391 |
Artificial Small RNAs in Plants: Characterization of Systemic Activity, and Engineering Minimal Precursors for Transgene-Free, Virus-Based ExpressionGonzález Cisneros, Adriana Estela 29 December 2024 (has links)
Tesis por compendio / [ES] Los pequeños ARNs artificiales (art-sRNAs) son moléculas de ARN de simple cadena, de 21 nucleótidos (nt), diseñados computacionalmente para silenciar genes de la planta con alta eficacia y especificidad. Los art-sRNAs se clasifican en dos grupos: micro ARNs artificiales (amiRNAs) y pequeños ARNs interferentes sintéticos que actúan en trans (syn-tasiRNAs). A pesar de que los art-sRNAs se usan frecuentemente para silenciar genes endógenos y exógenos en plantas, todavía hay algunos aspectos desconocidos que limitan sus aplicaciones. Uno de ellos es su capacidad de movimiento, dado que se desconoce si son capaces de moverse y silenciar genes endógenos en tejidos distintos a los de origen. Por tanto, el uso de art-sRNAs para inducir silenciamiento génico a nivel de toda la planta, habitualmente implica la generación de plantas transgénicas que expresen los precursores completos de art-sRNAs, limitando su versatilidad como herramienta biotecnológica para genómica funcional y mejora de cultivos. En esta tesis, hemos investigado en primer lugar la capacidad de silenciamiento sistémico de los art-sRNAs y, posteriormente, hemos diseñado precursores mínimos de art-sRNAs para facilitar su expresión no transgénica a partir de virus y en toda la planta.
En primer lugar, estudiamos la capacidad de silenciamiento local y sistémico de art-sRNAs dirigidos contra la subunidad CHLI de la quelatasa de magnesio, codificada por el gen SULPHUR (NbSu), mediante ensayos de expresión transitoria en Nicotiana benthamiana. Tanto amiRNAs como syn-tasiRNAs indujeron el silenciamiento sistémico de NbSu, para lo cual se requieren altos niveles de expresión cerca del peciolo. Esta actividad sistémica está facilitada por el movimiento vascular de art-sRNAs de doble cadena y 21 nt a través de la planta, permitiendo silenciar genes en tejidos distintos a los de origen. Este resultado pone de manifiesto el potencial biotecnológico de expresar localmente art-sRNAs que sean capaces de moverse a tejidos distales de la planta y desencadenar un silenciamiento génico altamente específico.
En segundo lugar, nos centramos en diseñar precursores de tamaño mínimo derivados de las moléculas precursoras endógenas de Arabidopsis thaliana (Arabidopsis): MIR390a (521 nt) y TAS1c (1011 nt). Evaluamos la eficacia de silenciamiento de una colección de construcciones que contenían versiones acortadas de los precursores AtMIR390a y AtTAS1c mediante expresión transitoria y estable en N. benthamiana y Arabidopsis, respectivamente. Observamos que, tanto amiRNAs como syn-tasiRNAs, son altamente eficientes y se procesan de forma precisa cuando se producen a partir de precursores mínimos de solo 89 y 54 nt respectivamente. Además, comprobamos que cuando se expresan a partir de un vector viral de ARN, como el virus X de la patata, solo se producen art-sRNAs auténticos a partir de precursores mínimos, y no de los de longitud completa, lo que da lugar al silenciamiento eficiente de genes endógenos en N. benthamiana. Asimismo, pudimos inducir silenciamiento génico mediante art-sRNAs expresados a partir de un virus, de forma no transgénica y escalable, mediante la pulverización sobre plantas de extractos infecciosos que contenían los vectores modificados. Estos resultados muestran que la longitud de los precursores de art-sRNAs puede ser acortada de forma significativa sin comprometer la eficacia del silenciamiento inducido, y que los precursores mínimos ofrecen una ventaja biotecnológica sobre los precursores de longitud completa cuando se expresan a partir de vectores virales. / [CA] Els xicotets ARNs artificials (art-sRNAs) són molècules d'ARN de simple cadena de 21 nucleòtids (nt), dissenyats computacionalment per a silenciar gens de plantes amb alta eficàcia i especificitat. Els art-sRNAs es classifiquen en dos tipus: microARNs artificials (amiRNAs) i xicotets ARNs interferents sintètics que actuen en trans (syn-tasiRNAs). Encara que els art-sRNAs són àmpliament utilitzats per a silenciar tant gens endògens com exògens en plantes, hi ha alguns aspectes desconeguts que limiten les seues aplicacions. Un d'ells és la seua capacitat de moviment, ja que encara no s¿ha establit si poden desplaçar-se i silenciar gens endògens en teixits diferents del d'origen. Conseqüentment, aconseguir un silenciament gènic en tota la planta mediat per art-sRNAs normalment requereix la producció de plantes transgènices que expressen els precursors complets dels art-sRNAs, la qual cosa restringeix el seu ús versàtil com a eina biotecnològica per a la genòmica funcional i la millora de cultius. En aquesta tesi, primer vam investigar la capacitat de silenciament sistèmic dels art-sRNAs, i després vam dissenyar precursors mínims d'art-sRNAs per a facilitar la seua aplicació de manera no transgènica a tota la planta, expressant els art-sRNAs a partir de vectors virals.
