• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 23
  • Tagged with
  • 79
  • 79
  • 79
  • 61
  • 24
  • 23
  • 14
  • 13
  • 11
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Bismutbasierte Nanoröhren und mesoskopische Partikel von intermetallischen Phasen des Typs BinM (n = 1 – 4, M = Ni, Rh)

Köhler, Daniel 25 October 2011 (has links) (PDF)
Die grundlegende Frage- bzw. Problemstellung der vorliegenden Arbeit war die Entwicklung innovativer Synthesemethoden für die nanoskalige, anorganische Festkörper- und Materialchemie, sowie die umfassende Charakterisierung der neuartigen Materialien und deren Untersuchung hinsichtlich potentieller Anwendungen. Die Arbeit umfasst dabei zwei große Themengebiete: Das Kapitel Bismutbasierte Nanoröhren beschreibt detailliert die neuartige Synthese doppelwandiger Bismut-Nanoröhren (engl. Double Walled Bismuth Nanotubes, DWBiNTs) bei Raumtemperatur, durch die Umsetzung von Bismutmonoiodid mit n-Butyllithium (n-BuLi) zu elementarem Bismut. Elektronenmikroskopische Untersuchungen des resultierenden feinen schwarzen Pulvers zeigen homogen strukturierte, stark agglomerierte, anisotrope Partikel mit Längen von mehreren hundert Nanometer, welche an den Enden geöffnet vorliegen und zudem einen „zwiebelartigen“ Aufbau mit einem einheitlichen inneren Durchmesser von ca. 4,5 nm sowie einen äußeren Durchmesser von ca. 6 nm aufweisen (Abbildung 1 A – C). Auf Grundlage dieser Erkenntnisse wurden von Rasche quantenchemische Rechnungen am Modell einer (34,0)@(40,0)-DWBiNT durchgeführt, aus denen neben einer hexagonal facettierten Querschnittsgeometrie (Abbildung 1 D) durch Rechnungen der elektronischen Eigenschaften eine direkte Bandlücke von 0,5 eV hervorgeht, womit es sich bei diesen Strukturen um Halbleiter handeln sollte. Im Gegensatz zu bislang bekannten Synthesemethoden für Bi-Nanoröhren kann die in der vorliegenden Arbeit entwickelte Syntheseroute als chemische Top-Down-Bottom-Up-Methode verstanden werden. Hiermit soll die Kaskade des Herauslösens der im Festkörper vorgeprägten Strukturen (chemisch Top-Down) gefolgt von deren Reorganisation zu nanoskopischen Objekten (klassisch Bottom-Up) verdeutlicht werden. Diese Herangehens-weise der Niedertemperaturreduktion klassischer Festkörperverbindungen ist bislang einzigartig und konnte basierend auf den Ergebnissen der vorliegenden Arbeit innerhalb des Arbeitskreises bereits erfolgreich auf intermetallische Phasen übertragen werden. Es konnte ferner gezeigt werden, dass es durch die milde Oxidation von DWBiNTs im O2-Strom möglich ist, unter Erhalt der Morphologie gezielt Nanoröhren der unter Normalbedingungen metastabilen β-Modifikation von Bi2O3 zu synthetisieren. Diese wurden in Zusammenarbeit mit dem Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg hinsichtlich ihrer gassensitiven Eigenschaften untersucht. Während die oxidischen Nanoröhren keine Sensitivität gegenüber CO und nur eine geringe H2-Sensitivität aufweisen, zeigt sich eine signifikante Widerstandserhöhung mit sinkendem Sauerstoffpartialdruck im Gasgemisch. Diese Befunde zeigen eine mögliche, bislang nicht untersuchte Anwendung von Bi2O3 als Sauerstoffsensor. Das Kapitel Mikrowellenunterstützte Niedertemperatursynthese der vorliegenden Arbeit widmet sich – basierend auf dem Polyolprozess (Abbildung 2) – der zeit- und energieeffizienten Synthese der intermetallischen Phasen BiNi, Bi3Ni und BiRh, welche durch herkömmliche metallurgische Hochtemperaturschmelz- oder sinterprozesse nur schwer zugänglich sind. Besonderer Schwerpunkt liegt in der gezielten Synthese mikro- und nanostrukturierter Proben. Die intermetallische Phase Bi3Ni kann röntgenographisch phasenrein in Form homogener stäbchenförmiger Partikel mit Abmessungen von ca. 200 nm x 600 nm, so genanntes submikroskaliges Bi3Ni, synthetisiert werden (Abbildung 3 A). Ebenso erfolgreich gestaltet sich die Synthese der nickelreicheren Phase BiNi in Form von Nadeln mit Durchmessern von wenigen Nanometern und Längen von mehreren Mikrometern sowie der binären Phase BiRh in Gestalt wohl definierter hexagonal facettierter, plättchenartiger Partikel mit einem mittleren Durchmesser von ca. 50 nm und Dicken < 10 nm (Abbildung 3 B, C). In Kooperation mit der Professur Anorganische Chemie I der TU Dresden konnte am Beispiel der intermetallischen Phase Bi3Ni erfolgreich die gezielte Einstellung der Partikelgröße und –morphologie unter Verwendung des mesoporösen Oxids SBA-15 als Exotemplat gezeigt werden. Die herausgelösten Proben zeigen röntgenographisch phasenreine, agglomerierte, sphärische Nanopartikel mit einem Durchmesser von < 8 nm. Die statische Magnetisierung sowie die Transporteigenschaften an den morphologisch unterschiedlichen Proben des Typ-II Supraleiters Bi3Ni wurden in Kooperation mit dem Hochfeld-Magnetlabor des Helmholtz-Zentrum Dresden-Rossendorf untersucht. Es zeigt sich, dass durch chemische Nanostrukturierung physikalische Eigenschaften generiert werden, welche Volumenproben derselben Substanz nicht aufweisen: Die als unvereinbare Antagonisten angesehenen Grundzustände Ferromagnetismus und Supraleitung können in mesoskopischem Bi3Ni nicht nur koexistieren, sondern stärken einander sogar (Abbildung 4). Diese Ergebnisse zeigen beispielhaft, dass Partikelgrößen im Zusammenspiel mit chemischer Substrukturierung in quasi-1D-Bindungssystemen essentiell für das Auftreten neuartiger Quanteneffekte sind. In Zusammenarbeit mit dem Max-Planck-Institut für Chemische Physik fester Stoffe wurden die röntgenographisch phasenreinen Proben von BiNi (Nadeln), Bi3Ni (Stäbchen) und BiRh (hexagonale Nanoplättchen) hinsichtlich ihrer potentiellen Anwendung zur Semihydrierung von Acetylen untersucht. Für die Proben des Systems Bi/Ni kann keinerlei katalytische Aktivität gemessen werden, wohingegen die katalytischen Eigenschaften der BiRh Nanopartikel für die Semihydrierung von Acetylen hervorragend sind. So weisen die hexagonalen Nanoplättchen eine außerordentlich hohe Selektivität gegenüber Acetylen sowie eine sehr gute Langzeitstabilität, im Vergleich zu einem kommerziell erhältlichen Pd/Al2O3 Katalysator, auf. Auf Basis der im Rahmen dieser Arbeit entwickelten und in ihren Ergebnissen (Phase, Reinheit, verschiedene Morphologien) kontrollierbaren sowie zeit- und energieeffizienten reduktiven Solvothermalmethode zur Synthese von intermetallischen Verbindungen ist der Zugang zu weiteren neuartigen, mehrkomponentigen, metallischen Materialien, welche durch klassische metallurgische Hochtemperaturschmelz- oder -sinterprozesse nur schwer oder gar nicht zugänglich sind, möglich. Allgemein kann das beschriebene Verfahren als eine verlässliche, breit anwendbare Methode zur Synthese wohl strukturierter Verbindungen auf chemischem Weg bei Temperaturen bis maximal 250 °C angesehen werden, welches eine große Bandbreite an verschiedenen Einsatzmöglichkeiten bietet.
32

