171 |
Le TGFβI dans la physiopathologie de l'arthrose et son rôle dans l'effet thérapeutique des cellules souches mésenchymateuses / The TGFβI in the pathophysiology of osteoarthritis and its role in mesenchymal stem cell therapeutic effectRuiz, Maxime 22 May 2018 (has links)
L’arthrose est une maladie ostéoarticulaire fréquente et sans traitement curatif. Elle se manifeste par une dégénérescence du cartilage, associée à une altération des autres tissus de l’articulation. Dans ce contexte, les cellules souches mésenchymateuses (CSM) démontrent un effet thérapeutique. Afin d’identifier de nouveaux médiateurs de l’homéostasie articulaire, nous avons analysé le secrétome des CSM en nous focalisant sur les membres de la famille du facteur de croissance transformant β (TGFβ), une voie centrale dérégulée dans l’arthrose.Cette approche nous a permis d’identifier la protéine induite par le TGFβ (TGFβI ou βIGH3), pour laquelle nous avons évalué le rôle dans la différenciation des CSM et comparé l’expression dans les tissus articulaires de patients arthrosiques et de sujets sains.Nous montrons l’importance du TGFβI dans la régulation des processus de différenciation osseuse et chondrogénique des CSM. Nous mettons également en évidence une dérégulation au niveau transcriptionnel et protéique de ce facteur dans le cartilage, l’os sous-chondral ainsi que les CSM de patients arthrosiques. En testant son implication dans l’effet thérapeutique des CSM sur des modèles d’arthrose in vitro et in vivo, nous montrons que la diminution de son expression dans les CSM annule leur effet thérapeutique dans les modèles d’arthrose. Cet effet chondroprotecteur du TGFβI est associé à une inhibition du remodelage osseux et de la calcification des tissus mous articulaires.L’ensemble de nos résultats démontrent l’importance de la régulation de la voie TGFβ, et plus particulièrement du TGFβI, dans l’homéostasie articulaire. En parallèle, nos travaux illustrent le rôle de ce facteur dans l’effet thérapeutique des CSM, et suggèrent que l’altération de son expression dans les CSM de patients arthrosiques soit à l’origine d’une diminution de leur potentiel régénératif. / Osteoarthritis (OA) is the most common form of joint diseases without curative treatments. The disease is mainly characterized by the degradation of articular cartilage which is associated with other pathological changes in joint tissues. In this context, mesenchymal stem cells (MSC) have demonstrated a therapeutic effect. In order to identify new mediators involved in articular homeostasis, we analyzed MSC secretome, focusing on the transforming growth factor β (TGFβ) members, a central pathway dysregulated in OA.This approach allows us to identify the TGFβ induced protein (TGFβI or βIGH3). In the present study, we evaluated its role in the differentiation of MSC and compared its expression in articular tissues from OA patients and healthy donors.We highlight the importance of TGFβI in the regulation of differentiation of MSC towards bone and cartilage. We also demonstrate its dysregulation at both transcript and protein level in cartilage, bone and MSC from OA patients. We then evaluated its role in the therapeutic effect of MSC in vitro and in vivo and demonstrated that its decreased expression in MSC is associated with a loss of their therapeutic effect in OA models. The chondroprotective effect of TGFβI is associated with an inhibition of bone remodeling and calcification of soft articular tissues.Together, our results highlight the importance of the TGFβ pathway, and specially of TGFβI regulation, in joint homeostasis. Moreover, our work demonstrates its role in the therapeutic effect of MSC, suggesting that its dysregulation in OA MSC could lead to a decreased regenerative potential.