Primer, vam estudiar la capacitat de silenciament local i sistèmic dels art-sRNAs, dirigits contra el gen SULPHUR (NbSu) ,que codifica per a una subunitat de la quelatasa de magnesi, assajada en Nicotiana benthamiana mitjançant l'expressió transitòria. Tant amiRNAs com syn-tasiRNAs van produir silenciament sistèmic de NbSu, amb una alta expressió d'art-sRNAs prop del pecíol de la fulla. El moviment vascular dels dúplexs d'art-sRNAs de 21 nt va facilitar aquesta activitat sistèmica a través de la planta, permetent el silenciament d'aquest gen en teixits distals als quals els art-sRNAs han sigut produïts. Aquest resultat destaca el gran potencial biotecnològic dels art-sRNAs expressats localment, capaços de moure's a grans distancies i amb molta especificitat, desencadenant el silenciament gènic a tota la planta.
En segon lloc, ens vam centrar en dissenyar precursors d'amiRNAs i syn-tasiRNAs del mínim tamany possible, derivats dels precursors endògens MIR390a (521 nt) i TAS1c (1011 nt) d' Arabidopsis thaliana, respectivament. Vam avaluar l'eficàcia de silenciament d'una col·lecció de construccions que incloïen les versions acurtades dels precursors AtMIR390a i AtTAS1c, fent servir expressió transitòria en N.benthamiana i expressió estable en A. thaliana. Vam trobar que es poden produir amiRNAs i syn-tasiRNAs altament efectius i correctament processats a partir de precursors mínims de només 89 i 54 nt respectivament. A més, vam observar que art-sRNAs autèntics es produeixen a partir dels precursors mínims i no utilitzant els precursors complets quan s'expressen des d'un vector viral basat en ARN, com el virus X de la creïlla, resultant en un silenciament eficient de gens endògens de N. benthamina. A més, el silenciament de gens mediat per art-sRNAs expressats a partir d'un vector viral es va a aconseguir amb èxit sense l'ús de transgènics i d'una manera escalable, utilitzant un esprai amb extractes crus infecciosos que contenen els vectors virals modificats. Aquests resultats manifesten que la longitud dels precursors d'art-sRNAs pot ser reduïda significantment sense comprometre l'eficàcia de silenciament, i que aquests precursors mínims ofereixen un avantatge biotecnològic sobre els precursors complets quan s'expressen a partir de vectors virals. / [EN] Artificial small RNAs (art-sRNAs) are 21-nucleotide (nt) single-stranded RNA molecules computationally designed to silence genes with high efficacy and specificity. Art-sRNAs are classified into two main types: artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs). Although art-sRNAs are widely used to silence both endogenous and exogenous plant genes, there are still some unknown aspects limiting their applications. One of them is their movement capacity, since it has not been established whether they can move and silence endogenous genes in tissues other than where they are originally expressed. Consequently, achieving whole-plant gene silencing mediated by art-sRNAs, typically requires the generation of transgenic plants expressing full-length art-sRNA precursors, restricting their use as versatile biotechnological tools for functional genomics and crop improvement. In this thesis, we first investigated the systemic silencing capacity of art-sRNAs, and then engineered minimal art-sRNA precursors to facilitate transgene-free, virus-based expression of art-sRNAs at the whole-plant level.