Yolk-Shell Nanostructures Prepared via Block Copolymer Self-Assembly for Catalytic Applications

Shajkumar, Aruni 30 January 2018 (has links) (PDF)
Yolk-shell nanostructures/yolk-shell nanoparticles are defined as a hybrid structure, a mixture of core/shell and hollow particles, where a core particle is encapsulated inside the hollow shell and may move freely inside the shell. Of the various classifications of yolk-shell nanostructures, a structure with an inorganic core and inorganic shell (inorganic/inorganic) has been studied widely due to their unique optical, magnetic, electrical, mechanical, and catalytic properties. In the work presented here, among the different inorganic/inorganic yolk-shell nanostructures noble metal@silica yolk-shell nanostructures has been chosen as the topic of interest. Silica shell possesses many advantages such as chemical inertness, tunable pore sizes, diverse surface morphologies, increasing suspension stability, no reduction in LSPR properties of noble metal nanoparticles when used as a coating for such particles. Noble metal nanoparticles such as AgNPs and AuNPs, on the other hand, possess unique structural, optical, catalytic, and quantum properties. Hence yolk-shell nanostructures with a combination of Ag or Au core and a silica shell (Ag@SiO2 and Au@SiO2) would open to endless possibilities. In this study, four areas were mainly explored: mechanism of silica shell formation over a given template, the synthetic modifications of Ag@SiO2 and Au@SiO2 yolk-shell nanostructures, their application as a potential catalyst, and devising of a flow type catalytic reactor. Despite the growing number of contributions on the topic of yolk-shell nanostructures, particularly Au@SiO2 and Ag@SiO2 yolk-shell nanostructures, a potential for improvement lies in all four aforementioned areas. As an initial study, the effect of different processing conditions as well as the mechanism of silica shell formation over reactive block copolymer templates was investigated. An asymmetric PS-b-P4VP block copolymer was chosen as a structure directing component to deposit silica shell. In order to deposit silica shell, PS-b-P4VP micelles with a collapsed PS core and a swollen P4VP corona was prepared via a solvent exchange method. The growth of silica shell over the PS-b-P4VP micelles (reactive template) was done using in-situ DLS and TEM. The experimental data obtained revealed the 4 distinct stages involved in the silica shell formation over the reactive BCP micellar template starting from the accumulation of silica precursor around the P4VP corona followed by a reactive template mediated hydrolysis-condensation reaction of the silica precursor which eventually lead to the shell densification and shell growth around the micelles. An understanding of the mechanism of silica shell formation over reactive templates provides a direct way to encapsulate various active species such as metal nanoparticles and quantum dots and paves the way for the template mediated synthesis of hybrid nanostructures such as yolk-shell nanoparticles. These studies also serve as a platform to fine-tune the properties of such hybrid nanostructures by varying the reaction parameters during silica shell deposition and reaction time. The next part of the work focused mainly on the synthesis, process optimisation and characterization of Ag@SiO2 and Au@SiO2 yolk-shell nanostructures, and their potential use as a nanocatalyst. A well-known soft template mediated synthesis of the yolk-shell nanostructure was adopted for the present work. For this PS-b-P4VP micelle was used as a dual template for both encapsulation of nanoparticle and the deposition of silica shell. The nanoparticles were entrapped selectively to the BCP micellar core and silica deposition was done by reacting the nanoparticle-loaded micelles with an acidic silica sol which lead to the formation of Ag@PS-b-P4VP@SiO2 or Au@PS-b-P4VP@SiO2 particles with respect to the nanoparticle used. In the case of Ag@PS-b-P4VP particles, upon silica deposition, a partial dissolution of AgNPs was observed whereas AuNPs were stable against dissolution. Hence yolk-shell nanostructures with AuNPs were studied further. As-prepared Au@PS-b-P4VP@SiO2 particles were then subjected to pyrolysis to remove the BCP template. The resulting yolk-shell nanostructures comprised of an AuNP core and a hollow mesoporous silica shell. Upon removal of the BCP template, the Au@SiO2 particles fused together and formed large aggregates. The catalytic properties of Au@SiO2 yolk-shell nanoparticles were explored using a model reaction of reduction of 4-nitrophenol and proved to have good catalytic activity and efficient recyclability. It was observed that catalytic efficiency was hindered by the particle aggregates formed after pyrolysis by creating an inhomogeneity in the system and inaccessibility of the catalytic surface for the reactants. Hence synthetic modifications were needed to overcome such drawbacks. Next part of the work deals with the synthetic modification of Au@SiO2 yolk-shell nanoparticles done by embedding them in a porous silica structure (PSS). Such structural morphology was attained by gelating the excess silica precursor while synthesising the Au@PS-b-P4VP@SiO2 particles. The pyrolytic removal of block copolymer results in the formation of Au@SiO2@PSS catalyst and the porous nature of both the shell and the silica structure provides an easy access for the reactants to the nanocatalyst surface located inside. The catalytic properties of Au@SiO2@PSS were studied using a model reaction of catalytic reduction of 4-nitrophenol (4-NP) and reductive degradation of different dyes. Kinetic studies show that Au@SiO2@PSS catalyst possesses enhanced catalytic activity as compared to other analogous systems reported in the literature so far. Furthermore, catalytic experiments on the reductive degradation of different dyes show that Au@SiO2@PSS catalyst can be considered as a very promising candidate for wastewater treatment. Another proposed direction of applying the Au@SiO2 yolk-shells is by devising a continuous flow catalytic system composed of Au@SiO2 yolk-shell nanoparticles for the effective degradation of azo dyes as a promising candidate for wastewater treatment. This was done by infiltrating the Au@PS-b-P4VP@SiO2 particles inside a porous glass substrate (frits) and the subsequent pyrolytic removal of the BCP template resulting in the formation of Au@SiO2 yolk-shell nanostructures sintered inside the frit pores. The flow catalytic reactor was exploited in terms of studying its catalytic activity in the degradation of azo dyes and 4-nitrophenol and proved to have a catalytic efficiency of ca. 99% in terms of reagent conversion and has a long-term stability under flow. Thus, with a few modifications, these flow type systems can open the doors to a very promising continuous flow catalytic reactor in the future.
33

Kinetisches Modell für die Prozessanalyse von Displacement-Assays mit mono- und bivalenten Antikörpern