|
172 |
Réalisation et étude de substrates de rigidité modulable et de dispositifs intégrables pour l'ingénierie cellulaire et tissulaire / Realization and study of substrates with modular rigidity and integratable devices for cellular and tissue engineeringWang, Bin 26 September 2017 (has links)
L’objectif de ce travail de thèse est de réaliser des substrats et des dispositifs de culture cellulaire pour des applications à grande échelle. En utilisant à la fois des techniques de lithographie conventionnelles et non conventionnelles, nous avons d'abord fabriqué des matrices denses de piliers élastomère avec un gradient de hauteur pour les études de migration cellulaire et nous avons observé un allongement cellulaire remarquable et une migration cellulaire dirigée, tout dépendant du gradient de rigidité. Les micropiliers élastomères pourraient également être organisés en gradient de hauteur oscillant, montrant des comportements cellulaire similaires. Sur la base d'une approche biomimétique, nous avons produit des nanofibres à deux côtés d'une membrane avec des trous traversants pour l’adhésion et la migration tridimensionnelles de cellules. Nos résultats ont montré qu'un tel substrat peut favoriser l'infiltration et la prolifération des cellules dans un environnement 3D. Enfin, nous avons utilisé des réseaux micropiliers de différentes hauteurs en tant que substrat de rigidité contrôlée pour la différenciation des cardiomyocytes à partir de cellules souches pluripotentes l'homme. À l'aide d'un stencil en élastomère, des embryons uniformes pourraient être obtenus et dérivés vers les cellules de ciblage sur le substrat de différentes rigidité, montrant clairement une dépendance de rigidité des substrats. / The purpose of this work is to develop manufacturable cell culture substrates and devices for large scale applications. By using both conventional and non-conventional lithography techniques, we firstly fabricated dense elastomer pillar arrays with height gradient for cell migration studies and we observed remarkable cell elongation and directed cell migration, all depending on the strength of the stiffness gradient. Elastomer micropillars could also be organized in ripple-like height gradient patterns, showing similar cell behaviors. Based on a biomimetic approach, we produced nanofibers on both side of a membrane with through holes for three-dimensional cell adhesion and migration. Our results showed that such a 3D scaffold can promote the cell infiltration and proliferation. Finally, we used micropillar arrays of different height as stiffness controlled substrate for cardiomyocytes differentiation from human induced pluripotent stem cells (hiPSCs). With the help of an elastomer stencil, uniform embryoids could be obtained and derived to the targeting cells on the substrate of different stiffness, showing a clear stiffness dependence of the substrates.
|
173 |
Fabrication et étude de scaffolds multidimensionnels pour l'ingénierie cellulaire et tissulaire / Fabrication and study of multidimensional scaffolds for cellular and tissue engineeringTu, Xiaolong 13 October 2017 (has links)
L'objectif de ce travail est de développer une méthode d'ingénierie de scaffolds multidimensionnels pour la culture cellulaire et l’ingénierie tissulaire. Nous avons d'abord appliqué une technique d'impression 3D pour produire un scaffold en PEGDA et ensuite rempli l'espace libre du scaffold avec du gel de gélatine. Après la congélation et le séchage, un scaffold hybride en PEGDA avec des structures fine de gélatine a été obtenu, qui a été ensuite valisé par la culture et la différenciation des cellules progénitrices neuronales. Pour intégrer plus facilement dans un dispositif microfluidique, nous avons également conçu un scaffold 2D sous forme d’une couche mince de nid d'abeilles de PEGDA rempli des structures poreuses auto-assemblée de PCL. Ce scaffold 2D a été utilisé pour la culture cellulaire et la transfection des gènes, montrant des avantages par rapport aux méthodes classiques en termes d'absorption des nutriments et des facteurs solubles. Enfin, nous avons fabriqué un scaffold mous constitué d’une couche mince de nid d'abeilles en élastomère de PDMS et d’une monocouche de nanofibres de gélatine pour faciliter la différenciation cardiaque à partir des cellules souches pluripotentes humaine. Comme prévu, nous avons réalisé une génération cardiaque avec une contraction plus forte et une homogénéité de battement plus élevée par rapport aux approches classiques. Tous ensemble, nous avons démontré l'utilité des scaffolds hybrides pour l'ingénierie micro-tissulaire qui pourraient avoir un impact sur les études futures dans les domaines de l'ingénierie tissulaire, du criblage des médicaments et de la médecine régénératrice. / The objective of this work is to develop a method of engineering multi-dimensional scaffolds for cell culture and tissue formation. We firstly applied a 3D printing technique to produce the designed frame in PEGDA and then filled the free-space of the frame with a gelatin gel. After freezing and drying, a hybrid 3D scaffold made of gelatin porous structures and PEDGA backbone was obtained, which supported culture and differentiation of neural progenitor cells. To more easily integrate into a microfluidic device, we also designed a 2D scaffold in form of a thin layer of honeycomb frame of PEGDA and self-assembled porous structure of PCL. Such a patch form scaffold could be used for cell culture and gene transfection, showing advantages over the conventional methods in terms of nutrients and soluble factors uptake. Finally, we fabricated a soft patch made of an elastic frame in PDMS and a monolayer of gelatin nanofibers to facilitate cardiac differentiation from human induced pluripotent stem cells. As expected, we achieved a cardiac generation with higher contraction strength and a higher beating homogeneity comparing to the conventional approaches. All together, we demonstrated the utility of hybrid scaffolds for micro-tissue engineering which could impact the future studies in the fields of tissue engineering, drug screening and regenerative medicine.
