• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • Tagged with
  • 23
  • 23
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Algebraické podstruktury v Cm / Algebraic Substructures in Cm

Kala, Vítězslav January 2013 (has links)
Title: Algebraic Substructures in ℂ Author: Vítězslav Kala Department: Department of Algebra Supervisor: Prof. RNDr. Tomáš Kepka, DrSc., Department of Algebra Abstract: We study the structure of finitely generated semirings, parasemifields and other algebraic structures, developing and applying tools based on the geom- etry of algebraic substructures of the Euclidean space ℂ . To a parasemifield which is finitely generated as a semiring we attach a certain subsemigroup of the semigroup ℕ0 (defined using elements such that + = for some ∈ and ∈ ℕ). Algebraic and geometric properties of carry important structural information about ; we use them to show that if a parasemifield is 2-generated as a semiring, then it is additively idempotent. We also provide a ring-theoretic reformulation of this conjecture in the case of -generated semirings. We also classify all additively idempotent parasemifields which are finitely gen- erated as semirings by using the fact that they correspond to certain finitely generated unital lattice ordered groups. Busaniche, Cabrer, and Mundici [4] re- cently classified these using the combinatorial and geometric notion of a stellar sequence which is a sequences of certain simplicial complexes in [0, 1] . We use their results to prove that each such parasemifield is a finite product of...
12

Contributions to Persistence Theory

Du, Dong 27 June 2012 (has links)
No description available.
13

ANALYTIC AND TOPOLOGICAL COMBINATORICS OF PARTITION POSETS AND PERMUTATIONS

Jung, JiYoon 01 January 2012 (has links)
In this dissertation we first study partition posets and their topology. For each composition c we show that the order complex of the poset of pointed set partitions is a wedge of spheres of the same dimension with the multiplicity given by the number of permutations with descent composition c. Furthermore, the action of the symmetric group on the top homology is isomorphic to the Specht module of a border strip associated to the composition. We also study the filter of pointed set partitions generated by knapsack integer partitions. In the second half of this dissertation we study descent avoidance in permutations. We extend the notion of consecutive pattern avoidance to considering sums over all permutations where each term is a product of weights depending on each consecutive pattern of a fixed length. We study the problem of finding the asymptotics of these sums. Our technique is to extend the spectral method of Ehrenborg, Kitaev and Perry. When the weight depends on the descent pattern, we show how to find the equation determining the spectrum. We give two length 4 applications, and a weighted pattern of length 3 where the associated operator only has one non-zero eigenvalue. Using generating functions we show that the error term in the asymptotic expression is the smallest possible.
14

Triangulations de Delaunay dans des espaces de courbure constante négative / Delaunay triangulations of spaces of constant negative curvature

