Spelling suggestions: "subject:"semantic."" "subject:"semantische.""
31 |
Barns språkträning : En studie om arbetet med språket i förskola, förskoleklass samt år 1-3 / Children´s language training : A study of the work with language in pre-school, pre-school class and junior levelEklund, Lisa January 2002 (has links)
Detta arbete handlar om språkträning i förskola, förskoleklass samt år 1-3. Syftet med min undersökning är att nå en djupare förståelse för hur man inom dessa verksamheter arbetar med språket samt vilka tankar som ligger bakom. Denna kunskap är värdefull och riktar sig främst till oss som läser/läst grundskollärarprogrammet, med inriktning mot år 4-9. Att känna till vad barnet går igenom språkligt sett innan det börjar i år 4 är viktigt. Det är i början av ett barns liv som grunden till språket läggs. Jag har i denna undersökning använt mig av den kvalitativa intervjumetoden, där jag intervjuat sammanlagt sex personer; fem kvinnor och en man. Intervjuerna har skett med två förskollärare som arbetar i 1-5-årsverksamhet, två förskollärare som arbetar i förskoleklass samt två lärare som arbetar i år 1 respektive år 2. Fem av sex intervjuer har bandats och analyserats enligt den kvalitativa analysmetoden. Utifrån resultatet kan många likheter men även skillnader påvisas. Resultatet presenteras kring olika teman; Språkträning i förskola, förskoleklass samt år 1-3, Vikten av medveten språkträning, Språklig medvetenhet samt Tankar bakom arbetet med språket. Många forskare menar att arbetet med språklig medvetenhet är betydelsefull för barnets läs- och skrivinlärning. Här arbetar förskollärarna och lärarna relativt lika och överlag arbetar man mest med den fonologiska medvetenheten, där språklekar, rim och ramsor spelar en betydande roll. Något annat som även framkommit är läsningens betydelse för barnets språkutveckling. Här kan man tillsammans med barnen diskutera okända ord. Intervjupersonerna anser att en medveten språkträning är nödvändig för barnet, som med hjälp av denna, bland annat kan få ett språk och därmed göra sig förstådd.
|
32 |
Bättre ett kulturhus vid hamnen än tio byar i skogen? : En analys av texter från Umeå kommun med avseende på framställningen av landsbygd och stad / Are Urban Areas Constructed as the Core and Rural Areas as the Periphery?Gimbergsson, Hanna January 2017 (has links)
Debatten om staden och landsbygden har på senare år vuxit sig stark och många menar att det landsbygden och staden varken är eller porträtteras som jämlikar, och att obalansen dem emellan är till stadens fördel. Uppsatsens syfte är därför att undersöka hur landsbygden och staden framställs i myndighetstext. Syftet specificeras och utvidgas med följande frågeställningar: Vad ’gör’ landsbygden och staden? Hur framställs de i sina deltagarroller i processer? Hur beskrivs landsbygden och staden? Vilka egenskaper och karaktärsdrag tillskrivs de i bestämningarna när de är huvudord i nominalfraser? Hur beskrivs relationen mellan landsbygden och staden? Är maktförhållandet jämlikt eller ojämlikt? Umeå kommuns översiktsplan och dess tematiska tillägg för landsbygden analyseras utifrån dessa frågeställningar med metoderna processanalys, semantisk analys och kritisk diskursanalys. Resultatet visar att bilden av staden uppvisar tydliga drag av centrum och bilden av landsbygden tydliga drag av periferi, men delar av resultatet pekar dock mot en mer nyanserad skildring. I uppsatsens avslutning resoneras kring hur texternas framställning av stad och landsbygd kan påverka samhällsutvecklingen i Umeå kommun.
