Spelling suggestions: "subject:"säsongslagring"" "subject:"säsongsbaserad""
1 |
Solvärme med säsongslager i LyckeboÅsberg, Cay January 2011 (has links)
The purpose of this thesis is to investigate and clarify the facts surrounding one of Vattenfall's district heating plants; The "solar field" and associated rock cavern in Lyckebo, Storvreta. The plant was built in the '80s by the formerly municipal utility,Uppsalakraftvärme AB, as an experimental building. A ground water filled cavern would serve as seasonal storage of solar heat from an adjacent solar field. Since both the energy company and the facility itself has undergone major changes over the past 30 years, there was a great need to gather facts in order to provide a picture of its current condition and potential for continued use. The thesis investigates the plant's history and problems with the rock cavern losses, and how the operation developed. It also presents the calculations regarding the possibilities of again supplementing the facility with solar energy - which is not the case today - as well as the economic conditions for it. Regarding a re-launch of solar energy, primarily a concentrating solar collector has been studied, as it has the advantages of an integrated control system. The calculations show that an implementation would be modestly profitable as an investment from Vattenfall. A far more successful concept however would be to go for a shareholder owned plant - a Solar cooperative. Such a solution has all the prerequisites to once again make Storvreta known for its solar energy storage, as well as produce a needed portion of goodwill for Vattenfall. / Syftet med detta examensarbete är att utreda och klargöra fakta kring en av Vattenfalls fjärrvärmeanläggningar; Solfältet med tillhörande bergrum i Lyckebo, Storvreta. Anläggningen uppfördes under 1980-talet som ett experimentbygge. Ett grundvattenfyllt bergrum skulle fungera som säsongslagring av solvärme från ett intilliggande solfält, för att tillgodose det då nybyggda bostadsområdet Lyckebo på ca 550 lägenheter, med fjärrvärme. Då både energibolaget och själva anläggningen genomgått stora förändringar de senaste 30 åren så fanns ett stort behov av att samla fakta för att kunna ge en bild av anläggningens nuvarande skick och potential för fortsatt användning. I examensarbetet utreds utöver anläggningshistoria dels problem med bergrummets förluster samt hur driften utvecklats. Därefter presenteras de beräkningar som genomförts angående huruvida anläggningen i framtiden åter kan kompletteras med solenergi - vilket inte är fallet idag - samt vilka ekonomiska förutsättningar som gäller därför. Det tydligaste resultatet gäller energiförlusterna från bergrummet, vilka följt ett tidigare oredovisat mönster. Inledningsvis såg dessa ut att stabilisera sig till en högre nivå än man först budgeterat för. Detta är också den bild som ges av den nuvarande litteraturen kring anläggningen. Resultatet från detta examensarbete visar att förlustnivåerna senare fortsatte att sjunka och stabiliserades mycket nära och till och med under den från början förutsagda nivån. Angående en nysatsning på solvärme har främst en koncentrerande solfångare studerats, då denna har fördelar med ett integrerat styrsystem. Beräkningarna visar att en satsning vore blygsamt lönsam som en investering från Vattenfalls sida. Ett betydligt framgångsrikare koncept vore att satsa på en andelsägd anläggning - ett solvärmekooperativ. En sådan lösning har alla förutsättningar att åter göra Storvreta till "Solvreta" samt ge en välbehövlig portion goodwill för Vattenfall.
|
2 |
Säsongslagra el med vätgas : Ekonomiska möjligheter för långtidslagring av grön vätgas producerad ur vindkraft / Seasonal storage of electricity with hydrogenApelryd, Caroline January 2022 (has links)
The energy carrier hydrogen has a great advantage over other electricity storing techniques on the market: the ability to store electricity long-term without any geographical needs. Though today’s techniques available are of low efficiency, the interests for them are high. Hydrogen gas is versatile, and with future developments it is possibly to make great economical profit from having a hydrogen storage. This master thesis project is evaluating the possible profitability that can be made when connecting a hydrogen system to a wind farm located in Swedish electricity region SE1. The system contains of production, storage and cold combustion of hydrogen with one main purpose: to produce hydrogen through electrolysis when the electricity prices are low and convert the gas back to electricity to sell when the prices are high. Four different simulations are made with a mixture of incomes: using the variety in the electricity price over a year, selling the by-products from the hydrogen system and selling pure hydrogen gas. The different simulations are mainly compared through three values: levelized cost of hydrogen (LCOH), earnings before interests and tax (EBIT) and return. The results show that the LCOH -cost per produced kilo hydrogen- for all simulations are higher than other compared production methods; even higher than the price per sold kilo hydrogen. EBIT -earnings per year- show that selling pure hydrogen gas makes a major difference on the yearly profit, from (the lowest result) -52217 SEK to (the highest result) 4853306 SEK. Even though EBIT show a positive result for some of the simulations, the return on the investment is negative which makes the investment non-profitable. In a sensitivity analysis with three variables, is the one who makes the biggest difference on the return value the cost of the hydrogen storage. Lowering that cost enough would make the investment profitable.
