• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 12
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étude fondamentale du traitement du bois dans les plasmas N2-O2

Prégent, Julien 09 1900 (has links)
No description available.
12

Caractérisation expérimentale et optimisation d'une source plasma à pression atmosphérique couplée à un spectromètre de masse à temps de vol / Experimental characterization and optimization of an atmospheric pressure plasma jet source coupled with a time-of-flight mass spectrometer

Chauvet, Laura 08 June 2016 (has links)
Depuis le début des années 2000, de nouvelles sources plasma à pression atmosphérique ont été développées. Ces dernière permettent la propagation d'un jet de plasma froid (plasma hors équilibre thermodynamique) à l'air. Du fait de leurs intéressantes propriétés (en terme d'espèces réactives, de basse température et de leurs facultés à s'étendre dans l'air), ils sont étudiés dans une large gamme d'applications parmi lesquelles la médecine, la décontamination, la synthèse de nanoparticules ou encore la chimie analytique. Certains jets sont générés par des sources basées sur des configurations de décharges à barrières diélectriques (DBD), c'est le cas de cette étude. Ce travail propose la caractérisation expérimentale d'un jet de plasma ayant comme objectif d'être couplé à un spectromètre de masse à temps de vol (TOF-MS) dans le cadre d'une application à la chimie analytique dans les conditions ambiantes. La source se compose d'un diélectrique, dans lequel le gaz de décharge est injecté, entouré par deux électrodes alimentées par un signal de tension alternatif carré. Les diagnostics utilisés lors de la caractérisation de la décharge sont principalement optiques. Il s'agit de spectroscopie d'émission optique ainsi que d'imagerie réalisée avec une caméra ICCD, dans un premier temps employée sans filtre puis avec des filtres passe-bandes. Le spectromètre de masse a également été utilisé comme outil de diagnostic afin d'identifier les ions créés par l'interaction du plasma dans l'air. Le jet a été étudié pour différentes conditions de tensions appliquées et de débits de gaz, et ce pour deux gaz de décharge, le néon et l'hélium. Les mécanismes de propagation du jet dans l'air ont été étudiés indépendamment pour les deux alternances de la tension, mettant en évidence la propagation de streamers, respectivement positif et négatif, ainsi que la présence d'un canal ionisé persistant d'un streamer à l'autre. Les distributions spatio-temporelles des émissions des principales espèces radiatives ont été étudiées lors de la propagation de chacun des streamers permettant d'observer et d'identifier plusieurs mécanismes intervenant dans le peuplement des états supérieurs de ces espèces. Ces résultats ont révélé que les mécanismes mis en jeu diffèrent pour certaines espèces en fonction de l'alternance de la tension. Il est également apparu que les mécanismes intervenant dans les décharges initiées avec le néon ou l'hélium étaient globalement semblables mais différaient tout de même légèrement du fait de la différence d'énergie entre les états métastables du néon et de l'hélium. Afin d'évaluer les capacités d'ionisation de la source dans le cadre de son application à la chimie analytique dans les conditions ambiantes, les ions créés par le plasma dans l'air ont été détectés et identifiés à l'aide du TOF-MS puis différents échantillons volatils ont été testés. Les résultats ont mis en évidence que le jet initié avec le néon est aussi efficace que celui initié avec l'hélium pour ioniser ces échantillons. Une étude semi-quantitative d'un des échantillons volatils a également été réalisée. / Since the beginning of the 2000's, new atmospheric pressure plasma sources have been developed. They allow the propagation of a cold plasma jet or plasma plume in open air (non-equilibrium plasma jets). Their particular properties (in terms of reactive species, low temperature and ability to extend in open air) make them useful tools in a large range of research fields such as biomedicine, decontamination and sterilization, nanomaterial synthesis and analytical chemistry. Among the plasma jet sources, some are based on a dielectric barrier discharge (DBD) configuration, which is the case of this study. This work proposes the experimental characterization of a plasma jet developed with the aim to be coupled with a Time-Of-Flight Mass Spectrometer (TOF-MS) in order to perform ambient chemical analysis. The source consists of a dielectric body surrounded by two electrodes. The source is fed by a discharge gas (helium or neon) and powered by a square alternative voltage. The main diagnostics are optical emission spectroscopy and imaging with an ICCD camera. The mass spectrometer has also been used as a diagnostic tool to identify the ions created by the jet interacting with the species present in ambient air. The jet has been studied for two gases, neon and helium, with different experimental conditions of flow rates and applied voltages. The mechanisms of the jet propagation in open air have been studied for both half periods of the voltage (positive and negative), where the passage between positive and negative streamers transited through a remnant ionized channel. The spatial and temporal distributions of the main radiative species were investigated independently for each streamer allowing the observation and identification of mechanisms responsible of the populating of the upper level of observed emissions. It was shown that the mechanisms differ according to the half period studied and also the type of gases (neon and helium) due to the difference between the energies of their metastable states. In order to lay the groundwork in ambient analytical chemistry with the plasma source, its ionization capability was evaluated. Firstly, the ions created by the jet in open air were identified and analyzed with the TOF-MS, secondly the analysis was performed with different volatile samples. The results highlighted that the jet initiated with neon as discharge gas is able to ionize as well as the jet initiated with helium. A semi quantitative study of one of the volatile samples has also been realized.
13

