel variations » of a curve on a Riemannian manifold. For each individual, the individual trajectory is constructed by considering a parallel variation of the average trajectory and reparametrizing this parallel in time. The subject specific spatiotemporal transformations, namely parallel variation and time reparametrization, are defined by the individual random effects and allow to quantify the changes in direction and pace at which the trajectories are followed. The framework of Riemannian geometry allows the model to be used with any kind of measurements with smooth constraints. A stochastic version of the Expectation-Maximization algorithm, the Monte Carlo Markov Chains Stochastic Approximation EM algorithm (MCMC-SAEM), is used to produce produce maximum a posteriori estimates of the parameters. The use of the MCMC-SAEM together with a numerical scheme for the approximation of parallel transport is discussed. In addition to this, the method is validated on synthetic data and in high-dimensional settings. We also provide experimental results obtained on health data.

Page generated in 0.0459 seconds