|
3 |
Förutsättningar för storskalig fastighetsanknuten energiproduktion i den befintliga infrastrukturenGran, Jonas, Bölin, Johan January 2012 (has links)
Miljöfrågor har fått en allt större betydelse i dagens samhälle, så även i fastighetsbranschen. Dagens nyproducerade byggnader är långt mer energieffektiva än byggnader som uppfördes för bara något årtionde sedan. Utrymmet för ytterligare miljöbesparingar på de enskilda fastigheterna minskar dock i takt med att byggnaderna blir allt mer energisnåla, vilket leder till att de största miljövinsterna finns att hämta i energin som tillförs fastigheten. För att kunna erbjuda sina kunder garanterat grön energi undersöker Skanska nu möjligheterna för gemensamt ägd energiproduktion för el via vindkraft och värme via solfångare som ansluts till den befintliga infrastrukturen. På det sättet kan man uppnå större volymer, minska energiförluster och få en mer rationell energiproduktion med stordriftsfördelar jämfört med fastighetsspecifika energilösningar så som exempelvis bergvärme. Skanska tänker sig att dessa anläggningar på ett eller annat sätt långsiktigt ska vara bundna till de fastigheter som är anslutna till anläggningen. Det har dock efter granskning av gällande fastighetsrättslig lagstiftning samt efter intervjuer med sakkunniga, visat sig att denna koppling skulle vara svår att åstadkomma rent fastighetsrättsligt. Istället bör kopplingen ske avtalsrättsligt med energiavtal eller genom någon typ av ägarform där fastighetsbolagen är delägare i anläggningen. Den lösning som verkat mest lämplig är att bilda ett aktiebolag som äger och driver anläggningen. Ett problem i dagsläget är att anläggningarna som planeras för värmeproduktionen har en högre alternativkostnad än att köpa värme på marknaden, men energin är i utbyte renare och priset är väldigt förutsägbart över en väldigt lång tidshorisont vilket ger en säkerhet. Tack vare överskådligheten och PR-värdet som den här miljösatsningen medför för såväl hyresgäster som fastighetsägare, hoppas Skanska att marknaden kommer vara beredd att betala en premie för denna garanterat förnyelsebara energi. Intervjuer har genomförts med representanter för fastighetsägare i Stockholmsregionen samt med några sakkunniga. Det visade sig då att det generella intresset för miljöfrågor verkar ha ökat kraftigt i branschen de senare åren, både bland fastighetsägare och hyresgäster och intresset för nya smarta energilösningar är stort. Dock verkar det fortfarande som att lönsamhet, om än på lång sikt, är ett krav för att större investeringar ska genomföras. För att projektet ska kunna bli verklighet måste nya lösningar hittas och synergieffekter tillsammans med nätägaren utnyttjas. Även affärsmodellen bör utvidgas till att också omfatta andra marknader än den kommersiella fastighetsmarknaden.