|
33 |
Det görar ingenting om du frågar mycket : SFI-elevers semantiska och morfologiska utvecklingArvidsson, Anna January 2013 (has links)
Syftet med denna studie är att undersöka den semantiska och morfologiska utvecklingen hos två elevgrupper med olika studietakt som studerar kurs C på SFI. Syftet är också att undersöka om det finns några skillnader mellan elevgrupperna samt att belysa viktiga didaktiska moment i studiens lektionsgenomgång. Informanterna i studien är sex till antalet. Tre informanter studerar i en klass med långsammare studietakt. Dessa kallas beta-elever. Tre informanter studerar i en ordinarie klass. Alla informanter är persisktalande kvinnor mellan 22 och 32 år. Studiens undersökningsmaterial består av en enkät och ett test som är kopplat till en text om mödravårdscentralen i Sverige. Testet består av fyra delar. Två av dessa testar den semantiska aspekten och två testar den morfologiska aspekten. De morfologiska delarna fokuserar på att testa informanternas kunskaper och utveckling i verbböjning och substantivböjning. Inledningsvis skrev informanterna testet en första gång utan hjälpmedel. Därefter följde en ingående lektionsgenomgång av studiens text. En vecka efter lektionsgenomgången skrev informanterna testet igen, även denna gång utan hjälpmedel. Resultaten har analyserats utifrån en kvalitativ metod då resultaten från studiens få informanter har granskats djupgående. Resultaten visar att de generella svårigheter i svenska som andraspråksinlärning som redovisas i studiens litteraturgenomgång kan appliceras på studiens informanter. Informanterna med långsammare studietakt förbättrar sina resultat mer markant på de semantiska delarna och verbböjning, medan de ordinarie eleverna visar större utveckling i substantivens numerus och genus. De ordinarie eleverna visar sig ha större förkunskaper inom båda områdena och har därför inte samma utvecklingspotential. Den lektionsgenomgång som genomfördes hade positiv effekt då elevgrupperna förbättrar sina resultat på studiens andra test.
|
34 |
Text ranking based on semantic meaning of sentences / Textrankning baserad på semantisk betydelse hos meningarStigeborn, Olivia January 2021 (has links)
Finding a suitable candidate to client match is an important part of consultant companies work. It takes a lot of time and effort for the recruiters at the company to read possibly hundreds of resumes to find a suitable candidate. Natural language processing is capable of performing a ranking task where the goal is to rank the resumes with the most suitable candidates ranked the highest. This ensures that the recruiters are only required to look at the top ranked resumes and can quickly get candidates out in the field. Former research has used methods that count specific keywords in resumes and can make decisions on whether a candidate has an experience or not. The main goal of this thesis is to use the semantic meaning of the text in the resumes to get a deeper understanding of a candidate’s level of experience. It also evaluates if the model is possible to run on-device and if the database can contain a mix of English and Swedish resumes. An algorithm was created that uses the word embedding model DistilRoBERTa that is capable of capturing the semantic meaning of text. The algorithm was evaluated by generating job descriptions from the resumes by creating a summary of each resume. The run time, memory usage and the ranking the wanted candidate achieved was documented and used to analyze the results. When the candidate who was used to generate the job description is ranked in the top 10 the classification was considered to be correct. The accuracy was calculated using this method and an accuracy of 68.3% was achieved. The results show that the algorithm is capable of ranking resumes. The algorithm is able to rank both Swedish and English resumes with an accuracy of 67.7% for Swedish resumes and 74.7% for English. The run time was fast enough at an average of 578 ms but the memory usage was too large to make it possible to use the algorithm on-device. In conclusion the semantic meaning of resumes can be used to rank resumes and possible future work would be to combine this method with a method that counts keywords to research if the accuracy would increase. / Att hitta en lämplig kandidat till kundmatchning är en viktig del av ett konsultföretags arbete. Det tar mycket tid och ansträngning för rekryterare på företaget att läsa eventuellt hundratals CV:n för att hitta en lämplig kandidat. Det finns språkteknologiska metoder för att rangordna CV:n med de mest lämpliga kandidaterna rankade högst. Detta säkerställer att rekryterare endast behöver titta på de topprankade CV:erna och snabbt kan få kandidater ut i fältet. Tidigare forskning har använt metoder