Gelinsky-Wersing, Dagmar 16 February 2018 (has links) (PDF)
Molecular and functional analysis of small molecule binding to protein can provoke insights into cellular signaling and regulatory systems as well as facilitate pharmaceutical drug discovery. In label free small molecule detection the displacement assay format can be applied. This assay format comprises the displacement of receptor molecules bond to immobilized ligand by a competition reaction with ligand in solution. This is beneficial because displacement of high molecular receptors is detected compared to low molecular ligand as in classical binding analysis therefore potentially lowering the method detection limit. It was hypothesized that with choosing appropriate measuring methods and theoretical modeling reaction rate constants can be determined separately in every kinetic stage of the assay format. Herein elucidating the dominant valence of antibody antigen binding in the established assay was of great importance. Using the Influenza Hemagglutinin (HA) peptid binding to mono or bivalent Anti-Hemagglutinin peptide antibody displacement assay formats could be established. The exact time resolved analysis of binding and dissolution of ligand HA and Anti-Hemagglutinin peptide antibody was achieved with surface plasmon resonance (SPR) spectroscopy. Mathematical models could be developed from kinetic equations of ligand binding to mono or bivalent antibody. With this, an accurate simulation of the SPR results was reached. The simulation plot had to be exactly adjusted to the SPR results to determine all kinetic rate constants defining ligand and receptor binding kinetics. Large variations in receptor concentration gave almost identical rate constants in binding; this proves the quality of SPR measurements and demonstrates consistence between measurement, simulation, and binding model. Maximum decline of SPR response could be used to determine ligand concentrations in analyte. Displacement dependence from antigen concentration was found to be exponential and was explained by rebinding. Kinetic data and models could be transferred for the simulation of almost stationary displacement assay formats realized with impedance and fluorescence spectroscopy. With the obtained results it was possible to detect the displacement of the bacterial signaling autoinducer AI-2 by a displacement assay format using periplasmic binding protein LuxP as receptor. Concluding it can be said that the hypothesis could be proved and the obtained results can facilitate the use of displacement assay formats in biosensing. Displacement assay formats should be especially interesting in small molecule detection and in compact integrated mass sensitive sensor designs suitable as mobile sensors in outdoor screening. / Die Analyse des Bindungsverhaltens niedermolekularer Liganden an Proteine ist für die Aufklärung von biologischen Regulationssystemen oder bei der Suche neuer medizinischer Wirkstoffe von Wichtigkeit. Ein markierungsfreies Detektions¬prinzip zur Erfassung niedermolekularer Liganden ist die Displacement- oder Replacement-Methode. Bei dieser tritt die Bindung des Rezeptors an den immobilisierten Liganden mit der Bindung an freien Liganden in Konkurrenz, sodass anstelle der niedermolekularen Liganden die hochmolekularen Rezeptoren detektiert werden können. In dieser Arbeit wurde von der Hypothese ausgegangen, dass durch die Auswahl geeigneter Messverfahren und der zugeordneten Modellierung die einzelnen kinetischen Stadien des Displacements separat zur Bestimmung der kinetischen Konstanten der Displacementprozesse genutzt werden können. Dabei sollte unter anderem auch eine Aussage über die dominierende Valenz der Antigen-Antikörper-Bindung erreicht werden. Hierzu wurden auf der Basis des Modellsystems Hämagglutinin-Peptid/ Hämagglutinin-Antikörper Displacement-Assays mit mono- und bivalenten Anti-körpern entwickelt, anhand derer eine genaue zeitaufgelöste Analyse des Bindungs- und Ablösungsverhaltens vom Liganden HA an den Anti-HA-Antikörper (Rezeptor) mittels Oberflächenplasmonenresonanz(SPR)-Spektroskopie erzielt wurde. Ausgehend von den Reaktionsgleichungen zwischen Liganden und mono- und bivalenten Rezeptoren wurden mathematische Modelle entwickelt, die eine exakte Simulation der SPR-Ergebnisse ermöglichten. Durch genaues Anpassen der Simulationsplots an die Messplots konnten alle Ratenkonstanten, die die Kinetik der Reaktionen zwischen Liganden, Rezeptoren und ihren Komplexen bestimmen, ermittelt werden. Da auch für eine große Variation