|
174 |
Optimisation de protocoles de reprogrammation de cellules somatiques humaines en cellules souches à pluripotence induite (hiPSC) / Optimization of reprogramming protocols of human somatic cells into induced pluripotent stem cells (hiPSC)Jung, Laura 10 September 2013 (has links)
En 2006 et 2007, les équipes de Yamanaka et Thomson réalisent la reprogrammation de cellules somatiques murines et humaines en cellules souches pluripotentes à partir de deux cocktails de gènes : OCT4, SOX2, KLF4, cMYC (OSKM) et OCT4, NANOG, SOX2, LIN28 (ONSL). Les cellules souches à pluripotence induite générées (iPS) partagent les propriétés fondamentales des cellules souches embryonnaires : l’auto-renouvèlement, le maintien de la pluripotence et la capacité de différenciation. Ces cellules laissent entrevoir des applications considérables tant en recherche fondamentale (compréhension des mécanismes de développement et de pathologies, développement de modèles) qu’en recherche appliquée (médecine régénérative, toxicologie prédictive, criblage de médicaments). L’avantage majeur de l’utilisation des iPS réside dans leur origine non embryonnaire. Les contraintes d’ordre éthique sont écartées et une grande diversité de types cellulaires à partir de n’importe quel donneur a priori est disponible pour une reprogrammation. L’établissement d’une banque d’hiPS issus de donneurs sains ou de patients, serait d’une grande utilité pour la communauté scientifique se consacrant à l’étude des mécanismes physiopathologiques ou de développement et une source considérable pour la dérivation à des fins de thérapie cellulaire. Dans le but de mettre en place une telle banque, nous avons développé avec la société Vectalys des rétrovirus de reprogrammation contenant les cassettes polycistroniques ONSL et OSKM. Dans un premier temps, nous avons établi un protocole de reprogrammation robuste à l’aide des rétrovirus RV-ONSL. Nous avons ensuite mis en évidence la synergie entre les facteurs ONSL et OSKM, la combinaison équimolaire de RV-ONSL et RV-OSKM permettant d’atteindre 2% d’efficacité de reprogrammation. Nous avons également entrepris la reprogrammation propre par transfections d’ARNm polycistroniques ONSL et OKM mettant à profit cette incroyable synergie. / In 2006 and 2007, Yamanaka and Thomson teams achieved the reprogramming of mouse and human somatic cells into pluripotent stem cells through the transfection of two cocktails of genes: OCT4, SOX2, KLF4, cMYC (OSKM) and OCT4, NANOG, SOX2, LIN28 (ONSL). The generated cells, called induced Pluripotent Stem Cells (iPSC) share the same fundamental properties of ESC : self-renewing, pluripotency maintenance and capacity of differentiation into the three germ layers and suggest the same application potential in basic research (developmental and epigenetic biology) as well as in therapy (regenerative medicine, disease modeling for drug development). One of the major advantages of iPSC lies in their non-embryonic origin. Indeed, the use of iPSC resolves the ethical constraints and offers the possibility to work with extensive cell types directly from the patient to treat. Stéphane Viville’s research team aims to develop a hiPSC bank from patient suffering from genetic or other diseases which will be available for the scientific community. We are experienced in human primary fibroblasts reprogramming especially with the use of two polycistronic cassettes: ONSL encoding Thomson’s cocktail and OSKM encoding Yamanaka’s cocktail separated with 2A peptides. Thanks to the combination of RV-ONSL and RV-OSKM retroviral vectors (developed with Vectalys) we are yielding more than 2% of reprogramming efficiency in a highly reproducible way. Indeed, we demonstrated the reprogramming synergy of ONSL and OSKM combination. We are now focusing our effort on non-integrative strategies (ie mRNA) which are more appropriate for clinical usage.
|
175 |
Etude du rôle des régulateurs Post-transcriptionnels Pumilio dans les cellules souches hématopoïétiques humaines / Study of the role of Pumilio post-transcriptional regulators in human hematopoietic stem cellsMiri Nezhad, Ayda 25 March 2013 (has links)