som räknar specifika nyckelord i ett CV och är kapabla att avgöra om en kandidat har specifika erfarenheter. Huvudmålet med denna avhandling är att använda den semantiska innebörden av texten iCV:n för att få en djupare förståelse för en kandidats erfarenhetsnivå. Den utvärderar också om modellen kan köras på mobila enheter och om algoritmen kan rangordna CV:n oberoende av om CV:erna är på svenska eller engelska. En algoritm skapades som använder ordinbäddningsmodellen DistilRoBERTa som är kapabel att fånga textens semantiska betydelse. Algoritmen utvärderades genom att generera jobbeskrivningar från CV:n genom att skapa en sammanfattning av varje CV. Körtiden, minnesanvändningen och rankningen som den önskade kandidaten fick dokumenterades och användes för att analysera resultatet. När den kandidat som användes för att generera jobbeskrivningen rankades i topp 10 ansågs klassificeringen vara korrekt. Noggrannheten beräknades med denna metod och en noggrannhet på 68,3 % uppnåddes. Resultaten visar att algoritmen kan rangordna CV:n. Algoritmen kan rangordna både svenska och engelska CV:n med en noggrannhet på 67,7 % för svenska och 74,7 % för engelska. Körtiden var i genomsnitt 578 ms vilket skulle möjliggöra att algoritmen kan köras på mobila enheter men minnesanvändningen var för stor. Sammanfattningsvis kan den semantiska betydelsen av CV:n användas för att rangordna CV:n och ett eventuellt framtida arbete är att kombinera denna metod med en metod som räknar nyckelord för att undersöka hur noggrannheten skulle påverkas.
|
35 |
Interpretability of a Deep Learning Model for Semantic Segmentation : Example of Remote Sensing ApplicationJanik, Adrianna January 2019 (has links)
Understanding a black-box model is a major problem in domains that relies on model predictions in critical tasks. If solved, can help to evaluate the trustworthiness of a model. This thesis proposes a user-centric approach to black-box interpretability. It addresses the problem in semantic segmentation setting with an example of humanitarian remote sensing application for building detection. The question that drives this work was, Can existing methods for explaining black-box classifiers be used for a deep learning semantic segmentation model? We approached this problem with exploratory qualitative research involving a case study and human evaluation. The study showed that it is possible to explain a segmentation model with adapted methods for classifiers but not without a cost. The specificity of the model is likely to be lost in the process. The sole process could include introducing artificial classes or fragmenting image into super-pixels. Other approaches are necessary to mitigate identified drawback. The main contribution of this work is an interactive visualisation approach for exploring learned latent space via a deep segmenter, named U-Net, evaluated with a user study involving 45 respondents. We developed an artefact (accessible online) to evaluate the approach with the survey. It presents an example of this approach with a real-world satellite image dataset. In the evaluation study, the majority of users had a computer science background (80%), including a large percentage of users with machine learning specialisation (44.4% of all respondents). The model distinguishes rurality vs urbanization (58% of users). External quantitative comparison of building densities of each city concerning the location in the latent space confirmed the later. The representation of the model was found faithful to the underlying model (62% of users). Preliminary results show the utility of the pursued approach in the application domain. Limited possibility to present complex model visually requires further investigation. / Att förstå en svartboxmodell är ett stort problem inom domäner som förlitar sig på modellprognoser i kritiska uppgifter. Om det löses, kan det hjälpa till att utvärdera en modells pålitlighet. Den här avhandlingen föreslår en användarcentrisk strategi för svartboxtolkbarhet. Den tar upp problemet i semantisk segmentering med ett exempel på humanitär fjärranalysapplikation för byggnadsdetektering. Frågan som driver detta arbete var: Kan befintliga metoder för att förklara svartruta klassificerare användas för en djup semantisk segmenteringsmodell? Vi närmade oss detta problem med utforskande kvalitativ forskning som involverade en fallstudie och mänsklig utvärdering. Studien visade att det är möjligt att förklara en segmenteringsmodell med anpassade metoder för klassificerare men inte utan kostnad. Modellens specificitet kommer sannolikt att gå förlorad i processen. Den enda processen kan inkludera införande av konstgjorda klasser eller fragmentering av bild i superpixlar. Andra tillvägagångssätt är nödvändiga för att mildra