• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 6
  • Tagged with
  • 195
  • 195
  • 195
  • 177
  • 149
  • 31
  • 27
  • 22
  • 14
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Modeling the complex ejecta on 2017 September 6-9 with WSA-ENLIL+Cone and EUHFORIA

Werner, Anita Linnéa Elisabeth January 2018 (has links)
Three CMEs which erupted on 2017 Sep 4 and 6 underwent mutual interaction before reaching Earth on Sep 6-9, where it gave rise to a complex and unexpectedly geoeffective structure as detected by WIND at L1. The spacecraft first observed an interplanetary (IP) shock on Sep 6 followed by a turbulent sheath. The leg of the CME flux rope is detected on Sep 7, in which clear signatures of a shock-in-a-cloud can be distinguished, coming from the third CME which propagated into the preceding flux rope. We model the source of this complex ejecta with WSA-ENLIL+Cone and EUHFORIA to assess and compare the overall performance for interacting CMEs as opposed to single CME events. We find that following the conventional algorithm for determination of input parameters give large deviation in the event prediction at L1. The overestimated density of the IP shock 1 is due to the way of implementation of the magnetogram in WSA model. Excluding the slow CME from the input leads to even larger deviation. The prediction of IP shock 1 drastically improves by introducing of a customized density enhancement factor (dcld) based on coronagraph image observations. This novel approach, is simple and accessible, and could be applied to improve the forecast for fast, undisturbed CMEs. The deviation in the prediction of IP shock 2 comes from its interaction with the low proton temperature environment of the preceding magnetic cloud, giving rise to an expansion of the shock front. Additionally, the properties of the background solar wind plasma have been preconditioned by passage of the previous IP shock. This was confirmed from the kilometric type II radio burst emission following the eruption of the third CME. The propagation profile of this CME implies an almost non-existent deceleration in the interplanetary medium, in contrast to the expected CME deceleration due to interaction with the background plasma. In summary, this study presents clear indications that magnetic interaction must be taken into account to reliably forecast multiple CME events. Preconditioning of previous CMEs must also be considered in more depth, and ultimately requires a realistic, time-dependent model of the ambient solar wind which responds well to propagating shock waves. Models in space physics presents us with the perfect tools for understanding not only the physical processes that the simplified models can predict, but perhaps more importantly, help us begin to understand what the models fail to predict.
172

Europa's Hydrogen Corona in a Large Set of HST Lyman-Alpha Images

Bergman, Sofia January 2017 (has links)
Far-ultraviolet (FUV) spectral images of Jupiter's moon Europa were obtained by the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) on 20 occasions between the years 1999 and 2015. In this thesis these data are analyzed to look for Lyman-alpha emissions from a hydrogen corona. This hydrogen corona was recently discovered in absorption, also from HST Lyman-alpha images but with Europa in transit of Jupiter, and the aim of this study is to confirm the existence of the corona also in emission. Europa's thin atmosphere is dominated by molecular oxygen, mainly produced by radiolysis and sputtering of the icy surface. Atomic hydrogen, the main target for this study, is produced by sputtering from the surface and the dissociation of H2 and H2O. It quickly escapes the gravity of Europa. To study the hydrogen corona in the spectral STIS images the data need to be processed to remove the other Lyman-alpha contributions to the image. These other contributions include emissions from the geocorona, emissions from the interplanetary medium (IPM), dark current in the detector and sunlight reflected from the surface of Europa. To estimate the contribution to the image from the hydrogen corona, a basic model of the expected emissions from the corona is developed. By fitting this model to the processed STIS data values of the hydrogen density and the surface Lyman-alpha albedo of the moon are obtained. The results confirm the presence of a hydrogen corona, with varying densities between the different observations but generally about twice as large as the results from the previous study. The uncertainty for the results is however large and there is a clear correlation between hydrogen density and background level in the image, for which the reason is poorly understood. No hemispheric variability or connections to the true anomaly of the moon are found, but the hydrogen density seems to be increasing during the time of the observations. The results for the albedo is consistent with previous results, indicating a lower albedo on the leading than on the trailing hemisphere.
173