Bogdanov, Mikhail 09 December 2013 (has links)
Nous étudions les triangulations dans des espaces de courbure négative constante, en théorie et en pratique. Ce travail est motivé par des applications dans des domaines variés. Nous considérons les complexes de Delaunay et les diagrammes de Voronoï dans la boule de Poincaré, modèle conforme de l'espace hyperbolique, en dimension quelconque. Nous utilisons l'espace des sphères pour la description des algorithmes. Nous étudions aussi les questions algébriques et arithmétiques et observons que les calculs effectués sont rationnels. Les démonstrations sont basées sur des raisonnements géométriques et n'utilisent aucune formulation analytique de la distance hyperbolique. Nous présentons une implantation complète, exacte et efficace en dimension deux. Le code est développé en vue d'une intégration dans la bibliothèque CGAL, qui permettra une diffusion à un large public. Nous étudions ensuite les triangulations de Delaunay des surfaces hyperboliques fermées. Nous définissons une triangulation comme un complexe simplicial afin de permettre l'adaptation de l'algorithme incrémentiel connu pour le cas euclidien. Le cœur de l'approche consiste à montrer l'existence d'un revêtement fini dans lequel les fibres définissent toujours une triangulation de Delaunay. Nous montrons une condition suffisante sur la longueur des boucles non contractiles du revêtement. Dans le cas particulier de la surface de Bolza, nous proposons une méthode pour construire un tel revêtement, en étudiant les sous groupes distingués du groupe fuchsien définissant la surface. Nous considérons des aspects liés à l'implantation. / We study triangulations of spaces of constant negative curvature -1 from both theoretical and practical points of view. This is originally motivated by applications in various fields such as geometry processing and neuro mathematics. We first consider Delaunay complexes and Voronoi diagrams in the Poincaré ball, a conformal model of the hyperbolic space, in any dimension. We use the framework of the space of spheres to give a detailed description of algorithms. We also study algebraic and arithmetic issues, observing that only rational computations are needed. All proofs are based on geometric reasoning, they do not resort to any use of the analytic formula of the hyperbolic distance. We present a complete, exact, and efficient implementation of the Delaunay complex and Voronoi diagram in the 2D hyperbolic space. The implementation is developed for future integration into the CGAL library to make it available to a broad public. Then we study the problem of computing Delaunay triangulations of closed hyperbolic surfaces. We define a triangulation as a simplicial complex, so that the general incremental algorithm for Euclidean Delaunay triangulations can be adapted. The key idea of the approach is to show the existence of a finite-sheeted covering space for which the fibers always define a Delaunay triangulation. We prove a sufficient condition on the length of the shortest non-contractible loops of the covering space. For the specific case of the Bolza surface, we propose a method to actually construct such a covering space, by studying normal subgroups of the Fuchsian group defining the surface. Implementation aspects are considered.
15

The complexity of graph polynomials

Noble, Steven D. January 1997 (has links)
This thesis examines graph polynomials and particularly their complexity. We give short proofs of two results from Gessel and Sagan (1996) which present new evaluations of the Tutte polynomial concerning orientations. A theorem of Massey et al (1997) gives an expression concerning the average size of a forest in a graph. We generalise this result to any simplicial complex. We answer a question posed by Kleinschmidt and Onn (1995) by showing that the language of partitionable simplicial complexes is in NP. We prove the following result concerning the complexity of the Tutte polynomial: Theorem 1. For any fixed k, there exists a polynomial time algorithm A, which will input any graph G, with tree-width at most k, and rational numbers x and y, and evaluate the Tutte polynomial, T(G;x,y). The rank generating function S of a graphic 2-polymatroid was introduced by Oxley and Whittle (1993). It has many similarities to the Tutte polynomial and we prove the following results. Theorem 2. Evaluating S at a fixed point (u,v) is #P-hard unless uv=1 when there is a polynomial time algorithm. Theorem 3. For any fixed k, there exists a polynomial time algorithm A, which will input any graph G, with tree-width at most k, and rational numbers u and v, and evaluate S(G;u,v). We consider a class of graphs $S$, which are those graphs which are obtainable from a graph with no edges using the unsigned version of Reidemeister moves. We examine the relationship between this class and other similarly defined classes such as the delta-wye graphs. There remain many open questions such as whether S contains every graph. However we have an invariant of the moves, based on the Tutte polynomial, which allows us to determine from which graph with no edges, if any, a particular graph can be obtained. Finally we consider a new polynomial on weighted graphs which is motivated by the study of weight systems on chord diagrams. We give three states model and a recipe theorem. An unweighted version of this polynomial is shown to contain as specialisations, a wide range of graph invariants, such as the Tutte polynomial, the polymatroid polynomial of Oxley and Whittle (1993) and the symmetric function generalisation of the chromatic polynomial introduced by Stanley (1995). We close with a discussion of complexity issues proving hardness results for very restricted classes of graphs.
16

Topologická a geometrická kombinatorika / Topological and geometrical combinatorics