identifierad nackdel. Huvudbidraget i detta arbete är en interaktiv visualiseringsmetod för att utforska lärt latent utrymme via en djup segmenter, benämnd U-Net, utvärderad med en användarstudie med 45 svarande. Vi utvecklade en artefakt (tillgänglig online) för att utvärdera tillvägagångssättet med undersökningen. Den presenterar ett exempel på denna metod med en verklig satellitbilddatasats. I utvärderingsstudien hade majoriteten av användarna en datavetenskaplig bakgrund (80%), inklusive en stor andel användare med specialisering av maskininlärning (44,4 % av alla svarande). Modellen skiljer ruralitet och urbanisering (58 % av användarna). Den externa kvantitativa jämförelsen av byggnadstätheten i varje stad angående platsen i det latenta utrymmet bekräftade det senare. Representationen av modellen visade sig vara trogen mot den underliggande modellen (62% av användarna). Preliminära resultat visar användbarheten av den eftersträvade metoden inom applikationsdomänen. Begränsad möjlighet att presentera komplexa modeller visuellt kräver ytterligare utredning.
|
36 |
2D object detection and semantic segmentation in the Carla simulator / 2D-objekt detektering och semantisk segmentering i Carla-simulatornWang, Chen January 2020 (has links)
The subject of self-driving car technology has drawn growing interest in recent years. Many companies, such as Baidu and Tesla, have already introduced automatic driving techniques in their newest cars when driving in a specific area. However, there are still many challenges ahead toward fully autonomous driving cars. Tesla has caused several severe accidents when using autonomous driving functions, which makes the public doubt self-driving car technology. Therefore, it is necessary to use the simulator environment to help verify and perfect algorithms for the perception, planning, and decision-making of autonomous vehicles before implementation in real-world cars. This project aims to build a benchmark for implementing the whole self-driving car system in software. There are three main components including perception, planning, and control in the entire autonomous driving system. This thesis focuses on two sub-tasks 2D object detection and semantic segmentation in the perception part. All of the experiments will be tested in a simulator environment called The CAR Learning to Act(Carla), which is an open-source platform for autonomous car research. Carla simulator is developed based on the game engine(Unreal4). It has a server-client system, which provides a flexible python API. 2D object detection uses the You only look once(Yolov4) algorithm that contains the tricks of the latest deep learning techniques from the aspect of network structure and data augmentation to strengthen the network’s ability to learn the object. Yolov4 achieves higher accuracy and short inference time when comparing with the other popular object detection algorithms. Semantic segmentation uses Efficient networks for Computer Vision(ESPnetv2). It is a light-weight and power-efficient network, which achieves the same performance as other semantic segmentation algorithms by using fewer network parameters and FLOPS. In this project, Yolov4 and ESPnetv2 are implemented into the Carla simulator. Two modules work together to help the autonomous car understand the world. The minimal distance awareness application is implemented into the Carla simulator to detect the distance to the ahead vehicles. This application can be used as a basic function to avoid the collision. Experiments are tested by using a single Nvidia GPU(RTX2060) in Ubuntu 18.0 system. / Ämnet självkörande bilteknik har väckt intresse de senaste åren. Många företag, som Baidu och Tesla, har redan infört automatiska körtekniker i sina nyaste bilar när de kör i ett specifikt område. Det finns dock fortfarande många utmaningar inför fullt autonoma bilar. Detta projekt syftar till att bygga ett riktmärke för att implementera hela det självkörande bilsystemet i programvara. Det finns tre huvudkomponenter inklusive uppfattning, planering och kontroll i hela det autonoma körsystemet. Denna avhandling fokuserar på två underuppgifter 2D-objekt detektering och semantisk segmentering i uppfattningsdelen. Alla experiment kommer att testas i en simulatormiljö som heter The CAR Learning to Act (Carla), som är en öppen källkodsplattform för autonom bilforskning. Du ser bara en gång (Yolov4) och effektiva nätverk för datorvision (ESPnetv2) implementeras i detta projekt för att uppnå Funktioner för objektdetektering och semantisk segmentering. Den minimala distans medvetenhets applikationen implementeras i Carla-simulatorn för att upptäcka avståndet till de främre bilarna. Denna applikation kan användas som en grundläggande funktion för att undvika kollisionen.