Resonant magnetic perturbation effect on the tearing mode dynamics : Novel measurements and modeling of magnetic fluctuation induced momentum transport in the reversed-field pinch

Fridström, Richard January 2017 (has links)
The tearing mode (TM) is a resistive instability that can arise in magnetically confined plasmas. The TM can be driven unstable by the gradient of the plasma current. When the mode grows it destroys the magnetic field symmetry and reconnects the magnetic field in the form of a so-called magnetic island. The TMs are inherent to a type of device called the reversed-field pinch (RFP), which is a device for toroidal magnetic confinement of fusion plasmas. In the RFP, TMs arise at several resonant surfaces, i.e. where the field lines and the perturbation have the same pitch angle. These surfaces are closely spaced in the RFP and the neighboring TM islands can overlap. Due to the island overlap, the magnetic field lines become tangled resulting in a stochastic magnetic field, i.e. the field lines fill a volume instead of lying on toroidal surfaces. Consequently, a stochastic field results in an anomalously fast transport in the radial direction. Stochastic fields can also arise in other plasmas, for example, the tokamak edge when a resonant magnetic perturbation (RMP) is applied by external coils. This stochastization is intentional to mitigate the edge-localized modes. The RMPs are also used for control of other instabilities. Due to the finite number of RMP coils, however, the RMP fields can contain sidebands that decelerate and lock the TMs via electromagnetic torques. The locking causes an increased plasma-wall interaction. And in the tokamak, the TM locking can cause a plasma disruption which is disastrous for future high-energy devices like the ITER. In this thesis, the TM locking was studied in two RFPs (EXTRAP T2R and Madison Symmetric Torus) by applying RMPs. The experiments were compared with modern mode-locking theory. To determine the viscosity in different magnetic configurations where the field is stochastic, we perturbed the momentum via an RMP and an insertable biased electrode. In the TM locking experiments, we found qualitative agreement with the mode-locking theory. In the model, the kinematic viscosity was chosen to match the experimental locking instant. The model then predicts the braking curve, the short timescale dynamics, and the mode unlocking. To unlock a mode, the RMP amplitude had to decrease by a factor ten from the locking amplitude. These results show that mode-locking theory, including the relevant electromagnetic torques and the viscous plasma response, can explain the experimental features. The model required viscosity agreed with another independent estimation of the viscosity. This showed that the RMP technique can be utilized for estimations of the viscosity. In the momentum perturbation experiments, it was found that the viscosity increased 100-fold when the magnetic fluctuation amplitude increased 10-fold. Thus, the experimental viscosity exhibits the same scaling as predicted by transport in a stochastic magnetic field. The magnitude of the viscosity agreed with a model that assumes that transport occurs at the sound speed -- the first detailed test of this model. The result can, for example, lead to a clearer comparison between experiment and visco-resistive magnetohydrodynamics (MHD) modeling of plasmas with a stochastic magnetic field. These comparisons had been complicated due to the large uncertainty in the experimental viscosity. Now, the viscosity can be better constrained, improving the predictive capability of fusion science. / <p>QC 20171122</p>
174

Drag based forecast for CME arrival

Jaklovsky, Simon January 2020 (has links)
Coronal Mass Ejections (CMEs) are considered to be one of the most energetic events in the heliosphere. Capable of inducing geomagnetic storms on Earth that can cause damage to electronics, a pillar which the modern society we live in leans heavily upon. Being able to accurately predict the arrival of CMEs would present us with the ability to issue timely warnings to authorities and commercial actors, allowing for protective measures to be put in place minimizing the damage. In this study the predicted arrival times and speeds from the Drag Based Model (DBM) and Drag Based Ensemble Model (DBEM) were compared to observational data from a set of 12 events containing fast, Earth-directed Halo CMEs and their corresponding shocks. Although DBM was developed to model CME propagation, varying some parameters allow it to be used for estimating shock/sheath arrival. The results presented in this study indicate that on average DBM performs best when the drag-parameter γ is in the range 0.2 ≤ γ ≤ 0.3. However the variability in the results show that determining a universal value of γ for fast CMEs does not increase the consistency in the model's performance. For completeness, further investigation is needed to account for not only halo CMEs. This will allow to test broader range of variation in the DBEM input parameters.
175