Des mises au point de nouvelles stratégies d’expansion ex vivo des cellules souches hématopoïétiques (CSH) sont développées depuis quelques années afin de pallier le problème du faible nombre de ces cellules pour le traitement des hémopathies ou de certaines tumeurs solides. Notre équipe avait établi un modèle d’expansion des CSH via leur exposition aux homéoprotéines HOXB4 ou HOXC4. L’étude comparative des transcriptomes de ces cellules a permis l’identification de cibles précoces des facteurs HOXB4/C4 parmi lesquels les gènes codant les régulateurs post-transcriptionnels Pumilio (de la famille PUF). Les facteurs PUF sont impliqués en particulier dans le maintien des cellules souches germinales dans différents modèles animaux, chez les vertébrés ou les invertébrés. Cependant, le rôle des facteurs PUF humains (hPum1 et hPum2) dans les cellules hématopoïétiques humaines n’avait jamais été étudié.Mon travail de thèse exposé ici a consisté, d’une part, en l’étude du profil d’expression des facteurs hPum1 et hPum2 dans différentes lignées hématopoïétiques et au cours de l’hématopoïèse humaine, démontrant une expression plus importante de ces gènes dans les cellules les plus immatures ainsi que dans les progéniteurs dont la prolifération est activée. D’autre part, l’étude fonctionnelle des facteurs hPum1 et hPum2 a mis en évidence leur implication dans l’expansion et la survie des cellules CD34+. L’inhibition spécifique de hPum1 ou de hPum2 in vitro par des shARN, induit une diminution significative du nombre absolu des cellules ainsi qu’une augmentation de leur apoptose. Cela corrèle avec une accumulation des CSH en phase G0-G1 du cycle cellulaire. Par ailleurs, la répression de l’expression de hPum1 ou de hPum2 diminue la reconstitution de l’hématopoïèse in vivo dans des souris immunodéficientes NOD-SCID-γC-/-. L’analyse des ARNm cibles des facteurs Pum par une étude comparative des transcriptomes des CSH transduites ou non par des vecteurs lentiviraux contenant des shARN hPum1 ou hPum2, a permis l’identification de nombreux gènes impliqués dans le contrôle de la croissance, de la survie ou du cycle cellulaire. L’ensemble de nos résultats montre l’indispensable implication des facteurs Pumilio dans le maintien de l’état souche, la prolifération et la survie des CSH humaines. Nous avons démarré des études fonctionnelles dans les cellules leucémiques myéloïdes primaires afin d’évaluer le rôle éventuel des facteurs Pumilio dans la leucémogenèse. Ultérieurement, la caractérisation de hPum1 et hPum2 comme de nouvelles molécules impliquées dans l’expansion des CSH permettra d’envisager leur étude dans la perspective de nouvelles stratégies thérapeutiques. / Ex vivo expansion of hematopoietic stem cells (HSCs) could improve new therapeutic strategies for the treatment of hematopoietic malignancies and solid tumors. Our team had developed an original method to expand human HSCs, consisting in the transfer into these cells of active HOXB4 or HOXC4 homeoproteins. The comparative transcriptomic analysis of CD34+ cells exposed or not to HOXB4 or HOXC4 proteins induced over-expression of Pumilio (PUF) genes. PUF proteins are post-transcriptional regulators of gene expression. They are involved in different biological functions among which the maintenance of stem cells. However, the function of human PUF factors (hPum1 and hPum2) in hematopoietic stem cells has never been investigated. The work that I developed during my thesis first consisted in analyzing the expression of PUF factors in different hematopoietic cell lines and during human hematopoiesis. The results highlighted a high expression of the hPum1 en hPum2 genes in the most immature cells and in the proliferating active progenitors. The study of human PUF factors by inducing their inhibition using specific shRNAs revealed their involvement in proliferation and survival of CD34+ cells. In vitro, inhibition of hPum1 or hPum2 decreases the expansion of human HSCs and increases cell apoptosis. The hPum1 or hPum2 repression also increases the number of HSCs in G0-G1 phase of the cell cycle. Moreover, the inhibition of hPum1 or hPum2 reduces the capacity of human HSCs to reconstitute in vivo hematopoiesis of immunodeficient NOD-SCID-γC-/- mice. The identification of PUF target mRNAs by a comparative transcriptomic analysis of human HSCs infected or not with lentiviral vectors containing hPum1/2 shRNAs, revealed a large number of genes involved in the regulation of cell growth, survival or cell cycle. On the whole, our results demonstrate the involvement of Pumilio factors in stemness maintenance, expansion and survival of human HSCs. Functional studies in primary myeloid leukemic cells are in progress to assess the potential role of the Pum factors in the leukemogenic process. Later on, identification of Pumilio factors as new regulators of HSCs expansion will allow consider them as new tools for therapeutic perspectives.