|
37 |
Matching Performance Metrics with Potential Candidates : A computer automated solution to recruitingMelin, Oscar January 2017 (has links)
Selecting the right candidate for a job can be a challenge. Moreover, there are significant costs associated with recruiting new talent. Thus there is a requirement for precision, accuracy, and neutrality from an organization when hiring a new employee. This thesis project focuses on the restaurant and hotel industry, an industrial sector that has traditionally used a haphazard set of recruiting methods. Unlike large corporations, restaurants cannot afford to hire dedicated recruiters. In addition, the primary medium used to find jobs and job seekers in this industry often obscure comparisons between relevant positions. The complex infrastructure of this industry requires a place where both recruiter and job seeker can access a standardized overview of the entire labor market. Introducing automation in hiring aims to better address these complex demands and is becoming a common practice throughout other industries, especially with the help of internet based recruitment and pre-selection of candidates. These solutions also have the potential to minimize risks of human bias when screening candidates. This thesis aims to minimize inefficiencies and errors associated with the existing manual recruitment screening process by addressing two main issues: the rate at which applicants can be screened and the quality of the resulting matches. This thesis first discusses and analyzes related work in automated recruitment in order to propose a refined solution suitable for the target area. This solution –semantic matching of jobs and candidates - is subsequently evaluated and tested in partnership with Cheffle, a service industry networking company. The thesis concludes with suggestions for potential improvements to Cheffle´s current system and details the viability of recruiting with the assistance of an automated semantic matching application. / Att välja den rätta kandidaten för ett jobb kan vara en utmaning. Det finns dessutom betydliga kostnader i att rekrytera ny arbetskraft. På grund därav finns det ett behov för noggrannhet och neutralitet från en organisation vid rekrytering av ny personal. Detta examensprojekt fokuserar på restaurang och hotellbranschen. Denna branchsektor har traditionellt sett använt undermåliga rekryteringsmetoder. Till skillnad från stora företag så kan inte restauranger avvara resurser för egna rekryterare. Därtill så försvårar de primära medierna för rekrytering i sektorn jämförelser mellan relaterade lediga jobb. Denna komplexa infrastruktur skapar ett behov av en plats där både företag och arbetssökande har tillgång till en standardiserad översikt av hela arbetsmarknaden. Introduktionen av automatisering har som syfte att bemöta dessa komplexa krav och blir alltmer vanligt inom andra branscher. Speciellt med hjälp av internetbaserad rekrytering och förval av jobbkandidater. Dessa lösningar har även potentialen att minimera risken för mänsklig subjektivitet och opartiskhet vid förval av jobbkandidater. Detta examensprojekt har som syfte att minimera ineffektiviteter och fel samhörande med den nuvarande manuella rekryteringsmetoden genom att tackla två huvudproblem: takten i vilken förvalet av arbetssökande kan göras och kvaliteten av detta förval. Detta examensprojekt inleder med en diskussion och analys av relaterade arbeten inom automatiserad rekrytering för att sedan presentera en möjlig lösning för det behandlade målområdet. Denna lösning – semantisk matchning av jobb och jobbsökande - är senare utvärderad och testad i samarbete med Cheffle, ett nätverksföretag inom serviceindustrin. Detta examensprojekt avslutar med lösningsförslag för potentiell förbättring till Cheffles nuvarande system och en slutsats om genomförbarheten av automatisering inom rekrytering.