Tancer, Martin January 2011 (has links)
1 Topological and Geometrical Combinatorics Martin Tancer Abstract The task of the thesis is to present several new results on topological methods in combinatorics. The results can be split into two main streams. The first stream regards intersection patterns of convex sets. It is shown in the thesis that finite projective planes cannot be intersection patterns of convex sets of fixed dimension which answers a question of Alon, Kalai, Matoušek and Meshulam. Another result shows that d-collapsibility (a necessary condition on properties of in- tersection patterns of convex sets in dimension d) is NP-complete for recognition if d ≥ 4. In addition it is shown that d-collapsibility is not a necessary condition on properties of intersection patterns of good covers, which disproves a conjecture of G. Wegner from 1975. The second stream considers algorithmic hardness of recognition of simplicial com- plexes embeddable into Rd . The following results are proved: It is algorithmically un- decidable whether a k-dimensional simplicial complex piecewise-linearly embeds into Rd for d ≥ 5 and k ∈ {d−1, d}; and this problem is NP-hard if d ≥ 4 and d ≥ k ≥ 2d−2 3 .
17

Random Geometric Structures

Grygierek, Jens Jan 30 January 2020 (has links)
We construct and investigate random geometric structures that are based on a homogeneous Poisson point process. We investigate the random Vietoris-Rips complex constructed as the clique complex of the well known gilbert graph as an infinite random simplicial complex and prove that every realizable finite sub-complex will occur infinitely many times almost sure as isolated complex and also in the case of percolations connected to the unique giant component. Similar results are derived for the Cech complex. We derive limit theorems for the f-vector of the Vietoris-Rips complex on the unit cube centered at the origin and provide a central limit theorem and a Poisson limit theorem based on the model parameters. Finally we investigate random polytopes that are given as convex hulls of a Poisson point process in a smooth convex body. We establish a central limit theorem for certain linear combinations of intrinsic volumes. A multivariate limit theorem involving the sequence of intrinsic volumes and the number of i-dimensional faces is derived. We derive the asymptotic normality of the oracle estimator of minimal variance for estimation of the volume of a convex body.
18

Modélisation d'agencements énergétiques durables dans les zones urbaines intelligentes : une approche pour la réduction de l’emprise énergétique par les pratiques soutenables / Modelling of sustainable energy assemblage in intelligent urban areas : an approach to reducing the energy impact by promoting sustainable pratcices