der Rezeptorkonzentrationen in der Analytlösung nahezu identische Werte für die Ratenkonstanten erhalten wurden, ergeben Messungen und Simulationen ein konsistentes Bild der Anbindungskinetik und bestätigen die Qualität der Messungen. Aus Messungen des maximalen Responsabfalles kann die Konzentration der freien Antigene beim Displacement ermittelt werden. Man findet eine exponentielle Abhängigkeit des Displacements von der Konzentration der freien Antigene, die sich durch den sogenannten „Rebindingeffekt“ erklären lässt. Die gewonnenen kinetischen Daten und entwickelten Modellierungsverfahren konnten zur Simulation quasistationärer Detektionsverfahren, die mit Fluoreszenz- und Impedanzspektroskopie durchgeführt wurden, erfolgreich angewandt werden. Die erzielten Erkenntnisse konnten auf ein wissenschaftlich herausforderndes biologisches System (LuxP/AI2) angewandt werden, bei dem das niedermolekulare Signalmolekül AI2 über ein Displacementassay detektiert wurde. Dieses System ermöglicht einen Einblick in die Intra- und Interspezieskommunikation bei Bakterien. Insgesamt zeigt sich, dass die hier formulierte Hypothese als bewiesen angesehen werden kann. Die in dieser Arbeit gewonnenen Erkenntnisse eröffnen verschiedene Einsätze der Displacementmethode in der Biosensorik. Insbesondere lassen sich damit kleine Moleküle markierungsfrei quantitativ bestimmen, ohne hoch präzise Analysengeräte einsetzen zu müssen. Damit ergibt sich die Möglichkeit, sehr kompakte integrierte massensensitive Sensoren, die nicht die Empfindlichkeit hochempfindlicher SPR-Spektrometer erreichen, zur Detektion kleiner Moleküle einzusetzen. Dies ist besonders für mobile Anwendungen von Interesse.
34

Development and Investigation of High-Performance Fire Retardant Polypropylene Nanocomposites via High Energy Electrons

Xiao, Dan 23 October 2017 (has links) (PDF)
Polypropylene (PP) has excellent mechanical and chemical properties. Thus, it is used in a wide range of applications. However, like for most polymers, the high flammability of PP limits its application in various fields requiring specific flame-retardant standards. Some of halogenated flame retardants are restricted by European Community directives ROHs, WEEE and REACH. Now metallic hydroxides flame retardants are widely used in industry, but the high loading (about 60 wt %) seriously destroys the mechanical properties of polymeric materials. To improve the performance of flame retardant polymers, an environment-friendly electron beam (EB) technology has been successfully used in modifying flame retardant and polymer matrix. In this work, high efficient functional intumescent flame retardants and functional surfactant are designed and prepared for EB technology. In-depth studies the thermal stability, fire behavior and mechanical properties of these flame retardant PP composites have been studied. The possible graft-linking and cross-linking mechanisms of such EB modified composites can be well established. Specially, it is shown that the novel surfactant has better thermal stability in comparison to traditionally used modifiers. Another part of this work deals with the exploration of novel allylamine polyphosphate (AAPP) as flame retardant crosslinker for PP by electron beam (EB) treatment. Multifunctional AAPP showed unique efficient intumescent flame retardant properties. The limiting oxygen index (LOI) value and the effective melt drop resistance in UL-94 test of multifunctional flame retardant PP composites is greatly enhanced. In the cone calorimeter test, a reduction of peak heat release rate, total heat release and smoke production is achieved. Moreover, EB treatment increased the thermal stability of these designed flame retardant PP composites. Furthermore, AAPP provided an excellent quality of char residue in the combustion stage due to P−N−C and P−O−C structure. In addition, synergistic mechanism of AAPP with montmorillonite (MMT) was explored. Finally, different EB parameters have been used to modify fire retardant polymer nanocomposites. The effects of EB treatment on thermal stability, fire behavior and mechanical properties of fire retardant PP nanocomposites have been discussed. The heat release, the production of toxic gases and the mass loss of EB modified fire retardant PP nanocomposites are delayed in accordance to the result of cone calorimeter test. Based on these results high performance fire retardant polymer nanocomposites can be developed for industrial applications such as insulated material of wire, cable, etc.
35