Firstly, we studied the local and systemic silencing capacity of art-sRNAs targeting the magnesium chelatase subunit CHLI-encoding SULPHUR (NbSu) gene, using transient expression assays in Nicotiana benthamiana. Both amiRNAs and syn-tasiRNAs were found to induce systemic silencing of NbSu, which required high art-sRNA expression near the leaf petiole. This systemic activity was facilitated by the vascular movement of 21-nt art-sRNA duplexes throughout the plant, allowing the silencing of plant genes in tissues different from where art-sRNAs are produced. This result highlights the biotechnological potential of locally expressed art-sRNAs to move long distances and trigger highly specific gene silencing throughout the plant.
Secondly, we focused on engineering amiRNA and syn-tasiRNA precursors of minimal size and derived from the endogenous Arabidopsis thaliana (Arabidopsis) MIR390a (521 nt) and TAS1c (1011 nt) precursors, respectively. We evaluated the silencing efficacy of a collection of constructs containing shortened versions of the AtMIR390a and AtTAS1c precursors, through both transient and stable expression in N. benthamiana and Arabidopsis, respectively. We found that highly effective and accurately processed amiRNAs and syn-tasiRNAs can be produced from minimal precursors of only 89 and 54 nt, respectively. Moreover, we observed that authentic art-sRNAs are produced from minimal -but not from full-length precursors- when expressed from an RNA-based viral vector, such as potato virus X, resulting in efficient silencing of endogenous genes in N. benthamiana. Furthermore, virus-induced gene silencing mediated by art-sRNAs was successfully achieved in a transgene-free and scalable manner by spraying plants with infectious crude extracts containing the modified viral vectors. These results reveal that the length of art-sRNA precursors can be significantly shortened without compromising silencing efficacy, and that minimal precursors offer a biotechnological advantage over full-length precursors when expressed from viral vectors. / This work was supported by grants or fellowships from Ministerio de Ciencia y Universidades
(MCU, Spain), Agencia Estatal de Investigación (AEI, Spain) and Fondo Europeo de Desarrollo
Regional (FEDER, European Union) [RTI2018-095118-A-100, PID2021-122186OB-100 and RYC-2017-21648 to A.C.,
and PRE2019-088439 and PRE2022-102565 to A.E.C. and J.L.-G., respectively],
NextGenerationEU/PRTR (European Union) [CNS2022-135107 to A.C.], from Consejo
Superior de Investigaciones Científicas (CSIC, Spain) [JAEINT_21_00860 to A.P.-E.] and from
European Commission [Erasmus+ Grant Agreement 2020-1-DE01-KA103-005653 to A.P. / González Cisneros, AE. (2024). Artificial Small RNAs in Plants: Characterization of Systemic Activity, and Engineering Minimal Precursors for Transgene-Free, Virus-Based Expression [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/213397 / Compendio
|
392 |
Interactome of TNRC6 W-motifs and their conserved Role in miRNA-mediated silencingMauri, Marta 15 December 2017 (has links)
MicroRNAs (miRNAs) sind kurze nicht-kodierende RNAs, die auf posttranskriptionaler Ebene die Genexpression hemmen. Dafür bilden miRNAs Ribonukleoprotein-Komplexe, deren Kernbestandteile aller Bilateria Argonaute (AGO) und GW182 /TNRC6 Proteine sind. GW182 / TNRC6-Proteine rekrutieren CCR4-NOT-Deadenylasen über kurze Tryptophan-reiche Motive (W-Motive), welche additiv wirken und fördern so die translationale Repression und den Abbau von Ziel-mRNAs. Um mehr über die Mechanismen der miRNA-abhängigen Genrepression zu erfahren, habe ich W-Motiv-abhängige Interaktionspartner humaner TNRC6C Proteine bestimmt. Hierzu habe ich, mithilfe von quantitativer Massenspektrometrie, das Interaktom von wildtyp TNRC6C Proteinen mit dem von TNRC6C Proteinen, deren W-Motive mutiert wurden, verglichen. Neben bekannten Interaktionspartnern, wie Untereinheiten des CCR4-NOT Komplexes, habe ich Komponenten von Clathrin-Vesikeln (CCVs), Stoffwechsel assoziierte Enzyme, mitochondriale Proteine, RNA Helikasen, Kinasen und Phosphatasen mit potentiellen Funktionen in der miRNA-assoziierten Repression identifiziert. Die im ersten Teil dieser Studie vorgestellten Ergebnisse legen nahe, dass CCVs die Speicherung oder das Recycling von TNRC6 und AGO Proteinen vermitteln können und somit das miRNA-Silencing modulieren.
