• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Desenvolvendo novas fontes de estados coerentes da luz para aplicações em ótica quântica / Developing new sources of coherent states of light for applications in quantum optics

Raul Leonardo Rincon Celis 07 May 2018 (has links)
Os diodos laser são amplamente usados em física atômica em configurações de cavidade externa com uma rede de difração (Configuração Littrow ou Littrow-Metcalf), que permite sintonizar o seu comprimento de onda e filtrar do seu espectro. Mesmo com este controle, eles apresentam um excesso de ruído por volta de 40 dB acima do ruído quântico padrão, dificultando seu uso em ótica quântica. Nosso propósito neste projeto é diminuir os valores típicos de ruído do diodo laser até níveis aceitáveis que permitam trabalhar em ótica quântica. Para conseguir isto, construímos um laser em estrutura em anel com o diodo semicondutor como o meio de ganho. Caracterizamos a potência de saída do laser em função da corrente de injeção no chip. Também introduzimos um mecanismo de controle das perdas da cavidade para caracterizar a potência de saída em função das perdas. Alcançamos uma potência máxima de 25 mW para 0, 8 A, com um limiar de oscilação de 0, 45 A, e uma potência máxima de 10 mW (a 0, 8 A) com um limiar de 0, 41 A. Para caracterizar as suas propriedades de ruído, usamos a técnica da rotação de elipse para diferentes valores da corrente de injeção e de perdas controladas. Finalmente, comparamos o ruído das quadraturas do nosso novo sistema com o ruído de um laser de diodo em configuração Littrow. Enquanto o laser Littrow apresenta excesso de 40 dB no ruído da fase, encontramos valores para o ruído de amplitude do nosso novo laser entre 10 e 15 dB e do ruído de fase entre 11 e 27 dB acima do nível do ruído quântico padrão. Assim, conseguimos diminuir o ruído da quadratura fase por volta de 20 dB, porém, também incrementamos o ruído de amplitude, fazendo com que o ruído das quadraturas esteja no nível de 11 dB acimo do nível do ruído quântico padrão. Este nível é compatível com laseres de estado sólido (Nd:YAG) e pode ser facilmente reduzido com ajuda de uma cavidade de filtro. / Laser diodes are widely used in atomic physics in configurations of external cavity with a diffraction grating (Littrow or Littrow-Metcalf configuration), that allows us to tune its wavelength and filter their spectrum. Even with this control they present an excess noise about 40 dB above the standard quantum level,limiting their uses for quantum optics. Our goal in this project is to decrease the typical noise level of the diode laser, to reasonable values for future work with quantum optics. In order to do that we built a ring laser using a semiconductor chip as the gain medium. We characterize the output power of the laser as a function of the injection current. We also introduce a mechanism for controlling the losses so that, we were able to characterize the output power by changing the controlled losses. We reach a maximum power of 25 mW at 0.8 A, with the threshold current value 0.45 A, and a maximum power of 10 mW (@ 0.8 A) for 0.41 A of threshold current. In order to characterize its noise properties, we performed the ellipse rotation technique for different values of the injection current and controlled looses. Finally, we compare the quadrature noise of our new system with the noise of a diode laser in Littrow configuration. While Littrow laser present excess of of 40 dB on the phase noise, we found noise levels for the amplitude noise of our new laser between 10 to 15 dB and its phase noise between 11 to 27 dB above the standard quantum level. So, we achieved a noise reduction of the phase quadrature in 20 dB, but, we also increase the amplitude noise, obtaining a quadrature noise around 11 dB above the standard quantum limit. This level is compatible with solid state lasers (Nd:YAG) and can be easily reduced with the help of a filter cavity.
22

Nonstationary Stochastic Dynamics of Neuronal Membranes / Dynamique stochastique non-stationnaire de la membrane neuronale