|
38 |
Automatiserad matchning vid rekrytering / Automated matching in recruitmentStrand, Henrik January 2018 (has links)
För små företag utan rekryteringsansvarig person kan det var svårt att hitta rätt personal. Brist på sådana resurser är en påfrestning som leder till stress och mindre lyckade rekryteringar. Målet med arbetet var att hitta en lösning för att automatisera matchning i en rekryteringsprocess genom att ge förslag på relevanta personer som tidigare sökt jobb hos företag via Cheffle:s tjänst. Det finns flera olika sätt att matcha uppsättningar av data. I det här fallet användes maskininlärning som lösningsmetod. Detta implementerades tillsammans med en prototyp som hämtade in data om jobbet och den arbetssökande. Maskininlärningsmodellerna Supportvektormaskin och Artificiella Neural Nätverk använde sig av denna data för att betygsätta de arbetssökande. Detta utifrån hur väl de matchade jobbannonsen. Arbetets slutsats är att ingen modell hade tillräckligt hög precision i sina klassificeringar för att användas i en verklig implementation, detta då endast små mängder testdata fanns tillgänglig. Resultatet visade att maskininlärningsmodellerna Supportvektormaskin och Artificiella Neurala Nätverk visade potential för att kunna användas vid denna typ av matchning, men för att fastställa detta krävs mer träningsdata / It can be hard for a small company with no dedicated HR-role to find suiting recruits. A lack of resources takes a toll on the existing employees and increase stress that further harms recruiting. The goal of this work was to find a solution to automate matching in a recruitment process by suggesting relevant applicants that have previously used Cheffle. There are multiple ways of matching data. In the case of this study, machine learning was used. A prototype was developed. It collected data about a job and its related applicants. The data was then used by the machine learning models Support vector machine and Artificial Neural Network to classify the applicants by how closely they match the job position. The conclusion made in this work is that no model had a precision high enough in its classification to be used in a final implementation. The low precision in classification is likely a result of the small amount of test data available. The result showed that the machine learning models Support vector machine and Artificial Neural Network had potential in this type of matching. To firmly determine this the models would need to be tested with more test data.
|
39 |
Semantic Similarity Comparison of Political Statements by ChatGPT and Political Representatives / Jämförelse i semantisk likhet mellan politiska uttalanden från ChatGPT och från politiska representanterLihammer, Sebastian January 2023 (has links)
ChatGPT is a recently released chatbot that through the use of deep learning can generate human-like statements on a variety of topics. Deep learning models have a potential to affect politics. They can for instance be used as a source for political information or be used to create and spread political messages. ChatGPT is itself able to describe the stances of different political parties and can generate political messages based on these stances. In this thesis, a semantic similarity program, utilizing the models Stanza and Sentence-BERT, is implemented. This program is used to compare the semantic similarity of political statements and information generated by ChatGPT to authentic statements and information written by Swedish political representatives prior to the 2022 general election. The results of the thesis demonstrate that ChatGPT with relatively high accuracy (over 60 % when three options are available) is able to correctly reflect the standpoints of Swedish political parties in specific political questions. When compared to authentic political information using semantic similarity, there is no discernible difference between the scores achieved by ChatGPT’s statements and the scores achieved by authentic statements from political representatives. This might reflect that ChatGPT performs well in semantically mimicking the style used by political representatives. Alternatively, the result could indicate limited usefulness of semantic similarity as a comparative method for political statements. / ChatGPT är en nyligen släppt chattrobot som med hjälp av djupinlärning kan skapa människo-liknande uttalanden inom en rad olika ämnen. Det är möjligt för djupinlärningsmodeller att ha politisk påverkan. Djupinlärningsmodeller kan exempelvis användas som källor för politisk information eller användas för att skapa och sprida politiska meddelanden. ChatGPT har förmågan att beskriva ståndpunkterna hos olika politiska partier samt generera politiska meddelanden baserat på dessa ståndpunkter. I denna studie implementeras ett program för att avgöra semantisk likhet mellan texter. Programmet använder modellerna Stanza och Sentence-BERT. Med hjälp av programmet jämförs semantisk likhet mellan politiska uttalanden och information genererad av ChatGPT, och autentiska uttalanden och autentisk information skriven av svenska politiska representanter innan riksdagsvalet i Sverige 2022. Studiens resultat visar att ChatGPT med relativt hög korrekthet (över 60 % när tre alternativ är möjliga) lyckas framföra samma ståndpunkter som riktiga representanter från de olika partierna i specifika politiska frågor. Ingen märkbar skillnad i semantisk likhet hittas när ChatGPT:s och riktiga representanters uttalanden jämförs med riktig politisk information. Detta kan visa på att ChatGPT är bra på att semantiskt härma stilen som används av politiska representanter. Resultatet kan alternativt tolkas som tydande på att semantisk likhet har ett begränsat värde som jämförelsemetod för politiska texter.
