• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalizing sampling theory for time-varying Nyquist rates using self-adjoint extensions of symmetric operators with deficiency indices (1,1) in Hilbert spaces

Hao, Yufang January 2011 (has links)
Sampling theory studies the equivalence between continuous and discrete representations of information. This equivalence is ubiquitously used in communication engineering and signal processing. For example, it allows engineers to store continuous signals as discrete data on digital media. The classical sampling theorem, also known as the theorem of Whittaker-Shannon-Kotel'nikov, enables one to perfectly and stably reconstruct continuous signals with a constant bandwidth from their discrete samples at a constant Nyquist rate. The Nyquist rate depends on the bandwidth of the signals, namely, the frequency upper bound. Intuitively, a signal's `information density' and `effective bandwidth' should vary in time. Adjusting the sampling rate accordingly should improve the sampling efficiency and information storage. While this old idea has been pursued in numerous publications, fundamental problems have remained: How can a reliable concept of time-varying bandwidth been defined? How can samples taken at a time-varying Nyquist rate lead to perfect and stable reconstruction of the continuous signals? This thesis develops a new non-Fourier generalized sampling theory which takes samples only as often as necessary at a time-varying Nyquist rate and maintains the ability to perfectly reconstruct the signals. The resulting Nyquist rate is the critical sampling rate below which there is insufficient information to reconstruct the signal and above which there is redundancy in the stored samples. It is also optimal for the stability of reconstruction. To this end, following work by A. Kempf, the sampling points at a Nyquist rate are identified as the eigenvalues of self-adjoint extensions of a simple symmetric operator with deficiency indices (1,1). The thesis then develops and in a sense completes this theory. In particular, the thesis introduces and studies filtering, and yields key results on the stability and optimality of this new method. While these new results should greatly help in making time-variable sampling methods applicable in practice, the thesis also presents a range of new purely mathematical results. For example, the thesis presents new results that show how to explicitly calculate the eigenvalues of the complete set of self-adjoint extensions of such a symmetric operator in the Hilbert space. This result is of interest in the field of functional analysis where it advances von Neumann's theory of self-adjoint extensions.
2

Generalizing sampling theory for time-varying Nyquist rates using self-adjoint extensions of symmetric operators with deficiency indices (1,1) in Hilbert spaces

Hao, Yufang January 2011 (has links)
Sampling theory studies the equivalence between continuous and discrete representations of information. This equivalence is ubiquitously used in communication engineering and signal processing. For example, it allows engineers to store continuous signals as discrete data on digital media. The classical sampling theorem, also known as the theorem of Whittaker-Shannon-Kotel'nikov, enables one to perfectly and stably reconstruct continuous signals with a constant bandwidth from their discrete samples at a constant Nyquist rate. The Nyquist rate depends on the bandwidth of the signals, namely, the frequency upper bound. Intuitively, a signal's `information density' and `effective bandwidth' should vary in time. Adjusting the sampling rate accordingly should improve the sampling efficiency and information storage. While this old idea has been pursued in numerous publications, fundamental problems have remained: How can a reliable concept of time-varying bandwidth been defined? How can samples taken at a time-varying Nyquist rate lead to perfect and stable reconstruction of the continuous signals? This thesis develops a new non-Fourier generalized sampling theory which takes samples only as often as necessary at a time-varying Nyquist rate and maintains the ability to perfectly reconstruct the signals. The resulting Nyquist rate is the critical sampling rate below which there is insufficient information to reconstruct the signal and above which there is redundancy in the stored samples. It is also optimal for the stability of reconstruction. To this end, following work by A. Kempf, the sampling points at a Nyquist rate are identified as the eigenvalues of self-adjoint extensions of a simple symmetric operator with deficiency indices (1,1). The thesis then develops and in a sense completes this theory. In particular, the thesis introduces and studies filtering, and yields key results on the stability and optimality of this new method. While these new results should greatly help in making time-variable sampling methods applicable in practice, the thesis also presents a range of new purely mathematical results. For example, the thesis presents new results that show how to explicitly calculate the eigenvalues of the complete set of self-adjoint extensions of such a symmetric operator in the Hilbert space. This result is of interest in the field of functional analysis where it advances von Neumann's theory of self-adjoint extensions.
3

O átomo de hidrogênio em 1, 2 e 3 dimensões

Verri, Alessandra Aparecida 10 August 2007 (has links)
Made available in DSpace on 2016-06-02T20:28:22Z (GMT). No. of bitstreams: 1 1452.pdf: 916103 bytes, checksum: 40179df116306bc34414ecc8e0c08457 (MD5) Previous issue date: 2007-08-10 / Financiadora de Estudos e Projetos / In this work we study the Hamiltonian of the hydrogen atom in 1, 2 and 3 dimensions. Especifically, it is defined as a self-adjoint operator in the Hilbert space L2(Rn), n = 1, 2, 3. Nevertheless, the main goal is to study the hydrogen atom 1-D. Particularly, for this is model we address some problens related to the singularity of the Coulomb potential. / Neste trabalho vamos estudar o Hamiltoniano do átomo de hidrogênio em 1, 2 e 3 dimensões. Especificamente, queremos defini-lo como um operador auto-adjunto no espaço de Hilbert L2(Rn), n = 1, 2, 3. No entanto, o principal objetivo é estudar o átomo de hidrogênio 1-D. Em particular, para este modelo, abordaremos algumas questões relacionadas à singularidade do potencial de Coulomb −1/|x|.
4