Der zweite Teil dieser Studie befasst sich mit der Konservierung von miRNA vermitteltem Gen-Silencing in Cnidaria (Nematostella vectensis), welche sich vor 600 Millionen Jahren von der Ahnenreihe der Metazoa abspalteten. Hier zeige ich anhand humaner Zellen, dass Nematostella GW182, ähnlich wie in Bilateria, von AGO rekrutiert wird und nachfolgend in der Repression der mRNA fungiert, was darauf hinweist, dass dieser Mechanismus der miRNA-vermittelten Geninhibition bereits in den letzten gemeinsamen Vorfahren von Cnidaria und Bilateria aktiv war. / MicroRNAs (miRNAs) are short non-coding RNAs that act as post-transcriptional repressors of gene expression. To function miRNAs are assembled in ribonucleoprotein complexes, whose core components in bilaterian animals are Argonaute (AGO) and GW182/TNRC6 proteins. GW182/TNRC6 proteins additively recruit CCR4-NOT deadenylases via short tryptophan-containing motifs (W-motifs), thereby promoting translational repression and the decay of target mRNAs. To gain deeper insights into the mechanisms of miRNA silencing I determined the W-motif-specific interactome of human TNRC6C proteins. Using Stable Isotope Labeling by Amino acids in Cell Culture (SILAC) coupled to affinity purification and Mass Spectrometry (MS) I identified proteins enriched with wild type TNRC6C as compared to two mutants with disrupted W-motifs. Besides known functional interactors, such as subunits of the CCR4-NOT complex, I identified several components of clathrin-coated vesicles (CCVs), metabolic enzymes, mitochondrial proteins, RNA helicases, kinases, and phosphatases with potential functional roles in miRNA-mediated repression. The results presented in the first part of this thesis indicate that CCVs may mediate the storage or recycling of TNRC6 and AGO proteins, thus modulating miRNA silencing. The second part of the thesis addressed the conservation of the mechanisms of miRNA silencing via W-motifs in the cnidarian Nematostella vectensis, separated by 600 million years from other Metazoa. Using cultured human cells, I showed that similarly to bilaterians, GW182 in Nematostella is recruited to the miRNA repression complex via interaction with AGO proteins, and functions downstream to repress mRNA, indicating that this mechanism of miRNA-mediated silencing was already active in the last common ancestor of Cnidaria and Bilateria.
|
393 |
Gene expression control for synthetic patterning of bacterial populations and plantsBoehm, Christian Reiner January 2017 (has links)
The development of shape in multicellular organisms has intrigued human minds for millenia. Empowered by modern genetic techniques, molecular biologists are now striving to not only dissect developmental processes, but to exploit their modularity for the design of custom living systems used in bioproduction, remediation, and regenerative medicine. Currently, our capacity to harness this potential is fundamentally limited by a lack of spatiotemporal control over gene expression in multicellular systems. While several synthetic genetic circuits for control of multicellular patterning have been reported, hierarchical induction of gene expression domains has received little attention from synthetic biologists, despite its fundamental role in biological self-organization. In this thesis, I introduce the first synthetic genetic system implementing population-based AND logic for programmed hierarchical patterning of bacterial populations of Escherichia coli, and address fundamental prerequisites for implementation of an analogous genetic circuit into the emergent multicellular plant model Marchantia polymorpha. In both model systems, I explore the use of bacteriophage T7 RNA polymerase as a gene expression engine to control synthetic patterning across populations of cells. In E. coli, I developed a ratiometric