|
4 |
Utvärdering av potential för värmeåtervinning från laborationsutrustning : Möjligheten att använda en kylvattenbassäng som termiskt säsongslagerHammarström, Anton January 2018 (has links)
HETA utbildningar i Härnösand har ett ångkraftverk för undervisningssyfte som kyls ner med vatten från en underjordisk bassäng på cirka 329 m³. Syftet med detta examensarbete har varit att undersöka hur bassängen med spillvärmen från kraftverket kan användas som ett säsongslager i kombination med en befintlig 7,8 kW värmepump för att värma upp maskinhallen i deras laboratoriebyggnad. Ett kalkylark skapades i Microsoft Excel för att kunna genomföra beräkningarna. Då mätdata saknades skapades ett simulerat scenario baserat på temperaturstatistik och körschema för kraftverket från år 2017. Transmissionsförluster beräknades för bassängen och maskinhallen. För bassängen användes mestadels observationsdata och kännedom hos personalen, medan maskinhallens isolering i huvudsak fick uppskattas efter byggår. Resultatet blev att värmepumpen med aktuellt körschema kunde täcka cirka 45 % av maskinhallens årliga uppvärmningsbehov. Av de 276 GJ som tillfördes genom kylning av ångkraftverket under ett år beräknades endast 2,7 % kunna utnyttjas till uppvärmning av maskinhallen, på grund av för lite isolering i bassängen. De största begränsningarna för högre täckning och större nyttjande av spillvärmen bedömdes vara placeringen i tid av kraftverkets körningar, och värmepumpens effekt. Om körningarna skulle förläggas i huvudsak till november–april och värmepumpen ersättas med en på 10 kW, skulle 74 % av värmebehovet kunna täckas och över 18 % av spillvärmen utnyttjas. Andra saker som förbättrad isolering i bassängen och större vattenvolym bedömdes också kunna förbättra bassängens kapacitet som energilager. / HETA Education in Härnösand has a steam power plant for educational purposes which is cooled with water from a 329 m³ underground basin. The purpose of this thesis has been to examine how the basin with the waste heat can be used as seasonal thermal energy storage with an existing 7.8 kW heat pump in order to heat the machine room of their lab building. A spreadsheet was created in Microsoft Excel in order to carry out the calculations. As no measurement data was available, a simulated scenario was created based on temperature statistics and the operating schedule for the power plant from the year 2017. Transmission losses were calculated for the basin and the machine room. For the basin, mostly observational data and knowledge among the staff were used, while the insulation for the machine room mainly had to be estimated based on the construction year. The result was that the heat pump, with the current operating schedule, could cover around 45% of the yearly heating demand of the machine room. Of the 276 GJ that were added through cooling of the power plant during a year, according to calculations, only 2,7% could be used for heating the machine hall, due to lacking insulation in the basin. The greatest limitations for achieving a higher heating coverage and a greater usage of the waste heat were assessed to be the placement in time of the power plant runs, and the effect of the heat pump. If the runs would be placed mainly in November–April, and the heat pump replaced with a 10 kW one, around 74% of the heating demand could be covered and 18 % of the waste heat used. Other things, such as increased insulation in the basin and larger water volume were also assessed to be able to increase the capacity of the basin as heat storage.
|
5 |
Högtempererat borrhålslager för fjärrvärme / High Temperature Borehole Thermal Energy Storage for District HeatingHallqvist, Karl January 2014 (has links)
The district heating load is seasonally dependent, with a low load during periods of high ambient temperature. Thermal energy storage (TES) has the potential to shift heating loads from winter to summer, thus reducing cost and environmental impact of District Heat production. In this study, a concept of high temperature borehole thermal energy storage (HT-BTES) together with a pellet heating plant for temperature boost, is presented and evaluated by its technical limitations, its ability to supply heat, its function within the district heating system, as well as its environmental impact and economic viability in Gothenburg, Sweden, a city with access to high quantities of waste heat. The concept has proven potentially environmentally friendly and potentially profitable if its design is balanced to achieve a good enough supply temperature from the HT-BTES. The size of the heat storage, the distance between boreholes and low borehole thermal resistance are key parameters to achieve high temperature. Profitability increases if a location with lower