Ferreira Brigham, Marco Paulo 27 April 2015 (has links)
Les neurones interagissent à travers leur potentiel de membrane qui a en général une évolution temporelle complexe due aux nombreuses entrées synaptiques irrégulières reçues. Cette évolution est mieux décrite en termes probabilistes, en raison de ces entrées irrégulières ou «bruit synaptique». L'évolution temporelle du potentiel de membrane est stochastique mais aussi déterministe: stochastique, car conduite par des entrées synaptiques qui arrivent de façon aléatoire dans le temps, et déterministe, car un neurone biologique a une évolution temporelle très similaire quand soumis à une même séquence d'entrées synaptiques. Nous étudions les propriétés statistiques d'un modèle simplifié de neurone soumis à des entrées à taux variable d'où en résulte l'évolution non-stationnaire du potentiel de membrane. Nous considérons un modèle passif de membrane neuronale, sans mécanisme de décharge neuronale, soumis à des entrées à courant ou à conductance sous la forme d'un processus de «shot noise». Les fluctuations du potentiel de membrane sont aussi modélisées par un processus stochastique similaire, de «shot noise» filtré. Nous avons analysé les propriétés statistiques de ces processus dans le cadre des transformations de processus ponctuels de Poisson. Des propriétés de ces transformations sont dérivées les statistiques non-stationnaires du processus. Nous obtenons ainsi des expressions analytiques exactes pour les moments et cumulants du processus filtré dans le cas général des taux d'entrée variables. Ce travail ouvre de nombreuses perspectives pour l'analyse de neurones dans les conditions in vivo, en présence d'entrées synaptiques intenses et bruitées. / Neurons interact through their membrane potential that generally has a complex time evolution due to numerous irregular synaptic inputs received. This complex time evolution is best described in probabilistic terms due to this irregular or "noisy" activity. The time evolution of the membrane potential is therefore both stochastic and deterministic: it is stochastic since it is driven by random input arrival times, but also deterministic, since subjecting a biological neuron to the same sequence of input arrival times often results in very similar membrane potential traces. In this thesis, we investigated key statistical properties of a simplified neuron model under nonstationary input from other neurons that results in nonstationary evolution of membrane potential statistics. We considered a passive neuron model without spiking mechanism that is driven by input currents or conductances in the form of shot noise processes. Under such input, membrane potential fluctuations can be modeled as filtered shot noise currents or conductances. We analyzed the statistical properties of these filtered processes in the framework of Poisson Point Processes transformations. The key idea is to express filtered shot noise as a transformation of random input arrival times and to apply the properties of these transformations to derive its nonstationary statistics. Using this formalism we derive exact analytical expressions, and useful approximations, for the mean and joint cumulants of the filtered process in the general case of variable input rate. This work opens many perspectives for analyzing neurons under in vivo conditions, in the presence of intense and noisy synaptic inputs.
23

Dynamique quantique dans des conducteurs balistiques et cohérents : interrupteur quantique et transport photo-assisté / Quantum dynamics of ballistic coherent conductors : quantum switch and photo-assisted transport