Microdécharges dans l'heptane liquide : caractérisation et applications au traitement local des matériaux et à la synthèse de nanomatéraux / Microdischarges in heptane liquid : characterization and applications to local treatment of materials and synthesis of nanomaterials

Hamdan, Ahmad 22 October 2013 (has links)
Dans ce document, nous présentons nos travaux sur les décharges dans l'heptane. L'une des conditions retenue pour ces études est le choix d'un gap micrométrique. Nous avons travaillé avec des gaps compris entre 10 et 150 µm qui correspondent à des tensions de claquage comprises entre 1 et 15 kV. Du claquage jusqu'à 1 µs, la décharge a été caractérisée par ombroscopie et par spectroscopie d'émission optique (SEO). L'ombroscopie a montré que la vitesse de propagation de l'onde de choc et de la bulle est de l'ordre de 1200 m s-1 et 100 m s-1, respectivement. Au-delà de 1 µs, la dynamique de la bulle a été étudiée. Une nouvelle méthode est proposée pour estimer la pression à l'initiation de la décharge. La technique est basée sur la réponse d'une "bulle test" qui se trouve dans le champ acoustique d'une nouvelle décharge dont on veut connaître la pression. Elle est aux environs 80 bar. La SEO a montré une dominance des rayonnements continus pendant les premières 200 ns qui ont été attribués à la recombinaison électron-ion. Au-delà de 200 ns, les rayonnements continus s'effondrent et les raies d'émission deviennent dominantes. L'étude de l'élargissement de la raie H[alpha] de l'hydrogène a montré que la densité électronique peut atteindre 1019 cm-3. En ce qui concerne l'interaction plasma-surface, nous avons pu démontrer que l'impact créé est gouverné par la quantité de charges déposée. Sa morphologie est une résultante d'un équilibre entre la force due à la pression et la force de Marangoni. Nous avons étudié dans une dernière partie la synthèse des nanoparticules de platine (diamètre 5 nm) insérées dans une matrice de carbone hydrogéné présentant un ordre à courte distance / In this document, we report our work on discharges in heptane. One of the specific conditions selected is the choice of a micrometric gap distance. Typically, gaps were between 10 and 150 µm, corresponding to breakdown voltages between 1 and 15 kV. From breakdown up to 1 µs, the plasma discharge was characterized by shadowgraphy and optical emission spectroscopy (OES). Shadowgraphy results showed that the velocities of shock wave and bubble interface are about 1200 m s-1 and 100 m s-1, respectively. Beyond 1 µs, experimental and theoretical studies of the oscillatory dynamics of the bubble are made. Then, we proposed a new method to estimate the pressure at discharge breakdown. The technique is based on the response of a 'test bubble' present in the acoustic field of a new discharge whose pressure is to be known. It is estimated to be about 80 bar. OES, between 300 and 800 nm, showed a dominance of continuous radiations during the first 200 ns which were attributed to electron-ion recombination processes. Beyond 200 nm, continuous radiations collapse and then, the emission lines dominate the spectrum. The study of the H? line broadening showed that the electron density can reach 1019 cm-3. Regarding the interaction of the discharge with the electrode surfaces, we demonstrated that the diameter of the impact is governed by the quantity of charges deposited by the discharge. However, the impact morphology is determined by a balance between the force exerted by the plasma pressure and the Marangoni's force. Finally, we studied the possibility to synthesize platinum nanoparticles (5 nm in diameter) embedded in a matrix of hydrogenated carbon exhibiting a short range order
14