Calvez, Philippe 10 December 2015 (has links)
D’un côté, la transition écologique et les enjeux de développement durable sont de nos jours une réalité que l’on ne peut ignorer compte tenu des impacts négatifs des activités humaines sur leurs environnements. De l’autre côté, une numérisation toujours plus importante de ces environnements entraîne la génération de volumes massifs de traces numériques, qui sont autant d’indices sur le monde dans lequel vivent les acteurs de ces activités. Une difficulté non négligeable existe pour comprendre les tenants et aboutissants faisant que d’une activité à une autre, l’impact sur l’environnement mesuré dans ces travaux de recherche à travers le concept d’Emprise Énergétique (EmE) n’est pas le même. Notre approche considère l’identification sur la base de ces traces numériques, d’activité d’entités humaines et non humaines. L’instanciation de ces dernières au sein de pratiques mobilise des ressources (physiques et virtuelles) en plus ou moins grand nombre. Leurs modélisations permettraient de mieux appréhender les enjeux liés à la transition écologique. Identifier sur la base d’indicateurs quantifiables les pratiques ayant un impact réduit sur l’environnement serait une piste permettant de contribuer à cette transition. Ces pratiques, au sens de coordination de multiples entités hétérogènes dans le temps et l’espace, peuvent être formalisées sous forme de structures d’activités multidimensionnelles à l’aide de la théorie de l’Agencement et d’un ensemble d’outils mathématiques (Complexes Simpliciaux, Hypernetworks). Ces travaux de recherche tentent de modéliser le phénomène d’activité humaine et non humaine en s’appuyant sur la caractérisation du contexte de celles-ci à partir de données massives. Ces agencements sont calculés et représentés dans une application (IMhoTEP) ayant pour but de construire ces structures complexes non pas sur des catégorisations faites a priori des entités, mais en se focalisant sur les relations que celles-ci entretiennent dans plusieurs dimensions. L’objectif final est de proposer un outil d’accompagnement à la transition écologique à destination des acteurs participant à des activités induisant la consommation, voire la production de ressources. Ces travaux de recherche en informatique s’appuient sur la numérisation continue des espaces et particulièrement les espaces urbains (Smart City, Internet of Everything). / On one hand, the ecological transition and sustainable development issues are today a reality that cannot be ignored given the negative impacts of human activities on their environments. On the other side, an increasingly important digitization of these environments results in the generation of massive volumes of digital traces, which are all signs of actors’ activities. A significant challenge is to understand the ins and outs of environmental impact due activities and considering Emprise of Energy (EmE) as a key indicator and how this indicator can strongly change from an activity to another. Our approach considers the identification of Practice on the basis of these digital traces generated by human and non-human entities during specific activities. Practice (instantiation of activity) uses more or less resources (physical and virtual) during their existence. Be able to identify which one is more resources dependent would help to better understand how to promote ecological transition. Promoting or at least identifying on the basis of quantifiable indicators (i.e Energy Emprise), practices that have a low impact on the environment, could be an innovative approach. These practices, in the sense of coordination of multiple heterogeneous entities in time and space, can be formalized in the form of multidimensional structures activities - Hypergraph of Activities – using the theory of Assemblage (Agencement in french) and using a set of mathematical tool (Simplicial Complexes, Hypernetworks). This research attempts to model the phenomenon of human and not human activity based on the characterization of the context (massive contextual data). These Assemblages are calculated and represented in an research application (IMhoTEP) which aims to build these complex structures not based on a priori entities’ classification, but by focusing on the relationships that they maintain in several dimensions. The main goal is to offer a decision tool which support actors’ ecological transition by understand activities inducing consumption or production of resources. These academic research in the field of computer science is based continuous digitization of physical and virtual spaces, particularly highly connected urban areas (Smart City, Internet of Everything).
19

Simplicial Complexes of Graphs

Jonsson, Jakob January 2005 (has links)
Let G be a finite graph with vertex set V and edge set E. A graph complex on G is an abstract simplicial complex consisting of subsets of E. In particular, we may interpret such a complex as a family of subgraphs of G. The subject of this thesis is the topology of graph complexes, the emphasis being placed on homology, homotopy type, connectivity degree, Cohen-Macaulayness, and Euler characteristic. We are particularly interested in the case that G is the complete graph on V. Monotone graph properties are complexes on such a graph satisfying the additional condition that they are invariant under permutations of V. Some well-studied monotone graph properties that we discuss in this thesis are complexes of matchings, forests, bipartite graphs, disconnected graphs, and not 2-connected graphs. We present new results about several other monotone graph properties, including complexes of not 3-connected graphs and graphs not coverable by p vertices. Imagining the vertices as the corners of a regular polygon, we obtain another important class consisting of those graph complexes that are invariant under the natural action of the dihedral group on this polygon. The most famous example is the associahedron, whose faces are graphs without crossings inside the polygon. Restricting to matchings, forests, or bipartite graphs, we obtain other interesting complexes of noncrossing graphs. We also examine a certain "dihedral" variant of connectivity. The third class to be examined is the class of digraph complexes. Some well-studied examples are complexes of acyclic digraphs and not strongly connected digraphs. We present new results about a few other digraph complexes, including complexes of graded digraphs and non-spanning digraphs. Many of our proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this thesis provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees, which we successfully apply to a large number of graph and digraph complexes. / QC 20100622
20

Applications of Persistent Homology and Cycles

Mandal, Sayan 13 November 2020 (has links)
No description available.

Page generated in 0.1369 seconds