3D Arrangements of Encapsulated Fluorescent Quantum Dots / 3D Anordnungen eingekapselter, fluoreszierender Quantenpunkte

Rengers, Christin 29 March 2016 (has links) (PDF)
Nanomaterials have attracted considerable attention during the past decades due to their unique and fascinating properties. However, this class of materials is not an invention of modern age. People have been using nanomaterials for centuries, although unwittingly. Probably the most famous example for the usage of nanomaterials in ancient times is the Lycurgus Cup, a Roman glass cage cup created in the 4th century which changes the colour of its glass from green to ruby depending on the illumination conditions. The foundation for the development of the field of nanotechnology was laid by the speech of Feynman “There is plenty of room at the bottom” in 1959, in which he spoke about the principles of miniaturisation as low as to the atomic level. Today, modern nanotechnology made it its business to purposefully develop and synthesise nanomaterials as well as to face their applications in various fields, such as microelectronics, catalysis or biomedicine. However, the term “nanomaterials” does not solely involve the nanoparticulate units itself, but also their arrangement into two- or three-dimensional structures. Thereby, the maintenance of the nanoscale properties is one of the main challenges. This task was focussed by this work implied the preparation and macroscale arrangement of fluorescent QDs while preserving their optical properties. The main achievement of this work was the development of a novel aerogel material with non-quenching PL behaviour by using silica coated QDs as nanoparticulate building units. In comparison to other monolithic silica-QD structures or aerogels from pure QDs, a defined and controllable distance between the fluorescent QDs is provided in these structures by the silica shell. The spacing was shown to efficiently disable energy transfers so that no spectral shifts, lifetime shortening or PL QY losses are observed during the colloid to gel transition. The silica shell, established by a standard reverse microemulsion approach, was found to exhibit a certain porosity, which was proven by gas adsorption measurements. Existing cavities in the micro- and mesoporous range were found to allow small species such as metal ions to pass through the shell and interact with the QD core causing a detectable change of the PL intensity, which makes these materials suitable for future sensing applications. The gel preparation was based on a metal ion assisted complexation approach, which requires tetrazole functionalisation of the nanoparticulate building units. A major development in this work that permitted this gelation approach for silica-QDs was the development of a novel tetrazole-silane ligand. TMSPAMTz was specifically designed to bind to the silica surface of silica-QDs in aqueous solution and was prepared by a covalent coupling of an alkyl chained silane with a 5-subsituted tetrazole ring. Network formation is subsequently achieved by the interconnection of negatively charged tetrazole rings with metal ions, which allows for a broad spectrum of aerogel materials from different NP species as well as their mixtures as long as tetrazole capping is provided. Considering this diversity and the disabling of energy transfers, straightforward colour tuning was demonstrated herein by mixing differently emitting silica-QD species which gives great prospects for lighting applications. Furthermore, the possibility of plasmon enhanced emission was presented for mixed Au NP/silica-QD gels. With respect to future sensing applications, thin porous films from silica-QDs gels were prepared, which showed a promising concentration dependant PL quenching for the model analyst hydrogen peroxide. However, the film reproducibility of the applied drop-cast coating method was insufficient. As a suggestion to this, a LbL method was presented, wherein a gel is subsequently grown with the metal ion assisted complexation approach. In addition to the tetrazole ligands on the NP surface, tetrazole-silane ligands were used in this approach to functionalise the glass substrate surface. By this, homogeneous gel films of distinct thickness can be grown while the use of organic polymers can be completely avoided. Besides the preparation of NP assemblies, standard Cd-based QD materials as well as Au NPs of different sizes and shape, recent progresses in the synthesis of InP-based QDs were presented in this work. A thorough investigation and understanding of the growth influencing parameters allowed for the establishment of preparation routes for In(Zn)P/GaP/ZnS core/shell/shell QDs with emission wavelengths tuneable within a large range from 500 to 650 nm, narrow peak widths of 45 to 70 nm and PL QYs up to 60%. Successful incorporation of these QDs into salt matrices was further demonstrated. The resulting composite materials are very photostable and suitable as colour conversion materials for solid state lighting, as was clearly pointed out by a self-prepared WLED that met the standard commercial LEDs.
36

Monodisperse Microgels based on Poly(2-Oxazoline)s for Regenerative Cell Replacement Therapy

Lück, Steffen 16 February 2017 (has links) (PDF)
This work aims towards the development of a modular system for fabrication of monodisperse microgels made of poly(2-oxazoline)s for use in the field of regenerative therapy.
37

Anodisierungseigenschaften von gesputterten Aluminiumdünnschichten zur optimierten Herstellung von plasmonischen Nanorodarrays