|
40 |
Knowledge Distillation for Semantic Segmentation and Autonomous Driving. : Astudy on the influence of hyperparameters, initialization of a student network and the distillation method on the semantic segmentation of urban scenes.Sanchez Nieto, Juan January 2022 (has links)
Reducing the size of a neural network whilst maintaining a comparable performance is an important problem to be solved since the constrictions on resources of small devices make it impossible to deploy large models in numerous real-life scenarios. A prominent example is autonomous driving, where computer vision tasks such as object detection and semantic segmentation need to be performed in real time by mobile devices. In this thesis, the knowledge and spherical knowledge distillation techniques are utilized to train a small model (PSPNet50) under the supervision of a large model (PSPNet101) in order to perform semantic segmentation of urban scenes. The importance of the distillation hyperparameters is studied first, namely the influence of the temperature and the weights of the loss function on the performance of the distilled model, showing no decisive advantage over the individual training of the student. Thereafter, distillation is performed utilizing a pretrained student, revealing a good improvement in performance. Contrary to expectations, the pretrained student benefits from a high learning rate when training resumes under distillation, especially in the spherical knowledge distillation case, displaying a superior and more stable performance when compared to the regular knowledge distillation setting. These findings are validated by several experiments conducted using the Cityscapes dataset. The best distilled model achieves 87.287% pixel accuracy and a 42.0% mean Intersection-Over-Union value (mIoU) on the validation set, higher than the 86.356% pixel accuracy and 39.6% mIoU obtained by the baseline student. On the test set, the official evaluation obtained by submission to the Cityscapes website yields 42.213% mIoU for the distilled model and 41.085% for the baseline student. / Att minska storleken på ett neuralt nätverk med bibehållen prestanda är ett viktigt problem som måste lösas, eftersom de begränsade resurserna i små enheter gör det omöjligt att använda stora modeller i många verkliga situationer. Ett framträdande exempel är autonom körning, där datorseende uppgifter som objektsdetektering och semantisk segmentering måste utföras i realtid av mobila enheter. I den här avhandlingen används tekniker för destillation av kunskap och sfärisk kunskap för att träna en liten modell (PSPNet50) under övervakning av en stor modell (PSPNet101) för att utföra semantisk segmentering av stadsscener. Betydelsen av hyperparametrarna för destillation studeras först, nämligen temperaturens och förlustfunktionens vikter för den destillerade modellens prestanda, vilket inte visar någon avgörande fördel jämfört med individuell träning av eleven. Därefter utförs destillation med hjälp av en utbildad elev, vilket visar på en god förbättring av prestanda. Tvärtemot förväntningarna har den utbildade eleven en hög inlärningshastighet när utbildningen återupptas under destillation, särskilt i fallet med sfärisk kunskapsdestillation, vilket ger en överlägsen och stabilare prestanda jämfört med den vanliga kunskapsdestillationssituationen. Dessa resultat bekräftas av flera experiment som utförts med hjälp av datasetet Cityscapes. Den bästa destillerade modellen uppnår 87.287% pixelprecision och ett 42.0% medelvärde för skärning över union (mIoU) på valideringsuppsättningen, vilket är högre än de 86.356% pixelprecision och 39.6% mIoU som uppnåddes av grundstudenten. I testuppsättningen ger den officiella utvärderingen som gjordes på webbplatsen Cityscapes 42.213% mIoU för den destillerade modellen och 41.085% för grundstudenten.
|
Page generated in 0.0996 seconds