Dynamics of metallic dust particles in tokamak edge plasmas

Vignichouk, Ladislas Tancrède Raymond January 2013 (has links)
The study of dust dynamics in tokamaks has been carried out by means of the DDFTU numericalcode solving the coupled equations of motion, charging and heat balance for a dust grainimmersed in plasmas with given profiles. The code has been updated to include (i) a non-steadystate heat balance model and phase transitions, (ii) geometrical properties of the vessel suchas gaps, (iii) realistic boundary conditions for dust-wall collisions. The models for secondaryelectron emission (SEE), thermionic emission and black body radiation have also been refined,and sensitivity of the results to the SEE strength is demonstrated. The DDFTU code has been used for the first time to explore a large range of initial conditions(position, velocity and radius) for dust grains of various tokamak-relevant materials. This studyconfirmed the impact of the drag force as one of the main factors in dust dynamics and allowedto estimate average lifetimes, to locate preferred sites for dust deposition and to judge thesensitivity to initial conditions. This is a first step towards the use of the code as a predictivetool for devices of importance, such as JET and ITER. Preliminary simulations of scenarios relevant for dust injection experiments in TEXTOR haveyielded results in remarkable agreement with experimental data. These preliminary studies allowed to identify the most crucial issues affecting dust dynamics,lifetime, deposition rate and contribution to impurities, which are to be pursued in futurestudies.
176

Radiation Shielding Simulations for Small Satellites on Geostationary Transfer Orbit / Säteilysuojaussimulaatioita pienille satelliiteille geostationaarisilläsiirtoradoilla

Fetzer, Anton January 2022 (has links)
The emergence of small and affordable satellites has led to rapid growth in the number of launched satellites over the past two decades. To save costs, small satellites often use mass-produced electronic components not explicitly designed for the radiation environment of space, which reduces reliability and makes them unsuitable for higher orbits. Improved radiation protection would enable small satellites to operate in high radiation environments and increase their reliability. This work investigates how small satellite electronics can be protected against the high radiation environment of geostationary transfer orbit on the example of the Foresail-2mission. Foresail-2 is a planned 6U CubeSat mission to the Earth radiation belts and is intended to use consumer-grade electronics components. In this harsh environment, most semiconductor devices require radiation shielding. The Space EnvironmentInformation System of the European Space Agency was used to analyse expected particle spectra along the planned orbit through the radiation belts. These particle spectra were then used in Monte-Carlo simulations based on the Geant4 particle transport toolkit to simulate the performance of different shielding configurations. Several thousand multilayer shielding configurations were simulated to optimise the material composition and layer structure of multilayer shielding. The best multilayer configurations against the combined proton and electron spectra of the Earth’s radiation belts use materials with low proton numbers on top of materials with high proton numbers and can significantly outperform conventional aluminium shielding. However, the usage of alternative materials might introduce significant overhead in the design and manufacturing of the satellite structure. Additionally, the influence of satellite structure geometry and openings in the shield was analysed. Even a 1 cm2 opening in the shield can increase the total ionising dose received by electronic components over a mission lifetime by more than an order of magnitude. In conclusion, the work recommends an aluminium body of 6 mm or equivalent multilayer shielding for the Foresail-2 mission to reduce the radiation level to a tolerable level for consumer-grade electronics, while openings in the satellite body should be avoided or covered up with additional shielding. / FORESAIL
177