|
176 |
Physiopathologie de l'infection par le cytomégalovirus sur les progéniteurs neuraux humains / Molecular physiopathology of cytomegalovirus-infected human neural progenitorsRolland, Maude 05 December 2016 (has links)
L'infection congénitale par le cytomégalovirus humain (HCMV) est la première cause de séquelles acquises du système nerveux central (CNS). Elle est responsable de surdités neurosensorielles, de paralysies cérébrales ou d'anomalies neuro-développementales graves (0,1% des naissances) telles que des microcéphalies ou des anomalies de gyration. Pour étudier les effets de l'infection par le HCMV sur le développement cérébral, nous utilisons des cellules souches neurales (NSC) humaines dérivées de cellules souches embryonnaires (ES), ainsi que des coupes histologiques de cerveaux fœtaux infectés. Notre travail a porté sur l'analyse des conséquences de l'infection sur un facteur de transcription essentiel lors du développement cérébral, le Peroxisome Proliferator-Activated Receptor gamma (PPARg). Nous avons démontré que l'infection par le HCMV diminuait la neuronogénèse, en association avec une augmentation des niveaux d'expression et d'activité de PPARg. En accord avec ces résultats, nous avons montré que le niveau d'expression de l'acide 9-hydroxyoctadecadienoique (9-HODE), un agoniste connu de PPARg était augmenté dans les NSC infectées. En outre, l'ajout de 9-HODE dans les NSC reproduit l'effet de l'infection sur PPARg conduisant à une augmentation du nombre de cellules positives pour l'antigène viral IE parmi les NSC infectées. De plus, nous avons démontré que : (1) l'activation pharmacologique ou l'expression ectopique de PPARg suffisent pour perturber la neuronogénèse de NSC non infectées ; (2) le traitement de NSC non infectées par le 9-HODE diminue la différenciation des NSC ; (3) le traitement de NSC infectées par du T0070907, un inhibiteur de PPARg restaure un taux normal de différenciation. Le rôle crucial de PPARg dans les pathologies fœtales liées à l'infection a été souligné par la mise en évidence de sa translocation nucléaire au sein des zones germinatives de cerveaux fœtaux infectés congénitalement par le HCMV (N=20), mais pas dans les cas contrôles. Nous avons également identifié un des gènes cibles de PPARg dans le cerveau infecté: LIS1, le gène de la lissencéphalie classique, dont l'expression est également augmentée dans les NSC infectées, de façon dépendante de l'activité de PPARg. Nous avons mis en évidence que l'expression de LIS1 était augmentée de façon massive dans les cerveaux fœtaux infectés congénitalement par le HCMV (N=6) par rapport aux cas contrôles (N=3). Ceci pourrait jouer un rôle central dans la physiopathologie, car il est connu que toute perturbation de l'expression de LIS1 conduit à des anomalies importantes de la migration neurale et au développement d'un phénotype dit "lissencephaly-like". L'ensemble de nos données révèle le rôle clé de PPARg dans la neuronogénèse et la pathophysiologie de l'infection congénitale par le HCMV. Elles ouvrent la voie à une meilleure compréhension des mécanismes régissant les phénotypes pathologiques, notamment concernant le rôle de LIS1 dans les anomalies de la migration neurale. / Congenital infection by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae of the central nervous system, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities (0.1 % of all births). To gain insight on the impact of HCMV on neuronal development, we used both neural stem cells from human embryonic stem cells (NSC) and brain sections from infected fetuses. We investigated the outcome of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARg, a transcription factor critical in the developing brain. We observed that HCMV infection dramatically impaired the rate of neuronogenesis and strongly increased PPARg levels and activity. Consistent with these findings, levels of 9-hydroxyoctadecadienoic acid (9-HODE), a known PPARg agonist, were significantly increased in infected NSCs. Likewise, exposure of uninfected NSCs to 9-HODE recapitulated the effect of infection on PPARg activity. It also increased the rate of cells expressing the IE antigen in HCMV-infected NSCs. Further, we demonstrated that (1) pharmacological activation of ectopically expressed PPARg was sufficient to induce impaired neuronogenesis of uninfected NSCs, (2) treatment of uninfected NSCs with 9-HODE impaired NSC differentiation and (3) treatment of HCMV infected NSCs with the PPARg inhibitor T0070907 restored a normal rate of differentiation. The role of PPARg in the disease phenotype was strongly supported by the immunodetection of nuclear PPARg in brain germinative zones of congenitally infected fetuses (N=20), but not in control samples. We also identified LIS1 as one of the target genes for PPAR??in the infected brain. Levels of LIS1, the gene of classical lissencephaly, were strongly increased in infected NSC, presumably resulting from increased PPAR? activity. The relevance of this finding was further supported by our demonstration of a massive increase in the immunodetection in LIS1 fetal brains congenitally infected with HCMV (N = 6), relative to control cases (N = 3). Indeed, it is well known that overexpression of LIS1 is responsible for significant abnormalities of neural migration and development of a lissencephaly-like phenotype. Altogether, our findings reveal a key role for PPARg in neurogenesis and in the pathophysiology of HCMV congenital infection. They also pave the way to the identification of PPARg gene targets in the infected brain.