Santin, Matthieu 30 June 2017 (has links)
La compréhension de la dynamique du transport électronique dans des conducteurs balistiques et cohérents est indispensable à la réalisation d’expériences d’optique électronique ou de calcul quantique à partir de « flying qu-bits ». La première étape est de pouvoir injecter en régime d’effet Hall quantique un électron dans la mer de Fermi sans excitation supplémentaire : un léviton, dont les propriétés remarquables ont été expérimentalement démontrées sans champ magnétique [1], ainsi que contrôler sa trajectoire à l’aide d’interrupteurs quantiques. Dans ce travail de thèse, nous avons réalisé l’étape préliminaire qui valide la possibilité de créer des lévitons en régime d’effet Hall Quantique : cela consiste à démontrer la validité de la théorie de bruit photo-assisté dans ce régime, en utilisant une excitation sinusoïdale et monochromatique, plus simple et plus contrôlée, que celle conduisant aux lévitons. En outre, nous avons étudié lors de la thèse le phénomène physiquement relié de l’interrupteur quantique élémentaire, qui est l’ouverture et la fermeture très soudaine d’un canal de conduction élémentaire. Ce phénomène, qui pose la question fondamentale « Que se passe-t-il lorsque que la mer de Fermi est spatialement coupée en deux ? », génère un bruit intrinsèque de charge [2] que nous avons mis en évidence et donne une mesure théorique de l’entropie d’intrication quantique.[1] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider, P. Roulleau, and D. C. Glattli. minimal-excitation states for electron quantum optics using levitons. Nature, 502(7473), October 2013.[2] Israel Klich and Leonid Levitov, Phys. Rev. Lett. 102, 100502 (2009) / The study of dynamic electronic transport in ballistic coherent conductor is required for the implementation of electron quantum optics experiments or the quantum computation by using “flying qu-bits”. The first step is to be able to inject in the quantum Hall effect a single electron without any additional excitations in the conductor: a Leviton, whose remarkable properties have been experimentally observed without magnetic field [1], and to control its trajectory thanks to a quantum switch. During this thesis, we confirmed the possibility to implement a leviton in the quantum Hall effect, by demonstrating the validity of the photo-assisted shot-noise theory in this regime: we use a sine excitation which is simpler to implement than a lorentzian excitation required for Levitons. We also studied a new effect described by the photo-assisted theory: a quantum switch, which is the sudden closing and opening of an elementary channel of conduction. This generates an intrinsic charge noise [2] that we have evidenced and enable us to answer the general question: “What are the effects of a spatial separation of the Fermi sea?”. Furthermore, this charge noise provides a theoretical measurement of the entanglement entropy.[1] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider, P. Roulleau, and D. C. Glattli. minimal-excitation states for electron quantum optics using levitons. Nature, 502(7473), October 2013.[2] Israel Klich and Leonid Levitov, Phys. Rev. Lett. 102, 100502 (2009)
24

Dynamic of excitations of the Fractional quantum Hall effect : fractional charge and fractional Josephson frequency / Dynamique des excitations de l'effet Hall fractionnaire : charge et fréquence Josephson fractionnaires

Kapfer, Maëlle 26 October 2018 (has links)
Dans certains états quantique de la matière, le courant peut être transporté par des porteurs de charges ayant une fraction e* de la charge élementaire. C'est notamment le cas de l'Effet Hall quantique fractionnaire (EHQF) qui se produit pour des systèmes électroniques bidimensionels à basse température et soumis à un fort champ magnetique perpendiculaire. Quand le nombre de quantum de flux en unité h/e est une fraction du nombre d'électrons, le courant se propage le long des bords de l'échantillon sans dissipation. Les porteurs de charges impliqués dans le transport portent une charge fractionnaire. La mise en évidence de ces charges peut être faite via les faibles fluctuations de courant dûes à la granularité de la charge. Nous présentons ici une méthode fiable de mesure de la charge fractionnaire basée sur des correlations croisées de fluctuations de courant. La dynamique de ces charges fractionnaires lorsque l'échantillon est irradié avec des photons GHz est étudiée, permettant la mesure de la fréquence Josephson des charges fractionnaires. Ces mesures valident les processus photo-assisté en régime d'EHQF et permettent une manipulation résolue en temps des charges fractionnaires, dans le but de réaliser une source d'anyon sur le principe du léviton afin de réaliser des tests de la statistique anyonique de ces charges fractionnaires. / In some quantum matter states, the current may remarkably be transported by carriers that bear a fraction e* of the elementary electron charge. This is the case for the Fractional quantum Hall effect (FQHE) that happens in two-dimensional systems at low temperature under a high perpendicular magnetic field. When the number of magnetic flux in units of h/e is a fraction of the number of electron, a dissipationless current flows along the edges of the sample and is carried by anyons with fractional charge. The observation of the fractional charge is realized through small current fluctuations produced by the granularity of the charge. Here is presented a reliable method to measure the fractional charge by the mean of cross-correlation of current fluctuations. Moreover, the dynamical properties of those charges is probed when the sample is irradiated with photos at GHz frequency. The long predicted Josephson frequency of the fractional charge is measured. Those measurements validate Photoassisted processes in the FQHE and enable timedomain manipulation of fractional charges in order to realize a single anyon source based on levitons to perform tests of the anyonic statistics of fractional charge.
25