Étude fondamentale d’une Décharge à Barrière Diélectrique en N2 à la pression atmosphérique en régime de Townsend

de Mejanes, Naomi 08 1900 (has links)
L’objectif de ce mémoire de maîtrise est de caractériser une Décharge à Barrière Diélectrique (DBD) à la pression atmosphérique dans l’azote en régime homogène. L’objectif est d’une part de mettre en évidence les différents paramètres fondamentaux de ces décharges (température électronique, densité électronique, densité d’espèces excitées et métastables) mais aussi leurs évolutions spatio-temporelles. Dans ce contexte une électrode fractionnée a été réalisée afin de caractériser la décharge le long du flux de gaz et des mesures de spectroscopie d’émission optique résolues spatialement et temporellement ont été utilisées afin d’étudier la physico-chimie de ces décharges. Des variations de tension de claquage et de courant de décharge ont pu être observées entre l’entrée et la sortie du réacteur plasma. Cette variation a pu être reliée à une modification de la population de métastables d’azote N2(A) le long du flux de gaz. De plus, aucune variation significative de la température électronique n’a été relevé. Dans ce travail, des effets d’étalement de la décharge de Townsend ont été mis en évidence grâce à une méthode simple et rapide d'estimation de la surface de décharge. La décharge s’initie d’abord en sortie à cause d’une plus forte population d’espèces énergétiques par rapport à l’entrée. Les mauvaises estimations de surface de décharge conduisent à de mauvaises estimations des valeurs des capacités du circuit équivalent et donc à des paramètres électriques tels que le courant de décharge et la tension appliquée au gaz erronés. Ceci peut donner lieu à de mauvaises interprétations de la physique des DBD. La méthode proposée peut s’appliquer avec ou sans électrode fractionnée ainsi qu’en présence d’espèces réactives appropriées pour le dépôt de couches minces fonctionnelles et multifonctionnelles. / The objective of this master thesis is to characterize a Dielectric Barrier Discharge (DBD) at atmospheric pressure in nitrogen gas in a homogeneous regime. The objective is on the one hand to highlight the different fundamental parameters of these discharges (electronic temperature, electronic density, density of excited and metastable species) but also their spatio-temporal evolutions. In this context a structured electrode was made to characterize the discharge along the gas flow lines as well as optical emission spectroscopy measurements to study the physical chemistry of these discharges. Variations in breakdown voltage and discharge current could be observed between the entrance and the exit of the plasma reactor. This variation could be related to a change in the metastable population of nitrogen N2(A) along the gas flow. In addition, no significant variation in the electronic temperature was noted. In this work, spreading effects of the Townsend discharge were highlighted by a simple and quick method of estimating the discharge area. The discharge is initiated at the exit due to a larger population of energy species compared to the entrance. Wrong discharge area estimates lead to poor estimates of capacitance values of the equivalent circuit and thus to incorrect electrical parameters such as discharge current and gas voltage. This can lead to misinterpretations of DBD physics. The proposed method can be applied with or without fractional electrode, and also in the presence of reactive species suitable for thin-film deposition.
15

Space and time characterization of laser-induced plasmas for applications in chemical analysis and thin film deposition / Caractérisation spatio-temporelle de plasmas induits par laser pour des applications à la chimie analytique et au dépôt de couches minces

Dawood, Mahmoud 12 1900 (has links)
Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible. La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique). Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique. L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz. / After decades of development, laser ablation has become an important technique for a large number of applications such as thin film deposition, nanoparticle synthesis, micromachining, chemical analysis, etc. Experimental and theoretical studies have been conducted to understand the physical mechanisms of the laser ablation processes and their dependence on the laser wavelength, pulse duration, ambient gas and target material. The present dissertation describes and investigates the relative importance of the physical mechanisms influencing the characteristics of aluminum laser-induced plasmas. The general scope of this research encompasses a thorough study of the interplay between the plasma plume dynamics and the ambient gas in which they expand. This is achieved by imaging and analyzing the temporal and spatial evolution the plume in terms of spectral intensity, electron density and excitation temperature within various environments extending from vacuum (10‾7 Torr) to atmospheric pressure (760 Torr), in an inert gas like Ar and He, as well as in a chemically active gas like N2. Our results show that the plasma emission intensity generally differs with the nature of the ambient gas and it is strongly affected by its pressure. In addition, for a given time delay after the laser pulse, both electron density and plasma temperature increase with the ambient gas pressure, which is attributed to plasma confinement. Moreover, the highest electron density is observed close to the target surface, where the laser is focused and it decreases by moving away (radially and axially) from this position. In contrast with the significant axial variation of plasma temperature, there is no large variation in the radial direction. Furthermore, argon was found to produce the highest plasma density and temperature, and helium the lowest, while nitrogen yields intermediate values. This is mainly due to their physical and chemical properties such as the mass, the excitation and ionization levels, the thermal conductivity and the chemical reactivity. The expansion of the plasma plume is studied by time- and space-resolved imaging. The results show that the ambient gas does not appreciably affect plume dynamics as long as the gas pressure remains below 20 Torr and the time delay below 200 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important and the shorter plasma plume length corresponds to the highest gas mass species and the lowest thermal conductivity. These results are confirmed by Time-Of-Flight (TOF) measurements of Al+ line emitted at 281.6 nm. Moreover, the velocity of aluminum ions is well defined at the earliest time and close to the target surface. However, at later times, the ions travel through the plume and become thermalized through collisions with plasma species and with surrounding ambient gas.
16