|
177 |
Étude de l'impact de l'activité traductionnelle sur le phénotype tumoral dans le cancer du côlon / Impact of translational activity on colon cancer cell phenotypeYazdani, Laura 22 September 2017 (has links)
Avec près d’un million de nouveaux cas par an à travers le monde, le cancer colorectal est un problème de santé publique majeur. Il est la 2ème cause de mortalité par cancer en France, ce fort taux de mortalité étant relié à un pourcentage important de récidives et de métastases. L’hétérogénéité tumorale, la dissémination, la résistance aux traitements et la récidive seraient notamment dues à une population particulière de cellules tumorales appelées cellules souches cancéreuses (CSC). Ces cellules sont dotées d’une capacité d’adaptation extraordinaire et la compréhension des mécanismes moléculaires sous-tendant cette plasticité cellulaire est un objectif majeur pour concevoir de nouvelles stratégies thérapeutiques les ciblant spécifiquement. La synthèse protéique joue un rôle clé dans la carcinogénèse : d’une part, une synthèse protéique élevée est nécessaire à la prolifération des cellules tumorales, d’autre part, la traduction sélective favorise l’expression de protéines pro-oncogéniques. Considéré pendant des années comme un acteur passif de la traduction, le ribosome semblerait jouer un rôle majeur dans la régulation de la synthèse protéique. En effet, des études récentes ont montré que la composition du ribosome était « flexible » et permettrait de favoriser la traduction de certains ARN messager (ARNm). De plus, l’expression de certaines protéines ribosomiques (PR) varie entre le tissu sain et le tissu cancéreux, parfois même entre la tumeur initiale et la métastase. Ce projet vise à déterminer de quelle manière le contrôle traductionnel intervient dans plusieurs étapes clé du cancer colorectal, en se focalisant tout particulièrement sur l’acquisition ou la perte de propriétés propres aux CSC. Cette étude permettra de mieux comprendre les mécanismes moléculaires exploités par les CSC afin de résister aux traitements et s’adapter à leur environnement. De plus, ce projet pourrait mettre en évidence un rôle exercé par certaines protéines ribosomiques dans le contrôle traductionnel, à travers la filtration des ARNm par le ribosome. A plus long terme, il pourrait déboucher sur le développement de nouveaux traitements permettant de cibler spécifiquement la machinerie traductionnelle des CSC. / Despite significant advances in diagnostics and treatment, colorectal cancer (CRC) remains a major cause of mortality worldwide and occurrence of metastasis represents the primary cause of death. Metastasis process, chemoresistance and tumor recurrence is powered by a minor subpopulation of tumor cells endowed with self‐renewal and multi‐lineage differentiation ability: the cancer stem cells (CSC).Translation of mRNA into protein is the final step in gene-expression process, which mediates the formation of the translatome from genomic information. Several mechanisms, such as signaling pathways, translation factors availability, alternative open reading frame and alternative initiation pathways account for real time translatome remodeling. Moreover, an emerging concept suggests that ribosome is heterogeneous and can be "reprogrammed". These "specialized ribosomes" would preferentially engage certain mRNA at the expense of others and therefore drive cell phenotype and favor cell adaptation. Many studies have correlated deregulation of both translation machinery composition and activity with cancer initiation and evolution. From that perspective, CSC might well represent a perfect model to test whether the translation apparatus takes an active part in tumor initiation, progression, and metastasis. Our goal is to demonstrate that protein synthesis is differentially regulated depending on cancer cell subpopulation and determine whether ribosomal heterogeneity could influence tumoral evolution and plasticity. In a long run, we envision the development of novel therapies based on specific targeting of translational control in CSC.
|
178 |
Pathologies des hélicases et vieillissement précoce : modèle d'étude par dérivation de cellules souches pluripotentes induites (iPS) / Pathologies of helicases and premature aging : study by derivation of induced pluripotent stem cellsGatinois, Vincent 27 November 2017 (has links)
Les hélicases sont des enzymes ubiquitaires catalysant la séparation de l’ADN double-brin et impliquées dans la réplication, la réparation de l’ADN et dans le maintien des télomères. Chez l’Homme, 3 hélicases présentent des mutations responsables de syndromes cliniques : WRN pour le syndrome de Werner, BLM pour le syndrome de Bloom et RECQL4 pour le syndrome de Rothmund-Thomson. Tous ces syndromes associent un vieillissement pathologique accéléré à un risque accru de développement de cancer notamment par une augmentation de l’instabilité génomique. Les connaissances sur les mécanismes moléculaires et cellulaires impliqués dans ces maladies du vieillissement sont encore très partielles, notamment en ce qui concerne le lien entre l’instabilité génomique et le vieillissement. Au cours de ce projet, l'utilisation de prélèvements sanguins et cutanés de patients atteints de ces pathologies rares a permis de générer des modèles de cellules souches pluripotentes induites (iPS). Ces cellules présentent l’avantage de s’auto-renouveler et de pouvoir théoriquement se différencier dans tous les types cellulaires d’un organisme. Parallèlement, un témoin de sénescence a été généré de la même manière avec des cellules d’un patient souffrant du syndrome de la progéria de Hutchinson-Gilford. Après caractérisation de ces cellules, nous avons identifié des ensembles de phénotypes cellulaires et moléculaires dans le but de