Patrovsky, Fabian 20 December 2017 (has links) (PDF)
Im Bereich opto-elektronischer Sensortechnik ist ein eindeutiger Trend hin zu immer kleineren Bauelementen und immer spezifischeren Messanwendungen zu erkennen. Plasmonische Materialien auf der Basis von Nanostrukturen bieten sich hierbei hervorragend für dieses Aufgabenfeld an. Deren optische Absorbanzpeaks lassen sich über die geometrischen Parameter der Nanostrukturen einfach und präzise steuern und reagieren äußerst empfindlich auf Brechungsindexänderungen im Umgebungsmedium. Die Herstellung von aufrecht stehenden, teppichartig angeordneten Nanorods auf Basis von anodisierten Aluminiumoxidmatrizen bietet als skalierbares Bottom-up-Verfahren eine einzigartige Kombination aus Prozessgeschwindigkeit, Steuerbarkeit und Kosteneffizienz. In der vorliegenden Dissertation wurde untersucht, wie sich verschiedene Sputterparameter während der Herstellung von Aluminiumdünnschichten auf deren Anodisierungseigenschaften, sowie die anschließende Porenbefüllung und die plasmonischen Eigenschaften des so erzeugten Materials auswirken. Hierzu wurde reines Aluminium bei verschiedenen Sputterleistungen und -raten abgeschieden und hinsichtlich seiner Oberflächenkonfiguration und Prozessierbarkeit im bereits etablierten Nanorodproduktionsverfahren untersucht. Gleichwohl fanden Versuche statt, Aluminiumschichten mit einer schwachen Siliziumlegierung sowie durch reaktives Sputtern mit Sauerstoff voroxidiertes Aluminium zu anodisieren und für die Nanorodherstellung zu nutzen. Als typisches Ergebnis dieser Versuche zeigt sich eine deutliche Verbesserung des Anodisierungs- und Abscheideverhaltens, wenn die Sputterparameter so gewählt werden, dass eine möglichst feinkristalline Schicht abgeschieden wird. Während die Variation der Sputterleistung nur in einer mäßigen Verbesserung und die Siliziumlegierung sogar in einer Verschlechterung der optischen Eigenschaften resultieren, zeigt sich die Sauerstoffzugabe als äußerst vorteilhaft für den Herstellungsprozess sowie die plasmonischen Eigenschaften der fertigen Strukturen. Hierbei weisen Aluminiumschichten mit einem Sauerstoffanteil von 10 22 at.% die gleichmäßigste Anodisierung sowie die schmalsten Plasmonenresonanzpeaks auf, bei gleichzeitig hoher Reproduzierbarkeit. Für derartige Proben konnte eine annähernd vollständige Porenbefüllung erreicht werden. Weiterhin ist die Breite der Plasmonenresonanz hier vergleichbar mit der eines simulierten, defektfreien Nanorodarrays mit perfekt hexagonaler Nanorodanordnung, sodass von einer deutlichen Optimierung gesprochen werden kann, welche nun weitere Untersuchungen an diesem System oder sogar eine großtechnische Produktion ermöglicht Letztendlich offenbart eine quantitative Analyse der Strom-Zeit-Kurve der Anodisierung, dass diese in Form und Ausprägung mit der Güte der plasmonischen Eigenschaften der so produzierten Strukturen korreliert. Somit bietet sich diese als schnelles und günstiges Verfahren zur Qualitätskontrolle in einem sehr frühen Prozessstadium an. / Optical sensing witnesses an increasing trend towards smaller components and more specific applications. Nanostructure-based materials excellently fulfil these kinds of task. Their optical absorbance peaks are easily and precisely controllable by changing the structures‘ geometrical parameters, and have shown to be highly sensitive to refractive index changes of the surrounding medium. The fabrication of free-standing arrays of metallic nanorods based on anodised aluminium oxide matrices as a scalable bottom-up process offers a unique combination of throughput in production, process control and cost efficiency. The scope of the present dissertation thesis is the exploration of different sputtering parameters and techniques for the fabrication of aluminium thin-films, their influence on the anodisation properties as well as subsequent pore filling, and of course the optical properties of the final plasmonic structure. For this, pure aluminium was deposited at different sputtering powers and rates, and was investigated regarding its surface configuration as well as its usability within the well-established nanorod fabrication process. Similarly, attempts were made to anodise aluminium alloyed with small quantities of silicon as well as substoichiometric aluminium oxide, which was prepared by reactive sputtering under partial oxygen pressure. As a typical result of these studies, it was found that a considerable improvement of anodisation and electroplating behaviour could be achieved, provided the sputtering conditions were chosen such that the deposited films\' crystal size becomes as small as possible. While the variation of the sputtering power lead only to a marginal improvement and the silicon admixture even deteriorated the sample quality, the use of partially oxidised aluminium layers proved to be highly advantageous for the fabrication process as well as the plasmonic properties of the final structures. The optimal oxygen content was found to be 10 22 at.%, with these samples showing the most regular anodisation behaviour, the smallest absorbance peak width, and at the same time a high reproducibility. Furthermore, the peak width of these samples is comparable to that of simulated, defect-free nanorod arrays in a perfect hexagonal arrangement. These fabrication parameters can therefore be viewed as highly optimised and well-suited for further investigations of this material or even a large-scale production process. Finally, a quantitative analysis of the current-time-curve of an anodisation process reveals a correlation between its characteristics and the samples’ plasmonic qualities. Hence, the analysis of this curve may be used as a fast and cheap method of quality control at the early stages of the fabrication process.
38

Synthesis, characterization and toxicological evaluation of carbon-based nanostructures