Multiple CubeSat Mission for Auroral Acceleration Region Studies

Castro, Marley Santiago January 2021 (has links)
The Auroral Acceleration Region (AAR) is a key region in understanding the interactionbetween the Magnetosphere and Ionosphere. To understand the physical, spatial, and temporal features of the region, multi-point measurements are required. Distributed small-satellite missions such as constellations of multiple nano satellites (for example multi-unit CubeSats) would enable such type of measurements. The capabilities of such a mission will highly depend on the number of satellites - one reason that makes low-cost platforms like CubeSats a very promising choice. In a previous study, the state-of-the-art of miniaturized payloads for AAR measurements was analyzed and evaluated on the capabilities of different multi-CubeSat configurations equipped with such payloads in addressing different open questions in AAR. This thesis will provide the mission analysis of such a multi-CubeSat mission to the AAR and possible mission design. This includes defining the mission scenario and associated requirements, developing a mathematical description of AAR that allows for specific regions in space to be targeted, an optimisation process for designing orbits targeting these regions, conversion of a satellite formation to appropriate orbits, verifying the scientific performance of this formation and the various costs associated with entering, maintaining, and exiting these orbits.
178

Design of Instrumentation &amp; Control and Optical Table Instruments for the Divertor Flow Monitor Diagnostic at ITER

Hermansson, Niklas January 2022 (has links)
This master's thesis describes the process of the design and instrument selection for a future optical table, part of a plasma flow monitor diagnostic system at the international thermonuclear experimental reactor, ITER. The diagnostic system is designed to detect the presence of edge localized mode, low to high confinement mode transition of plasma, and plasma flow velocity in the divertor region of the reactor. It accomplishes this by performing spectroscopic measurements of visible light radiating from specific elements inside the reactor. The selection of these elements are based on previous experiments performed at the joint european torus (JET). The light is transported via a system of lenses and mirrors to the optical table where it is directed through a series of optical instruments. Finally, the light is subsequently captured by cameras who live stream the images via the internal network to a control center. To aid the development of the schematic and instrument selection, optical design simulations of the light transmission path were performed to ensure that the design could provide sufficient level of light itensity to the cameras at a defined trajectory. The selection of instruments, light transmission results, computer aided design- and simulation models of the optical table are presented in this report. While the selected components satisfied most criteria specified by its predefined system requirements, the project also serves as a foundation for future improvements of the optical table, including changes to any of the instruments, schematics, and optical design simulations.
179

Real-Time Navigation for Swarms of Synthetic Aperture Radar (SAR) Satellites

Eritja Olivella, Antoni January 2024 (has links)
The pursuit of precision and flexibility in satellite missions has led to an increased number of formation flying missions being developed. These systems consist of multiple satellites flying at close distances (from a few kilometres to a few meters) to achieve common objectives. This master thesis delves into the domain of the Guidance, Navigation and Control (GNC) for formation flying satellite systems, aiming to propose a novel architecture of different sets of sensors capable of determining absolute and relative positioning of the formation, ensuring mission success. This research begins by providing an overall status of existing and tested in-space systems. It will be complemented with novel and other systems already tested and promising new technologies in development. The thesis then delves into the design of an absolute and a relative Extended Kalman Filter (EKF) for distributed Synthetic Aperture Radar (SAR) systems implemented as part of an in-house simulator. Concluding with the results when using simulated Global Navigation Satellite Systems (GNSS) data as the filter input. Finally, the thesis will be completed with a trade-off analysis of the sensor systems, which could be used in formation-flying satellite systems in the near future. The outcome of this thesis is a novel proposal of a set of sensors to be brought to space navigation, with a corresponding detailed trade-off analysis. Additionally, to validate some of the sensor systems, an EKF is proposed, implemented and tested with the results from an in-house formation flying simulator. This master thesis report is the outcome of the work done during an internship at the Microwave and Radar Institute of the Deutsche Zentrum für Luft- und Raumfahrt e.V. (DLR) – German Aerospace Center – in Oberpfaffenhofen, Bavaria, Germany.
180

Sporadic-E layers in the polar cap ionosphere : A review on Es occurrence, dynamics and formation theory