Noise sources in the electric field antenna on the ESA JUICE satellite

Odelstad, Elias January 2013 (has links)
The noise in the Langmuir Probe and Plasma Wave Instrument (LP-PWI) on board ESA:s future Jupiter satellite JUICE (Jupiter ICy Moons Explorer) was investigated. Thermal Johnson-Nyquist noise and shot noise, caused by fluctuations in the probe-plasma currents, were combined with the quasi-thermal noise (QTN) due to thermal fluctuations in the electric field in the plasma, using a small signal equivalent circuit model. The contributions and effects of each of the considered noise sources were examined and compared for a number of representative space plasma conditions, including the cold dense plasma of Ganymede's ionosphere and the hot tenuous plasma out in the Jovian magnetosphere. The results showed that in the cold dense plasma of Ganymede's ionosphere, the antenna was long compared to the Debye length and the quasi-thermal noise had a clearly pronounced peak and a steep high-frequency cut-off. For an antenna biased to 1 V with respect to the plasma, the shot noise due to the ambient plasma was the dominant source of noise. For a an antenna at the floating potential the photoelectron shot noise coalesced with the shot and Nyquist noises of the ambient plasma to form almost a single curve. In the hot tenuous plasma out in Jupiter's magnetosphere, the antenna was short compared to the Debye length and the QTN spectrum was much flatter, with little or no peak at the plasma frequency and a very weak high-frequency cut-off. For an antenna biased to 1 V, the shot noise due to photoelectron emission dominated at Callisto's orbital position whereas at Ganymede's and Europa's orbital positions the Nyquist and shot noises of the ambient plasma particles were the dominant noise components. For an antenna at the floating potential, the shot and Nyquist noises of the ambient plasma also dominated the output noise, except at Europa's orbital position, where the quasi-thermal noise was the largest noise component for frequencies at and above the plasma frequency. The numerical calculations were performed using MATLAB. The code was made available in a Git repository at https://github.com/eliasodelstad/irfuproj_JUICE_noise.
26

Étude théorique du transport électronique dans les nanodispositifs à boîtes quantiques semiconductrices / Theoretical study of electronic transport in semiconductor quantum dot-based nanodevices