assay of bacteriophage T7 RNA polymerase activity, which I used to systematically characterize different intact and split enzyme variants. I utilized the best-performing variant to build a three-color patterning system responsive to two different homoserine lactones. I validated the AND gate-like behavior of this system both in cell suspension and in surface culture. Then, I used the synthetic circuit in a membrane-based spatial assay to demonstrate programmed hierarchical patterning of gene expression across bacterial populations. To prepare the adaption of bacteriophage T7 RNA polymerase-driven synthetic patterning from the prokaryote E. coli to the eukaryote M. polymorpha, I developed a toolbox of genetic elements for spatial gene expression control in the liverwort: I analyzed codon usage across the transcriptome of M. polymorpha, and used insights gained to design codon-optimized fluorescent reporters successfully expressed from its nuclear and chloroplast genomes. For targeting of bacteriophage T7 RNA polymerase to these cellular compartments, I functionally validated nuclear localization signals and chloroplast transit peptides. For spatiotemporal control of bacteriophage T7 RNA polymerase in M. polymorpha, I characterized spatially restricted and inducible promoters. For facilitated posttranscriptional processing of target transcripts, I functionally validated viral enhancer sequences in M. polymorpha. Taking advantage of this genetic toolbox, I introduced inducible nuclear-targeted bacteriophage T7 RNA polymerase into M. polymorpha. I showed implementation of the bacteriophage T7 RNA polymerase/PT7 expression system accompanied by hypermethylation of its target nuclear transgene. My observations suggest operation of efficient epigenetic gene silencing in M. polymorpha, and guide future efforts in chassis engineering of this multicellular plant model. Furthermore, my results encourage utilization of spatiotemporally controlled bacteriophage T7 RNA polymerase as a targeted silencing system for functional genomic studies and morphogenetic engineering in the liverwort. Taken together, the work presented enhances our capacity for spatiotemporal gene expression control in bacterial populations and plants, facilitating future efforts in synthetic morphogenesis for applications in synthetic biology and metabolic engineering.
|
394 |
PLANT-ENDOPHYTE INTERPLAY PROTECTS TOMATO AGAINST A VIRULENT VERTICILLIUM DAHLIAEShittu, Hakeem Olalekan 05 October 2010 (has links)
When tomato Craigella is infected with Verticillium dahliae Dvd-E6 (Dvd-E6), a tolerant state is induced with substantial pathogen load, but few symptoms. Unexpectedly, these plants are more robust and taller with Dvd-E6 behaving as an endophyte. Some endophytes can protect plants from virulent pathogens. This research was undertaken to improve understanding of the cellular and molecular nature of Verticillium tolerance in tomato, especially whether infection by Dvd-E6 can protect Craigella from virulent V. dahliae, race 1 (Vd1). To permit mixed infection experiments a restriction fragment length polymorphism (RFLP)-based assay was developed and used for differentiating Dvd-E6 from Vd1, when present in mixed infections. The results suggested that protection involves molecular interplay between Dvd-E6 and Vd1 in susceptible Craigella (CS) tomatoes, resulting in restricted Vd1 colonization. Further studies showed a dramatic reduction of Vd1 spores and mycelia. To examine genetic changes that account for these biological changes, a customized DNA chip (TVR) was used to analyze defense gene mRNA levels. The defense gene response was categorized into four groups. Group 1 was characterized by strong induction of defense genes followed by suppression. However, Vd1-induced gene suppression was blocked by Dvd-E6 in mixed infections.