Thorell, Anton January 2023 (has links)
Sporadic-E layers (Es) are layers of metallic ions that appear in the lower E-region of the ionosphere and can last from under one hour to several hours. Es are found at all latitudes, but polar cap Es, and specifically over Svalbard at a latitude of around 78◦ , are the focus of this study. Data is provided from several instruments: the EISCAT Svalbard Dynasonde, the EISCAT Svalbard Incoherent Scatter Radar (ESR), SuperDARN, and modelled data from the latest Horizontal Wind Model (HWM14). Data on the Interplanetary Magnetic Field (IMF) is acquired from the NASA OMNIWeb data base. It is found that polar cap Es are a summer phenomenon, confined to the later afternoon to a couple of hours after midnight in universal time (UT), with a peak occurrence between 18-21 UT. The layer heights are mostly confined to ∼92-120 km, although there is a discrepancy between Es found in ESR data and Dynasonde data, with ESR events being confined to 92-110 km, and Dynasonde events to 95-120 km. It is also found that Es occurrence is dependent on Interplanetary Magnetic Field (IMF) direction, with a higher occurrence during a southward and eastward IMF. The Dynasonde automatic signal processing of echoes is found to be unreliable at times with intense E-region density enhancements, such as Es. From a Superposed Epoch Analysis (SEA) on Es found in ESR data, it is found that there is a density buildup from the start of the events, peaking by 30 % of the Es lifetime, that is followed by fading at a slower rate until the end of the layer lifetime. Layer thickness is found to be largely confined to &lt;9 km. From SuperDARN E-field data it is found that layers can form and migrate downwards to low altitudes for a strictly northward E-field. ’Flat’, low altitude layers are found during E-field directions in both the southwest and northwest quadrants. Some cases of Es formation and migration fit current theories and whilst some does not. Indications of particle precipitation that induce layer formation is found. / Sporadiska E-skikt (Es) är lager av metalliska joner som uppträder i den nedre delen av jonosfärens E-region, och kan pågå från under en timme till flera timmar. Es återfinns på alla breddgrader, men Es i polarområdet, och specifikt över Svalbard på en latitud av cirka 78◦ , är fokuset för denna studie. Data tillhandahålls från flera instrument: EISCAT Svalbard Dynasonde, EISCAT Svalbard Incoherent Scatter Radar (ESR), SuperDARN och modellerade data från en updaterad modell för horisontella neutrala vindar (HWM14). Data om det interplanetära magnetfältet (IMF) hämtas från NASAs OMNIWeb databas. Det visas att Es i polarområdet är ett sommarfenomen, begränsat till mellan eftermiddagen och ett par timmar efter midnatt i universell tid (UT), med en toppförekomst mellan 18-21 UT. Höjd för skikten är mestadels begränsade till ∼92-120 km, men det finns en diskrepans mellan Es funna ur ESR-data och Dynasonde-data, med fallen från ESR data begränsade till 92-110 km och fall från Dynasonde-datan till 95-120 km. Det visas också att Es-förekomsten är beroende av det interplanetära magnetfältets (IMF) riktning, med en högre förekomst under IMF riktat söderut och österut. Dynasondens automatiska signalbehandling av ekon visas vara opålitlig under intensiva förhöjningar i E-regionens densitet, såsom är fallet vid sporadiska E-skikt. Genom en ’Superposed Epoch Analysis’ (SEA) som genoförs för de Es som lokaliseras i ESR-datan, visar det sig att det finns en densitetsuppbyggnad från början av Es fallen, med en densitetstopp vid 30 % av Es-livslängden, som sedan följs av en långsammare avtrappning tills skiktet helt dött ut. Skikttjockleken visar sig vara i stort sett begränsad till &lt;9 km. Ur E-fältdata från SuperDARN visar det sig att lager kan bildas och migrera nedåt, till låga höjder för ett nordligt riktat E-fält. ’Platta’ skikt på låg höjd återfinns under E-fältsriktningar i både sydvästra och nordvästra kvadranten. Vissa fall med Es formation och migration följer teorin på området medan andra fall inte gör det. Det finns vissa indikationer på att partikelprecipitation kan inducera skiktbildning.

Page generated in 0.0406 seconds