Mendes, Rafael Gregorio 30 November 2015 (has links) (PDF)
The synthesis, characterization and biological evaluation of different graphene-based nanoparticles with potential biomedical applications are explored. The results presented within this work show that eukaryotic cells can respond differently not only to different types of nanoparticles, but also identify slight differences in the morphology of nanoparticles, such as size. This highlights the great importance of the synthesis and thorough characterization of nanoparticles in the design of effective nanoparticle platforms for biological applications. In order to test the influence of morphology of graphene-based nanoparticles on the cell response, nanoparticles with different sizes were synthesized and tested on different cells. The synthesis of spherical iron-oxide nanoparticles coated with graphene was accomplished using a colloidal chemistry route. This synthesis route was able to render nanoparticle samples with narrow size distributions, which can be taken as monodispersed. Four different samples varying in diameter from 10 to 20 nm were produced and the material was systematically characterized prior to the biological tests. The characterization of the material suggests that the iron oxide nanoparticles consist of a mix of both magnetite and maghemite phases and are coated with a thin graphitic layer. All samples presented functional groups and were similar in all aspects except in diameter. The results suggest that cells can respond differently even to small differences in the size of the nanoparticles. An in situ study of the coating of the iron-oxide nanoparticles using a transmission electron microscope revealed that it is possible to further graphitize the remaining oleic acid on the nanoparticles. The thickness of the graphitic coating was controlled by varying the amount of oleic acid on the nanoparticles. The in situ observations using an electron beam were reproduced by annealing the nanoparticles in a dynamic vacuum. This procedure showed that it is not only possible to coat large amounts of iron oxide nanoparticles with graphene using oleic acid, but also to improved their magnetic properties for other applications such as hyperthermia. This study therefore revealed a facile route to grow 2D graphene takes on substrates using oleic acid as a precursor. The synthesis of nanographene oxide nanoparticles of different sizes was in a second approach accomplished by using the Hummers method to oxidize and expand commercially available graphite. The size of the oxidized graphite was adjusted by sonicating the samples for different periods of time. The material was also thoroughly characterized and demonstrated to have two distinctive average size distributions and possess functional groups. The results suggest that different size flakes can trigger different cell response. The synthesis, characterization and biological evaluation of graphene nanoshells were performed. The graphene nanoshells were produced by using magnesia nanoparticles as a template to the graphene nanoshells. The coating of magnesia with graphene layers was accomplished using chemical vapor deposition. The nanoshells were obtained by removing the magnesia core. The size of the nanoshells was determined by the size of the magnesia nanoparticles and presented a broad size distribution since the diameter of the magnesia nanoparticles could not be controlled. The nanoshells were also characterized and the biological evaluation was performed in the Swiss Federal Laboratories for Materials Science and Technology (EMPA), in Switzerland. The results suggest that despite inducing the production of reactive oxygen species on cells, the nanoshells did not impede cell proliferation. / Die Herstellung, Charakterisierung und biologische Auswertung von verschiedenen Graphen-basierten Nanopartikeln mit einer potenziellen biomedizinischen Anwendung wurden erforscht. Die vorgestellten Ergebnisse im Rahmen dieser Arbeit zeigen, dass eukaryotische Zellen unterschiedlich reagieren können, wenn sie mit Nanopartikeln unterschiedlicher Morphologie interagieren. Die Zellen können geringe Unterschiede in der Morphologie, insbesondere der Größe der Nanopartikeln, identifizieren. Dies unterstreicht den Einfluss der Herstellungsmethoden und die Notwendigkeit einer gründlichen Charakterisierung, um ein effektives Design von Nanopartikeln für biologische Anwendungen zu erreichen. Um den Einfluss der Größe von Graphen-basierten Nanopartikel auf das Zellverhalten zu erforschen, wurden verschiedene Graphen-beschichte Eisenoxid-Nanopartikelproben durch eine kolloidchemische Methode hergestellt. Dieses Herstellungsverfahren ermöglicht die Synthese von Nanopartikeln mit engen Größenverteilungen, die als monodispers gelten können. Vier Proben mit unterschiedlichen Durchmessern (von 10 bis 20 nm) wurden hergestellt und vor den biologischen Untersuchungen systematisch charakterisiert. Die Probencharakterisierung deutet auf eine Mischung aus Magnetit- und Maghemit-Kristallphasen hin, außerdem besitzen die Nanopartikel eine dünne Graphitschicht. Die spektroskopischen Ergebnisse auch zeigen außerdem, dass alle Proben funktionelle Gruppen auf ihrer Oberfläche besitzen, sodass sie in allen Aspekten, außer Morphologie (Durchmesser), ähnlich sind. Die biologischen Untersuchungen deuten darauf hin, dass Zellen unterschiedliche Größen von Eisenoxid-Nanopartikeln reagieren können. Ein in situ Untersuchung der Beschichtung der Eisenoxid-Nanopartikel wurde mit einem Transmissionelektronenmikroskop durchgeführt. Die Ergebnisse zeigen, dass eine dünne Schicht von Ölsäure aus dem Syntheseprozess auf den Nanopartikeln verbleibt. Diese Schicht kann mit einem Elektronstrahl in Graphen umgewandelt werden. Die Dicke der Graphitschicht auf den Nanopartikeln kann durch die Menge der eingesetzten Ölsäure kontrolliert werden. Die in situ Beobachtungen der Graphenumwandlung konnte durch erhitzen der Nanopartikeln in einem dynamischen Vakuum reproduziert werden. Das Brennen der Eisenoxid-Nanopartikel ermöglicht nicht nur die Graphitisierung der Ölsäure, sondern auch eine Verbesserung der magnetischen Eigenschaften der Nanopartikel für weitere Anwendungen, z. B. der Hyperthermie. Die Umwandlung der Ölsäure in Graphen konnte so als relativ einfaches Verfahren der Beschichtung von zweidimensionalen (2D) Substraten etabliert werden. Die Herstellung von Nanographenoxid mit unterschiedlichen Größen wurde mit der Hummers-Method durchgeführt. Die unterschiedlichen Größen der Nanographenoxidpartikel wurde durch eine Behandlung in Ultraschallbad erreicht. Zwei Proben mit deutlicher Verteilung wurden mit mehreren Verfahren charakterisiert. Beide Proben haben Nanographenoxid Nanoteilchen mit verschiedenen funktionellen Gruppen. Die biologische Charakterisierung deutet darauf hin, dass unterschiedliche Größen des Nanographens ein unterschiedliches Zellverhalten auslösen. Abschließend, wurde die Herstellung, Charakterisierung und biologische Auswertung von Graphen-Nanoschalen durchgeführt. Die Graphen-Nanoschalen wurden mit Magnesiumoxid-Nanopartikeln als Template hergestellt. Die Beschichtung des Magnesia mit Graphen erforgte durch die chemische Gasphasenabscheidung. Die Nanoschalen wurden durch Entfernen des Magnesia-Kerns erhalten. Die Größe der Nanohüllen ist durch die Größe der Magnesia-Kerns bestimmt und zeigt eine breite Verteilung, da der Durchmesser der Magnesiumoxid-Nanopartikel gegeben war. Die Nanoschalen wurden ebenfalls mit Infrarot- und Röntgen Photoemissionspektroskopie charakterisiert und die biologische Bewertung wurde im Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) durchgeführt, in der Schweiz. Die Ergebnisse zeigen, dass zwar die Produktion von reaktiven Sauerstoffspezies in den Zellen ausgelöst wird, diese sich aber weiterhin vermehren können.
39