These genes included some transcription factors and PR proteins such as class IV chitinases and beta glucanases which are known to target fungal spores and mycelia. Experiments also were repeated with a Craigella resistant (CR) isoline containing a fully active Ve locus (Ve1+ and Ve2+). The biological results showed that the presence of the Ve1+ allele resulted in restricted Vd1 colonization and, in a mixed infection with Dvd-E6, Vd1 was completely eliminated from the plant stem. Surprisingly, there was no significant increase in defense gene mRNAs. Rather, elevated basal levels of defense gene products appeared sufficient to combat pathogen attack. To investigate functional effects of the genetic changes observed, an inducible RNAi knockdown vector for a defense gene (TUS15G8) with unknown function (pMW4-TUS15G8) as well as the Ve2 resistance gene (pMW-Ve2) was prepared as a initial step for future transformation analyses. Taken together the results reveal intriguing but complex biological and molecular changes in mixed infections, which remain a basis for future experiments and potential agricultural benefits. / Canadian Commonwealth Scholarship and Fellowship Plan
|
395 |
Micro RNA-Mediated regulation of the full-length and truncated isoforms of human neurotrophic tyrosine kinase receptor type 3 (NTRK 3)Guidi, Mònica 13 January 2009 (has links)
Neurotrophins and their receptors are key molecules in the development of thenervous system. Neurotrophin-3 binds preferentially to its high-affinity receptorNTRK3, which exists in two major isoforms in humans, the full-length kinaseactiveform (150 kDa) and a truncated non-catalytic form (50 kDa). The twovariants show different 3'UTR regions, indicating that they might be differentiallyregulated at the post-transcriptional level. In this work we explore howmicroRNAs take part in the regulation of full-length and truncated NTRK3,demonstrating that the two isoforms are targeted by different sets of microRNAs.We analyze the physiological consequences of the overexpression of some of theregulating microRNAs in human neuroblastoma cells. Finally, we providepreliminary evidence for a possible involvement of miR-124 - a microRNA with noputative target site in either NTRK3 isoform - in the control of the alternativespicing of NTRK3 through the downregulation of the splicing repressor PTBP1. / Las neurotrofinas y sus receptores constituyen una familia de factores crucialespara el desarrollo del sistema nervioso. La neurotrofina 3 ejerce su funciónprincipalmente a través de una unión de gran afinidad al receptor NTRK3, del cualse conocen dos isoformas principales, una larga de 150KDa con actividad de tipotirosina kinasa y una truncada de 50KDa sin dicha actividad. Estas dos isoformasno comparten la misma región 3'UTR, lo que sugiere la existencia de unaregulación postranscripcional diferente. En el presente trabajo se ha exploradocomo los microRNAs intervienen en la regulación de NTRK3, demostrando que lasdos isoformas son reguladas por diferentes miRNAs. Se han analizado lasconsecuencias fisiológicas de la sobrexpresión de dichos microRNAs utilizandocélulas de neuroblastoma. Finalmente, se ha estudiado la posible implicación delmicroRNA miR-124 en el control del splicing alternativo de NTRK3 a través de laregulación de represor de splicing PTBP1.
|
396 |
SCF cdc4 regulates msn2 and msn4 dependent gene expression to counteract hog1 induced lethalityVendrell Arasa, Alexandre 16 January 2009 (has links)
L'activació sostinguda de Hog1 porta a una inhibició del creixement cel·lular. En aquest treball, hem observat que el fenotip de letalitat causat per l'activació sostinguda de Hog1 és parcialment inhibida per la mutació del complexe SCFCDC4. La inhibició de la mort causada per l'activació sostinguda de Hog1 depèn de la via d'extensió de la vida. Quan Hog1 s'activa de manera sostinguda, la mutació al complexe SCFCDC4 fa que augmenti l'expressió gènica depenent de Msn2 i Msn4 que condueix a una sobreexpressió del gen PNC1 i a una hiperactivació de la deacetilassa Sir2. La hiperactivació de Sir2 és capaç d'inhibir la mort causada per l'activació sostinguda de Hog1. També hem observat que la mort cel·lular causada per l'activació sostinguda de Hog1 és deguda a una inducció d'apoptosi. L'apoptosi induïda per Hog1 és inhibida per la mutació al complexe SCFCDC4. Per tant, la via d'extensió de la vida és capaç de prevenir l'apoptosi a través d'un mecanisme desconegut. / Sustained Hog1 activation leads to an inhibition of cell growth. In this work, we have observed that the lethal phenotype caused by sustained Hog1 activation is prevented by SCFCDC4 mutants. The prevention of Hog1-induced cell death by SCFCDC4 mutation depends on the lifespan extension pathway. Upon sustained Hog1 activation, SCFCDC4 mutation increases Msn2 and Msn4 dependent gene expression that leads to a PNC1 overexpression and a Sir2 deacetylase hyperactivation. Then, hyperactivation of Sir2 is able to prevent cell death caused by sustained Hog1 activation. We have also observed that cell death upon sustained Hog1 activation is due to an induction of apoptosis. The apoptosis induced by Hog1 is decreased by SCFCDC4 mutation. Therefore, lifespan extension pathway is able to prevent apoptosis by an unknown mechanism.
|
Page generated in 0.0959 seconds