récapituler in vitro les pathologies. Nous avons également engagé les cellules iPS dans des voies de différenciation proches des tissus atteints dans les pathologies in vivo. Enfin, nous avons étudié la stabilité génomique de ces lignées dans les différents types cellulaires cultivés. Ainsi nous avons observé que la lignée Bloom est le siège de recombinaisons particulièrement fréquentes et est caractérisée par une instabilité du génome dans tous les types cellulaires étudiés. Egalement, la lignée Werner semblerait se distinguer par une instabilité de ses télomères. Enfin, l’ensemble des lignées des pathologies du vieillissement prématuré présenterait un défaut mitochondrial. / Helicases process the double-stranded DNA dissociation. They are involved in replication, DNA repair and maintenance of telomeres. In human, 3 helicases display mutations responsible for clinical syndromes: WRN for the Werner syndrome, BLM for the Bloom syndrome and RECQL4 for the Rothmund-Thomson syndrome. All these diseases cause premature ageing and high risk of cancer. Molecular and cellular mechanisms involved in these diseases are not well defined. Particularly, little is known concerning the link between genomic instability and ageing. During this project, we used blood samples and skin biopsies of affected patients to generate models by reprogramming cells to induced pluripotent stem cells (iPSCs). These cells have the advantage of self-renewing and theoretically could be differentiated in all cell types. At the same time, an iPSC senescence control was performed from cells of a Hutchinson-Gilford Progeria syndrome patient. iPSCs were characterized for pluripotency. In the aim of recapitulate these pathologies in vitro, we identified sets of cellular and molecular phenotypes. We also engaged differentiation of iPSCs in cell pathways closed to the affected tissues in vivo. Finally, we studied the genomic stability of iPSCs and derived cells. We observed that Bloom cells are susceptible to frequent recombinations and are characterized by a genome instability through all studied cell types. Werner cells showed an instability of telomeres length. Finally, all premature ageing diseases displayed mitochondrial defects.
|
179 |
Différenciation des cellules souches embryonnaires humaines en cellules épithéliales respiratoires. / Differentiation of human embryonic stem cells in airway epithelial cells.Navarre, Anaïs 06 December 2016 (has links)
Les cellules souches embryonnaires humaines (CSEh), par leurs caractéristiques de pluripotence et de prolifération illimitée, représentent une alternative à l’utilisation de cellules issues de patients : leur différenciation en cellules épithéliales respiratoires pourrait permettre la production illimitée d’épithélium pour le criblage de molécules thérapeutiques.L’objectif de notre travail a été de mettre au point un protocole simple et financièrement acceptable afin de différencier les CSEh en cellules épithéliales de voies aériennes et de produire un épithélium complet. Pour ce faire, nous avons suivi deux voies potentielles de différenciation des CSEh : une voie passant par la production d’endoderme définitif, feuillet embryonnaire à l’origine de l’épithélium respiratoire, et une voie passant par un progéniteur potentiel commun aux lignages respiratoire et épidermique. Différentes combinaisons de protéines matricielles, d’inducteur de différenciation, de temps d’induction et de milieux de culture ont été testées. Nos résultats montrent que la culture des CSEh sur cellules nourricières STO dans un milieu optimisé pour les cellules bronchiques, le BEGM, en présence de Bone Morphenetic Protein 4 et d’acide rétinoïque pendant 6 jours puis en BEGM seul pendant 30 jours conduit à l’obtention de plus de 76% de progéniteurs épithéliaux respiratoires exprimant des marqueurs spécifiques tels que CK13, P63, CXCR4, FOXA2, SOX17, NKX2.1, SOX2 et SOX9. Le passage par la production de cellules de l’endoderme définitif n’a pas permis d’améliorer l’efficacité de ce protocole. L’isolement de ces progéniteurs et la reconstitution d’un épithélium complet restent à mettre au point. / Human embryonic stem cells (hESCs), for to their characteristics of pluripotency and unlimited proliferation, represent an alternative to the use of primary cells from patients: their commitment and differentiation into airway epithelial cells could help to overcome the lack of patient’s cells and could allow the unlimited production of epithelium for the screening of therapeutic molecules.The objective of our work was to develop a simple and financially acceptable protocol to differentiate hESCs into airway epithelial cells and to produce a complete epithelium. To do this, we followed two potential routes of hESC differentiation: a route through the production of definitive endoderm, the germ layer at the origin of the respiratory epithelium, and a route through a common potential progenitor to the respiratory and epidermal lineages. Various combinations of matrix proteins, differentiation inducers, induction time and culture media were tested.Our results show that hESC culture on STO feeder cells in an optimized medium for human bronchial epithelial cells, the BEGM medium, in the presence of Bone Morphenetic Protein 4 and retinoic acid for 6 days then in BEGM medium alone for 30 supplementary days led to the differentiation of more than 76% of respiratory epithelial progenitors expressing specific markers such as CK13, P63, CXCR4, FOXA2, SOX17, NKX2.1, SOX2 and SOX9. The application of these culture conditions to definitive endoderm cells, previously obtained from hESC, failed to improve the effectiveness of this protocol. The isolation of these progenitors and the reconstruction of a complete airway epithelium remain to be developed.