Etude de l'asymptotique du phénomène d'augmentation de diffusivité dans des flots à grande vitesse / The asymptotic of the phenomenon of enhancement of diffusivity in high speed flow

Nguyen, Thi-Hien 29 September 2017 (has links)
En application, on souhaite générer des nombres aléatoires avec une loi précise (méthode de Monte Carlo par chaines de Markov - MCMC (Markov Chaine Monte Carlo)). La méthode consiste à trouver une diffusion qui a la loi invariante souhaitée et à montrer la convergence de cette diffusion vers son équilibre avec une vitesse exponentielle. L’exposant de cette convergence est le trou spectral du générateur. Il a été montré par Chii-Ruey Hwang, Shu-Yin Hwang-Ma, et Shuenn-Jyi Sheu qu’on peut agrandir le trou spectral, en rajoutant un terme non-symétrique au générateur auto-adjoint (souvent utilisé en MCMC). Ceci correspond à passer d’une diffusion réversible (en detailed balance) à une diffusion non réversible. Un moyen de construire une diffusion non-réversible avec la même mesure invariante est de rajouter un flot incompressible à la dynamique de la diffusion réversible.Dans cette thèse, nous étudions le comportement de la diffusion lorsqu’on accélère le flot sous-jacent en multipliant le champ des vecteurs qui le décrit par une grande constante. P. Constantin, A.Kisekev, L.Ryzhik et A.Zlatoš (2008) ont montré que si le flot était faiblement mélangeant alors l’accélération du flot suffisait pour faire converger la diffusion vers son équilibre en un temps fini. Dans ce travail, on explicite la vitesse de ce phénomène sous une condition de corrélation du flot. L’article de B. Franke, C.-R.Hwang, H.-M. Pai et S.-J. Sheu (2010) donne l’expression asymptotique du trou spectral lorsque le flot sous-jacent est accéléré vers l’infini. Ici aussi, on s’intéresse à la vitesse avec laquelle le phénomène se manifeste. Dans un premier temps, nous étudions le cas particulier d’une diffusion du type Ornstein-Uhlenbeck qui est perturbée par un flot préservant la mesure gaussienne. Dans ce cas, grâce à un résultat de G. Metafune, D. Pallara et E. Priola (2002), nous pouvons réduire l’étude du spectre du générateur à des valeurs propres d’une famille de matrices. Nous étudions ce problème avec des méthodes de développement limité des valeurs propres. Ce problème est résolu explicitement dans cette thèse et nous donnons aussi une borne pour le rayon de convergence du développement. Nous généralisons ensuite cette méthode dans le cas d’une diffusion générale de façon formelle. Ces résultats peuvent être utiles pour avoir une première idée sur les vitesses de convergence du trou spectral décrites dans l’article de Franke et al. (2010). / In application, we would like to generate random numbers with a precise law MCMC (Markov Chaine Monte Carlo). The method consists in finding a diffusion which has the desired invariant law and in showing the convergence of this diffusion towards its equilibrium with an exponential rate. The exponent of this convergence is the spectral gap of the generator. It was shown by C.-R. Hwang, S.-Y. Hwang-Ma and S.-J. Sheu that the spectral gap can grow up by adding a non-symmetric term to the self-adjoint generator.This corresponds to passing from a reversible diffusion to a non-reversible diffusion. A means of constructing a non-reversible diffusion with the same invariant measure is to add an incompressible flow to the dynamics of the reversible diffusion.In this thesis, we study the behavior of diffusion when the flow is accelerated by multiplying the field of the vectors which describes it by a large constant. In 2008, P. Constantin, A. Kisekev, L. Ryzhik and A. Zlatoˇs have shown that if the flow was weakly mixing then the acceleration of the flow was sufficient to converge the diffusion towards its equilibrium after finite time. In this work, the speed of this phenomenon is explained under a condition of correlation of the flow. The article by B. Franke, C.-R.Hwang, H.-M. Pai and S.-J.Sheu (2010) gives the asymptotic expression of the spectral gap when the large constant goes to infinity. Here we are also interested in the speed with which the phenomenon manifests itself. First, we study the special case of an Ornstein-Uhlenbeck diffusion which is perturbed by a flow preserving the Gaussian measure. In this case, thanks to a result of G. Metafune, D. Pallara and E. Priola (2002), we can reduce the study of the generator spectrum to eigenvalues of a family of matrices. We study this problem with methods of limited development of eigenvalues. This problem is solved explicitly in this thesis and we also give a boundary for the convergence radius of the development. We then generalize this method in the case of a general diffusion in a formal way. These results may be useful to have a first idea on the speeds of convergence of the spectral gap described in the article by Franke et al. (2010).
5