Functional Coatings with Polymer Brushes

König, Meike 29 October 2013 (has links) (PDF)
The scope of this work is to fathom different possibilities to create functional coatings with polymer brushes. The immobilization of nanoparticles and enzymes is investigated, as well as the affection of their properties by the stimuli-responsiveness of the brushes. Another aspect is the coating of 3D-nanostructures by polymer brushes and the investigation of the resulting functional properties of the hybrid material. The polymer brush coatings are characterized by a variety of microscopic and spectroscopic techniques, with a special emphasis on the establishment of the combinatorial quartz crystal microbalance/spectroscopic ellipsometry technique as a tool to characterize the functional properties of the polymer brush systems insitu. The pH-responsive swelling of the polyelectrolyte brushes poly(acrylic acid) and poly(2-vinylpyridine), as well as the thermoresponsive swelling of poly(N-isopropylacryl amide) is studied in detail by this technique. Poly(2-vinylpyridine) and binary poly(N-isopropylacryl amide)-poly (2-vinylpyridine) brushes are used as templates for the insitu-synthesis of palladium and platinum nanoparticles with catalytic activity. As an example for the use of polymer brushes to immobilize enzymes, the model enzyme glucose oxidase is physically adsorbed to poly (2-vinylpyridine) and poly (acrylic acid) brushes and also covalently bound to poly (acrylic acid) brushes. In the last part of this thesis, sculptured thin films are coated with poly (acrylic acid) and poly (N-isopropylacryl amide) brushes and the swelling characteristics as well as the adsorption behavior of the model protein bovine serum albumin are investigated.
40

Quantum Transport Study in 3D Topological Insulators Nanostructures

Veyrat, Louis 20 September 2016 (has links) (PDF)
In this thesis, we investigate the quantum transport properties of disordered three dimensional topological insulator (3DTI) nanostructures of BiSe and BiTe in detail. Despite their intrinsic bulk conductivity, we show the possibility to study the specific transport properties of the topological surface states (TSS), either with or without quantum confinement. Importantly, we demonstrate that unusual transport properties not only come from the Dirac nature of the quasi-particles, but also from their spin texture. Without quantum confinement (wide ribbons), the transport properties of diffusive 2D spin-helical Dirac fermions are investigated. Using high magnetic fields allows us to measure and separate all contributions to charge transport. Band bending is investigated in BiSe nanostructures, revealing an inversion from upward to downward bending when decreasing the bulk doping. This result points out the need to control simultaneously both the bulk and surface residual doping in order to produce bulk-depleted nanostructures and to study TSS only. Moreover, Shubnikov-de-Haas oscillations and transconductance measurements are used to measure the ratio of the transport length to the electronic mean free path ltr/le. This ratio is measured to be close to one for bulk states, whereas it is close to 8 for TSS, which is a hallmark of the anisotropic scattering of spin-helical Dirac fermions. With transverse quantum confinement (narrow wires or ribbons), the ballistic transport of quasi-1D surface modes is evidenced by mesoscopic transport measurements, and specific properties due to their topological nature are revealed at very low temperatures. The metallic surface states are directly evidenced by the measure of periodic Aharonov-Bohm oscillations (ABO) in 3DTI nanowires. Their exponential temperature dependence gives an unusual power-law temperature dependence of the phase coherence length, which is interpreted in terms of quasi-ballistic transport and decoherence in the weak-coupling regime. This remarkable finding is a consequence of the enhanced transport length, which is comparable to the perimeter. Besides, the ballistic transport of quasi-1D surface modes is further evidenced by the observation of non-universal conductance fluctuations in a BiSe nanowire, despite the long-length limit (L > ltr) and a high metallicity (many modes). We show that such an unusual property for a mesoscopic conductor is related to the limited mixing of the transverse modes by disorder, as confirmed by numerical calculations. Importantly, a model based on the modes' transmissions allows us to describe our experimental results, including the full temperature dependence of the ABO amplitude.

Page generated in 0.406 seconds