|
180 |
Contribution of U2AF1, NCBP1 and eIF4A3 to the control of pluripotency maintenance and cell fate determination / Contribution de U2AF1, NCBP1 et eIF4A3 dans le contrôle du maintien de la pluripotence et le devenir cellulaireLaaref, Abdelhamid Mahdi 24 November 2017 (has links)
Contribution de U2AF1, NCBP1 et eIF4A3 dans le contrôle du maintien de la pluripotence et le devenir cellulaire.Les mécanismes de maturation du transcrit primaire peuvent profondément affecter la diversité et la fonction des protéines produites à partir d’un gène unique dans le but de mettre en place un programme complexe impliqué dans le maintien de pluripotence et/ou l’initiation de la différenciation des cellules souches humaines. Les réseaux transcriptionnels régulant la pluripotence et la différenciation ont été intensément étudiés contrairement au rôle de l’épissage alternatif dans ces mécanismes, rôle qui pour le moment reste mal compris et pour lequel il n’existe que très peux d’exemples de groupes de gènes subissant un changement général de variant d’épissage aboutissant à la modification du devenir cellulaire. Notre objectif est d’identifier les composés essentiels du spliceosome qui sont impliqués dans le maintien de la pluripotence et la différenciation précoce dans les trois feuillets embryonnaires et d’explorer leurs rôles dans ces processus. Via l’analyse de données de séquençage d’ARN nous avons identifié plusieurs facteurs d’épissage différentiellement exprimés entre les cellules souches et les trois feuillets embryonnaires. Parmi ces facteurs nous focaliserons notre étude sur les facteurs préférentiellement surexprimés dans les cellules souches, qui par conséquent devraient y jouer un rôle primordial. Les candidats sélectionnés, U2AF1, NCBP1 et eIF4A3 ont été déplétés dans des cellules souches en utilisant un système shRNA inductible puis une analyse de séquençage ARN à haut débit a été effectuée pour comprendre les changements du transcriptome induits par ces déplétions. La déplétion d’U2AF1 entraine un changement majeur de l’expression de gènes impliqués dans le développement alors que la déplétion de NCBP1 et eIF4A3 entraine un changement d’expression de gènes impliqués dans le métabolisme, le remodelage de la chromatine et le développement. Des analyses complémentaires ont permis de mettre en lumière une régulation transcriptionnelle et post-transcriptionnelle des gènes différentiellement exprimés dans les conditions étudiées. L’épissage alternatif a pour ça part été modifié par les trois déplétions de manière individuelle. Un programme d’épissage tissu spécifique a été associé à chaque candidat et les conséquences de chaque programme seront décrites au niveau du contrôle qualité de l’ARNm et de la synthèse protéique.Nos résultats construisent une nouvelle vision concernant le rôle des composés essentiels du spliceosome dans le contrôle du devenir cellulaire à travers la modulation de l’épissage alternatif. Cet apport ajoute une nouvelle variable au contrôle de l’expression des gènes et permettra de mieux comprendre les mécanismes du développement précoce et de la diversité tissulaire. / Contribution of U2AF1, NCBP1 and eIF4A3 to the control of pluripotency maintenance and cell fate determination.Alternative pathways for processing the primary transcript can profoundly affect the diversity and function of the protein products that are generated from a single gene to set up complex programs involved in pluripotency and/or differentiation of human Embryonic Stem Cells (hESCs). While transcriptional networks regulating pluripotency and differentiation has been intensively studied, the role of Alternative Splicing (AS) in this process is not yet completely understood and clear examples of concerted switching of multiple genes from one isoform to another have not been demonstrated. Our goal is to identify Core Spliceosomal Factors (CSF), involved in the control of pluripotency maintenance, early differentiation into the three germ layers, and to explore their role in these processes. By RNA-Seq data analysis, we have identified several splicing factors that are differentially expressed between pluripotent stem cells and the three of the germ layers. Among these identified candidates, we focused on the factors that are more highly expressed in pluripotent stem cells, thereby they play a specific role in pluripotency maintenance. The selected candidates, U2AF1, NCBP1 and eIF4A3 were depleted in pluripotent stem cells using inducible shRNA system and RNA-Seq analyzes have been performed to understand transcriptomic changes induced by these depletions. U2AF1 depletion causes a major switch of developmental genes expression, while NCBP1 and eIF4A3 depletions regulate the expression of genes involved in metabolism, chromatin remodeling and development. Further analysis highlighted a transcriptional and post-transcriptional regulation of differentially expressed genes. Alternative Splicing (AS) were shown to be affected by both depletions. A tissue specific AS program was associated to each of the candidates and the consequences of these changes on mRNA quality control and protein synthesis will be described.Our results build a new idea regarding the role of Core Spliceosomal Factors in cell fate control trough the modulation of AS. This knowledge adds a new layer of gene expression control and will allow a better understanding of early development mechanisms and tissue diversity.
|
Page generated in 0.0342 seconds