Stabilisation et asymptotique spectrale de l’équation des ondes amorties vectorielle / Stabilization and spectral asymptotics of the vectorial damped wave equation

Klein, Guillaume 12 December 2018 (has links)
Dans cette thèse nous considérons l’équation des ondes amorties vectorielle sur une variété riemannienne compacte, lisse et sans bord. L’amortisseur est ici une fonction lisse allant de la variété dans l’espace des matrices hermitiennes de taille n. Les solutions de cette équation sont donc à valeurs vectorielles. Nous commençons dans un premier temps par calculer le meilleur taux de décroissance exponentiel de l’énergie en fonction du terme d’amortissement. Ceci nous permet d’obtenir une condition nécessaire et suffisante la stabilisation forte de l’équation des ondes amorties vectorielle. Nous mettons aussi en évidence l’apparition d’un phénomène de sur-amortissement haute fréquence qui n’existait pas dans le cas scalaire. Dans un second temps nous nous intéressons à la répartition asymptotique des fréquences propres de l’équation des ondes amorties vectorielle. Nous démontrons que, à un sous ensemble de densité nulle près, l’ensemble des fréquences propres est contenu dans une bande parallèle à l’axe imaginaire. La largeur de cette bande est déterminée par les exposants de Lyapunov d’un système dynamique défini à partir du coefficient d’amortissement. / In this thesis we are considering the vectorial damped wave equation on a compact and smooth Riemannian manifold without boundary. The damping term is a smooth function from the manifold to the space of Hermitian matrices of size n. The solutions of this équation are thus vectorial. We start by computing the best exponential energy decay rate of the solutions in terms of the damping term. This allows us to deduce a sufficient and necessary condition for strong stabilization of the vectorial damped wave equation. We also show the appearance of a new phenomenon of high-frequency overdamping that did not exists in the scalar case. In the second half of the thesis we look at the asymptotic distribution of eigenfrequencies of the vectorial damped wave equation. Were show that, up to a null density subset, all the eigenfrequencies are in a strip parallel to the imaginary axis. The width of this strip is determined by the Lyapunov exponents of a dynamical system defined from the damping term.
6

Spectre étendu des opérateurs et applications / Extended spectrum of operators and applications

Alkanjo, Hasan 10 December 2014 (has links)
Cette thèse s'articule autour d'une notion spectrale assez récente, appelée le spectre étendu des opérateurs. Dans la première partie nous fournissons des propriétés générales du spectre étendu d'un opérateur dans certains cas particuliers, tels que le cas de dimension finie et celui des opérateurs inversibles. Nous nous intéressons dans la deuxième partie à l'étude du spectre étendu de l'opérateur shift tronqué Su. En particulier, nous donnons une description complète des vecteurs propres étendus associes à chaque valeur propre étendue de Sb, ou b est un produit de Blaschke quelconque. Dans la troisième partie nous décrirons complètement le spectre étendu et les sous espaces propres étendus d'une classe d'opérateurs très importante : celle des opérateurs normaux. Nous commençons d'abord par la classe des opérateurs qui sont produits d'un opérateur positif par un autoadjoint. Ensuite, nous utilisons le théorème de Fuglede-Putnam pour déduire une description complète des valeurs et des vecteurs propres étendus des opérateurs normaux, en fonction de leur mesure spectrale. Dans la dernière partie, nous appliquons nos résultats des trois premières parties sur des exemples concrets. En particulier, nous traitons= le problème des sous espaces propres étendus des opérateurs définis dans un espace de dimension finie. Ensuite, nous montrons l'existence d'un opérateur compact quasinilpotent dont le spectre étendu est réduit au singleton {1}. Enfin, nous traitons deux opérateurs de Cesaro très importants dans les applications / This thesis is based on a relatively new spectral notion, called extended spectrum of operators. In the first part, we provide general properties of extended spectrum of an operator in some special cases, such as the case of finite dimension and the case of invertible operator. We focused in the second part on characterizing the extended spectrum of truncated shift operator Su. In particular, we give a complete description of the extended eigenvectors associated to each extended eigenvalue of Sb, where b is a Blaschke product. In the third part, we describe the extended spectrum and the extended eigenvectors of a very important class of operators , that is the normal operators. We first start by describing these last sets for the product of a positive and a self-adjoint operator which are both injective. After, we use the Fuglede-Putnam theorem to describe the same sets for normal operators, in terms of their spectral measure. In the last part, we apply our results from the last three parts on concrete examples. In particular, we address the problem of extended eigenvectors of operators defined in a finite dimension space. Next, we show the existence of a quasinilpotent compact operator whose extended spectrum is reduced to {1}. Finally, we study two Cesaro operators which are very important in applications

Page generated in 0.0519 seconds