temperature demand, as well as risk of future shortage of supply, can be met. Feasibility also increases if existing pellet heating plant and district heating connection can be used and if lower rate of return on investment can be accepted. Access to HT-BTES in the district heating network enables greater flexibility and availability of production of District Heating, thereby facilitating readjustments to different strategies and policies. However, concerns for the durability of feasible borehole heat exchangers (BHE) exist in high temperature application. / Värmebehovet är starkt säsongsberoende, med låg last under perioder av högre omgivningstemperatur och hög last under perioder av lägre omgivningstemperaturer. I Göteborg finns en stor mängd spillvärme tillgängligt för fjärrvärmeproduktion sommartid när behovet av värme är lågt. Tillgång till säsongsvärmelager möjliggör att fjärrvärmeproduktion flyttas från vinterhalvår till sommarhalvår, vilket kan ge såväl lönsamhet som miljönytta. Borrhålsvärmelager är ett förhållandevis billigt sätt att lagra värme, och innebär att berggrunden värms upp under sommaren genom att varmt vatten flödar i borrhål, för att under vinterhalvåret användas genom att låta kallt vatten flöda i borrhålen och värmas upp. I traditionella borrhålsvärmelager används ofta värmepump för att höja värmelagrets urladdade temperatur, men på grund av höga temperaturkrav för fjärrvärme kan kostnaden för värmepump bli hög. I denna rapport föreslås ett system för att klara av att nå höga temperaturer till en lägre kostnad. Systemet består av ett borrhålsvärmelager anpassat för högre temperaturer (HT-BTES) samt pelletspannor för att spetsa lagrets utgående fluid för att nå hög temperatur. Syftet med rapporten är att undersöka potentialen för detta HT-BTES-system med avseende på dess tekniska begränsningar, förmåga till fjärrvärmeleverans, konsekvenser för fjärrvärmesystemet, samt lönsamhet och miljöpåverkan. För att garantera att inlagringen av värme inte är så stor att priset för inlagrad värme ökar väsentligt, utgår inlagringen från hur mycket värme som kyls bort i fjärrvärmenätet sommartid. I verkligheten finns betydligt mer värme tillgänglig till låg kostnad. När HT-BTES-systemet producerar fjärrvärme, ersätts fjärrvärmeproduktion från andra produktionsenheter, förutsatt att HT-BTES-systemets rörliga kostnader är lägre. I Göteborg ersätts främst naturgas från kraftvärme, men också en del flis. Kostnadsbesparingen beror på differensen för total fjärrvärmeproduktionskostnad med och utan HT-BTES-systemet. Undersökningen visar att besparingen är större om HT-BTES-systemet placeras i ett område där det är möjligt att mata ut fjärrvärme med lägre temperatur. Om urladdning från HT-BTES kan ske med hög temperatur ökar också besparingen. Detta sker om lagrets volym ökar, om avståndet mellan borrhål minskar eller om värmeöverföringen mellan det flödande vattnet i borrhålen och berggrunden ökar. Dessa egenskaper för lagret leder också till minskade koldioxidutsläpp. Storleken på besparingen beror dock i hög grad på hur bränslepriser utvecklas i framtiden. Strategiska fördelar med HT-BTES-systemet inkluderar; minskad miljöpåverkan, robust system med lång teknisk livslängd (för delar av HT-BTES-systemet), samt att inlagring av värme kan ske från många olika produktionsenheter. Dessutom kan positiva bieffekter identifieras. Undersökningen visar att HT-BTES-systemet har god potential att ge lönsamhet och minskad miljöpåverkan, och att anläggning och drift av lagret kan ske utan omfattande lokal miljöpåverkan. Det har också visats att de geologiska förutsättningarna för HT-BTES är goda på många platser i Göteborg, även om lokala förhållanden kan skilja sig åt. För att nå lönsamhet för HT-BTES-systemet krävs en avvägning på utformning av lagret för att nå hög urladdad temperatur utan att investeringskostnaden blir för stor. Undersökningen visar att om anslutning av HT-BTES-systemet kan ske mot befintlig anslutningspunkt eller till befintlig värmepanna kan investeringskostnaden minska och därmed lönsamheten öka. Placering av HT-BTES-systemet i områden med risk för överföringsbegränsningar kan också minska behovet av att förstärka fjärrvärmenätet, och således bidra till att minska de kostnader som förstärkning av nätet innebär. Betydelsefulla parametrar för att nå lönsamhet för HT-BTES-system inkluderar dessutom kostnaden för inlagrad värme liksom vilket vinstkrav som kan accepteras. Tillgång till HT-BTES möjliggör ökad nyttjandegrad och flexibilitet för fjärrvärmeproduktionsenheter, och därmed ökad anpassningsmöjlighet till förändrade förutsättningar på värmemarknaden. Dock återstår att visa att komponenter som klarar de höga temperaturkraven kan tillverkas till acceptabel kostnad.
|
Page generated in 0.0389 seconds