Étude électrique et spectroscopique des décharges à barrière diélectrique à la pression atmosphérique en milieux réactifs

Guemmache, Karim 08 1900 (has links)
Le travail présenté dans le cadre de ce mémoire s’intéresse à l’étude des plasmas à la pression atmosphérique en configuration décharge à barrière diélectrique (DBD), pertinents pour le traitement de surface. Plus spécifiquement, les DBDs à l’étude sont en milieux réactifs pour le dépôt de couches minces (multi)fonctionnelles, soit en présence d’un précurseur organosilicié (HMDSO) et/ou d’un agent oxydant (N₂O). L’étude est centrée sur l’analyse de deux propriétés fondamentales du plasma : la température électronique (Tₑ) et la densité des atomes d’hélium dans un état métastable (n_He(2³S)). La première est étudiée en ayant recours à des mesures des populations des niveaux n=3 de l’hélium par spectroscopie optique d’émission, alors que la seconde l’est à partir de ces mêmes mesures couplées à des mesures électriques. La particularité de cette étude est la mise au point de nouveaux diagnostics électriques et spectroscopiques pour réaliser des mesures résolues spatialement, c'est-à-dire en fonction du temps de résidence (t_res) du mélange gazeux injecté en continu. Dans les milieux réactifs étudiés, ces nouveaux diagnostics montraient des changements dans les caractéristiques courant-tension entre l’entrée et la sortie de la décharge. Cependant, Tₑ conservait un profil homogène spatialement alors que la n_He(2³S) se montrait relativement plus faible en entrée, de par leurs interactions avec les précurseurs et les impuretés présents dans ces milieux. L’analyse des signatures optiques du HMDSO dans le volume de la décharge a aussi permis de faire des liens avec les propriétés de surface des couches réalisées en conditions similaires. Notamment, les mesures de vitesse de dépôt observées sur les couches, étant plus faibles avec l’augmentation du t_res, ont pu être liées aux émissions des fragments carbonés, plus fortes en entrée, ainsi qu’à la n_He(2³S), plus faible à cet endroit, sachant que ces derniers jouent un rôle important dans la fragmentation du précurseur HMDSO. De plus, l’analyse de rapport d’intensités d’émissions de ces fragments semble montrée une tendance similaire aux rapports atomiques O/C obtenus par mesures de spectroscopie à rayon X (XPS) sur les couches produites, mais l’interprétation de ces évolutions se veut plus complexe. / The work presented in this master’s thesis focuses on the study of atmospheric pressure plasmas in a dielectric barrier discharge (DBD) configuration, which are relevant for surface treatment. More specifically, the DBDs under study are in reactive media for the deposition of (multi)functional coatings, either in the presence of an organosilicon precursor (HMDSO) and/or an oxidizing agent (N₂O). The study focuses on the analysis of two fundamental plasma properties: the electron temperature (Tₑ) and the density of helium atoms in a metastable state (n_He(2³S)). The first is studied using measurements of the n = 3 level helium populations by optical emission spectroscopy, while the second is based on these same measurements coupled with electrical measurements. The peculiarity of this study is the development of new electrical and spectroscopic diagnoses to carry out spatially resolved measurements, that is depending on the residence time (t_res) of the gas mixture injected continuously. In the reactive media studied, these new diagnoses showed changes in the current-voltage characteristics between the entrance and the exit of the discharge. However, the Tₑ maintained a spatially homogeneous profile while the n_He(2³S) was relatively lower at entry, because of their interactions with the precursors and the impurities present in these media. The analysis of the HMDSO optical signatures in the discharge volume also made it possible to establish links with the surface properties of the coatings produced under similar conditions. In particular, the measurements of deposition rate observed on the coatings, being lower with the increase of the t_res, could be linked to the emissions of the carbonaceous fragments, stronger at the entrance, as well as to the n_He(2³S), weaker here, knowing that they play an important role in the fragmentation of the HMDSO precursor. Moreover, the analysis of emission intensity ratios of these fragments seems to show a similar trend to the O/C atomic ratios obtained by X-ray spectroscopy (XPS) measurements on the coatings produced, but the interpretation of these evolutions is more complex.

Page generated in 0.0906 seconds