Talbo, Vincent 17 December 2012 (has links)
La miniaturisation des composants, qui s’est engagée depuis l’avènement de l’électronique il y a plus de 50 ans, atteint aujourd’hui la dimension nanométrique, ouvrant la porte aux phénomènes quantiques. Ultime étape de cette miniaturisation, la boîte quantique, dans laquelle les électrons sont confinés dans les trois directions de l’espace, présente des propriétés remarquables, telles que l’augmentation du gap entre la bande de conduction et la bande de valence, ou la discrétisation des niveaux d’énergies. Autre conséquence du confinement, la forte interaction électron-électron régnant au sein de la boîte conduit à une énergie de charge importante, susceptible de bloquer l'entrée d'un électron dans la boîte sans apport d'énergie extérieur. Ce phénomène de blocage des charges est appelé blocage de Coulomb. Le transistor à un électron (SET), dispositif élémentaire tirant profit de ce phénomène, est pressenti pour quelques applications, comme la réalisation de fonctions logiques ou la détection de charge. Parmi les domaines concernés, la thermoélectricité, c’est-à-dire la possibilité de créer du courant électrique à partir d’une différence de température, s’intéresse de près aux dispositifs à un électron en raison de leurs niveaux d’énergie discrets qui conduisent à une très faible conductivité thermique. Ce travail présente le simulateur SENS (Single-Electron Nanodevice Simulation) développé dans l’équipe, et dont j’ai réalisé la partie destinée à la simulation du SET. Il s’appuie sur la résolution des équations couplées de Poisson et Schrödinger, nécessaire à la détermination des fonctions d’onde dans la boîte de silicium, elles-mêmes dépendantes des tensions appliquées aux électrodes. Les fréquences de transition tunnel sont ensuite calculées par la règle d’or de Fermi. L’étude approfondie du courant dans les SET permet d’extraire des diagrammes de stabilité en diamant, et démontre l’importance de paramètres tels que la taille de l’îlot, la dimension des barrières tunnel, la température et le nombre d’électrons occupant la boîte. L’étude du courant électronique et du courant de chaleur en présence d’une différence de température aux électrodes du SET est également faite pour juger de la pertinence de l’utilisation d’un SET en tant que générateur thermoélectrique, mais aussi comme étalon pour déterminer le coefficient Seebeck. Enfin, une étude du bruit de grenaille dans la double-jonction tunnel (SET sans la grille) est faite, démontrant le fort lien entre taux de transfert tunnel et bruit. En particulier, selon l’évolution des taux des transferts tunnel d’entrée et de sortie de l'îlot, pour un nombre d’électrons supérieur 2, il est possible d’observer une augmentation importante du bruit, qui devient alors super-Poissonien. L’étude de l’influence des paramètres géométriques démontre que le bruit de grenaille dépend essentiellement de la différence des épaisseurs de barrière tunnel. / After a continuous reduction which has begun 50 years ago, the feature size of electronic devices has now reached the nanometer scale, opening the door to quantum phenomena. The final stage of this miniaturization, the quantum dot, in which the electrons are confined in all three directions of space, has remarkable properties, such as an increase of the bandgap between the conduction band and the valence band, and the discretization of energy levels. Another consequence of confinement, the strong electron-electron interaction occurring in the dot induces a significant charging energy which may prevent an electron entering the dot if an external energy is not provided to the system. This charge blocking is called Coulomb blockade. The single electron transistor (SET), the elementary device taking advantage of Coulomb blockade, is slated for some applications, such as the realization of digital functions or charge sensors. Among the areas concerned, the thermoelectricity, i.e., the possibility of creating an electrical current from a temperature gradient, is very interested in single-electron devices due to their discrete energy levels which lead to a very low thermal conductivity.This thesis presents the simulator SENS (Single-Electron Nanodevice Simulation) developed in the team and the part I have developed specifically for the simulation of SET. It is based on a 3D solver of Poisson and Schrödinger coupled equations, necessary for the determination of the wave functions in the case of silicon, and dependent on voltages applied to the electrodes. Tunnel transfer rates are then calculated by Fermi's golden rule. In-depth study of the current in the SETs gives access to diamond stability diagrams, and demonstrates the importance of parameters such as dot size, tunnel the barriers thicknesses, the temperature and the number of electrons occupying the dot. The study of the electron current and the heat flow in the presence of a temperature difference at the electrodes of an SET is also made to consider the suitability of the use of an SET as thermoelectric generator, but also as a standard for determining the Seebeck coefficient.Finally, a study of shot noise in double-tunnel junction (SET without the gate) is made, demonstrating the strong link between tunnel transfer rate and shot noise. In particular, according to the evolution of in- and out – tunnel transfer rates, for a number of electrons in the dot greater than 2, it is possible to observe a significant increase in noise, which becomes super-Poissonian. The study of the influence of geometrical parameters shows that the shot noise depends mainly on the difference of the tunnel barrier thicknesses.
27

Pushing frontiers in Carrier-Envelope Phase stabilization of ultrashort laser pulses

Borchers, Bastian 16 February 2015 (has links)
Die vorliegende Arbeit ist der Verbesserung der Carrier-Envelope Phasenstabilisierung von ultrakurzen Laserimpulsen gewidmet. Zur Realisierung von Fortschritten auf diesem Gebiet werden die grundlegenden Rauschquellen identifiziert, die das erzielbare Restphasenrauschen limitieren, und geeignete Maßnahmen zu deren Verringerung vorgeschlagen. Es wird gezeigt, dass sowohl die Messung der Carrier-Envelope Phase (CEP) als auch deren Kontrolle durch verschiedene Rauschbeiträge beeinträchtigt wird. Der Detektionsprozess ist dabei einerseits durch technische Rauschquellen beeinflusst, die vor allem in den verwendeten nichtlinearen Interferometern auftreten. Andererseits repräsentiert das Detektionsrauschen während der elektro-optischen Wandlung eine fundamentale Limitierung, da das optische Schrotrauschen sowie das Rauschen des Lichtdetektors die Messung der CEP unausweichlich beeinträchtigen. Es wird demonstriert, wie solche Beschränkungen durch geeignete Wahl der Interferometertopologie, bzw. durch Optimierung des spektralen Verbreiterungsmechanismus verringert werden können. Experimentell gelingt es dadurch den Signal-Rauschabstand der Phasenmessung um 20 Dezibel zu steigern. Hinsichtlich der CEP Kontrolle von Oszillatoren wird in dieser Arbeit ein neuartiges Doppelstabilisierungskonzept vorgestellt, welches eine feed-forward Stabilisierung, die auf einem akustooptischen Frequenzschieber beruht, mit einer klassischen Feedback Regelung kombinert. Mit diesem Konzept gelingt eine Reduzierung des Phasenrestrauschen auf beispiellose 20 Milliradian. Darüber hinaus werden weitere neue Stabilisierungskonzepte vorgestellt, die ohne Feedback zu dem Laseroszillator auskommen. Bei einem dieser Konzepte, handelt es sich um eine gepulste feed-forward Stabilisierung, die speziell für das Zusammenwirken mit einer Verstärkerstufe konzipiert ist. Erste experimentelle Ergebnisse zeigen, dass Phasenrestrauschen von weniger als 100 Milliradian auch für Verstärkersysteme erreichbar sind. / The present thesis is dedicated to improvements of the carrier-envelope phase stabilization of ultrashort laser pulses. In order to realize such improvements, the fundamental noise sources are identified, and suitable measures for their reduction are proposed. It is shown that both, the measurement of the carrier-envelope phase (CEP) as well as its control are corrupted by different noise contributions. On the one hand, the detection process is influenced by technical noise sources, which arise especially in the used nonlinear interferometers. On the other hand, the detection noise in the electro-optic conversion represents a fundamental limitation, since the optical shot noise as well as the noise induced by the light detector inevitably influence the measurement of the CEP. It is demonstrated how such limitations can be minimized by a suitable choice of the interferometer topology and by an optimization of the spectral broadening process in a micro-structured fiber. This way an enormous improvement of the signal-to-noise ratio by 20 dB is obtained experimentally, which significantly reduces the limitation of detection noise. For controlling the CEP of mode-locked oscillators, a novel double stabilization scheme is introduced in this thesis, which combines a feed-forward stabilization based on an acousto-optic frequency shifter, with a classical feedback loop. This method enables a reduction of the residual phase jitter to an unprecedented value of 20 milliradian. Beyond that, several further concepts are introduced that are capable of stabilizing the CEP without any feedback to the laser oscillator. One of these concepts, represents a pulsed feed-forward stabilization, which is specifically designed for the use in combination with a subsequent amplification stage. First experimental results indicate that residual phase jitters of less than 100 milliradian are within reach also for amplified laser systems.
28

Modélisation des Liens de Communication Radio et Optimisation de la Gestion de Mobilité dans les Réseaux Cellulaires

Nguyen, Van Minh 20 June 2011 (has links) (PDF)
La qualité de communication dans un réseau sans fil est déterminée par la qualité du signal, et plus précisément par le rapport signal à interférence et bruit. Cela pousse chaque récepteur à se connecter à l'émetteur qui lui donne la meilleure qualité du signal. Nous utilisons la géométrie stochastique et la théorie des extrêmes pour obtenir la distribution de la meilleure qualité du signal, ainsi que celles de l'interférence et du maximum des puissances reçues. Nous mettons en évidence comment la singularité de la fonction d'affaiblissement modifie leurs comportements. Nous nous intéressons ensuite au comportement temporel des signaux radios en étudiant le franchissement de seuils par un processus stationnaire $X(t)$. Nous démontrons que l'intervalle de temps que $X(t)$ passe au-dessus d'un seuil $\gamma \to -\infty$ suit une distribution exponentielle, et obtenons également des résultats caractérisant des franchissements par $X(t)$ de plusieurs seuils adjacents. Ces résultats sont ensuite appliqués à la gestion de mobilité dans les réseaux cellulaires. Notre travail se concentre sur la fonction de 'handover measurement'. Nous identifions la meilleure cellule voisine lors d'un handover. Cette fonction joue un rôle central sur l'expérience perçue par l'utilisateur. Mais reste une question ouverte à cause des difficultés posées par la coopération entre plusieurs mécanismes de contrôle qu'elle nécessite. Nous traitons ce problème en proposant des approches analytiques pour les réseaux émergents de types macro et pico cellulaires, ainsi qu'une approche d'auto-optimisation pour les listes de voisinage utilisées dans les réseaux cellulaires actuels.
29

Fano Resonances in Time-Dependent Wells

Gregefalk, Anton January 2023 (has links)
Floquet’s theorem, a temporal analogue of Bloch’s theorem, is used for studying a time-dependent potential. With applications in cold atoms on optical lattices, quantum dots and more, there is a growing interest in Floquet engineering exotic materials and phases. By solving the time-dependent Schrödinger equation scattering amplitudes are derived from which the transmission spectrum are generated. The driving field induces Floquet sidebands into which the particle can inelastically scatter. Fano resonances are observed when the incoming particle and a bound state of the staticpotential differ by some energy quanta. This process is mediated by the driving field. The scattering matrix and transmission spectra are reproduced from previous work on electron gas, graphene, and a semi-metal admitting a point of quadratic band touching (QBT). The QBT system is extended with linear tilting along the potential, which proves to be another good quantum number for tunable control.
30

Development of a QRNG front-end for shot noise measurement : analysis of quantum shot noise originating from photodiodes / Utveckling och analys av förstärkt skottbrus från fotodioder för applikation inom kvantslumptalsgenerering

Clason, Martin January 2023 (has links)
As one of the more mature quantum technologies, quantum random number generators (QRNGs) fill an important role in producing secure and private keys for use in cryptogra- phy in e.g. quantum key distribution (QKD) systems. Many available QRNGs are expen- sive and optical QRNGs often require complex optical setups. If a reliable QRNG could be implemented using less expensive components they could become more widespread and be used in common applications like encryption and simulation. Shot noise is a possible entropy source for these kinds of random number generators. For such a generator to be classified as a QRNG the origin of the shot noise must be controlled and verifiable. This project aims to investigate how an entropy source could be implemented using the shot noise generated by an illuminated photodiode. This requires the design and construction of the accompanying electro-optical front-end used to prepare a signal for sampling. The successful estimation of the electron charge e is used as a way to verify that shot noise is present in the sampled signal. Suitable component values and operating points are also in- vestigated and it is shown that quite low gain (10 000) is suitable for the current-to-voltage amplifier which amplifies the signal generated by the photodiode. For this configuration an estimate of e was achieved with a relative error of 3%. In conclusion this is a promising and interesting approach for generating random numbers at high rates and at low cost. Whether the correct estimation of e is enough to certify that the device is sampling noise from the quantum regime is however not completely clear and further investigation is likely needed.

Page generated in 0.092 seconds