• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 109
  • 43
  • 30
  • 22
  • 21
  • 11
  • 8
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 608
  • 608
  • 608
  • 95
  • 70
  • 69
  • 66
  • 66
  • 57
  • 55
  • 54
  • 52
  • 51
  • 48
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
581

Evaluation of Tissue Health and Interventions for the Prevention of Pressure Ulcers in Persons with Spinal Cord Injury

Wu, Gary Anthony Auyong 19 August 2013 (has links)
No description available.
582

Effets d’un programme de marche au sol par exosquelette chez des personnes avec une lésion médullaire chronique : étude exploratoire sur la santé musculaire et osseuse

Bass, Alec 09 1900 (has links)
L’utilisation à long terme d’un fauteuil roulant après une lésion de la moelle épinière (LMÉ) est associée à une augmentation de la sédentarité et une diminution du niveau d’activité physique. Malheureusement, ces changements mènent à un cycle de déconditionnement qui contribue à l’augmentation de risques, au développement ou à l’aggravation de problèmes secondaires de santé touchant les membres supérieurs et inférieurs. En ce sens, 60 % de la population avec LMÉ présentent des douleurs et déficiences aux membres supérieurs. Aux membres inférieurs, l’ostéoporose est fréquente et chaque année, 10 % de la population avec LMÉ subit des fractures. Conséquemment, des répercussions sur la fonction et la qualité de vie en résultent. Pour contrer ce cycle vicieux, l’activité physique est recommandée. La marche au sol assistée par un exosquelette robotisé est une intervention prometteuse puisqu’elle nécessite des efforts musculaires aux membres supérieurs et augmente la mise en charge aux membres inférieurs. Toutefois, des cas de fractures aux membres inférieurs ont été rapportés. Ainsi, cette thèse visait à élaborer un algorithme d’entraînement préliminaire pour minimiser les risques de fractures pendant l’intervention, et à explorer les effets sur la force musculaire aux membres supérieurs, la performance et les habilités auto-rapportées en fauteuil roulant, et des marqueurs de force et de remodelage osseux aux membres inférieurs. L’algorithme d’entraînement a été développé par un consensus d’experts en suivant les critères de densité minérale osseuse de l’Organisation mondiale de la Santé. Dix individus (4 femmes, 46±11 ans) avec une LMÉ chronique (≥18 mois), qui utilisent un fauteuil roulant comme principale mode de locomotion, ont été recrutés pour suivre un programme de marche (16 semaines, 1 à 3 séances/sem). Les mesures suivantes ont été effectuées pré et post intervention : la force musculaire fonctionnelle (poussées/tirées sur une roue de fauteuil roulant, force de préhension), la masse musculaire (absorptiométrie), et la force relative (force/masse) aux membres supérieurs ; des tests de performance (vitesse de propulsion naturelle et maximale, slalom) et un questionnaire d’habilités en fauteuil roulant (Wheelchair Skills Test Questionnaire) ; l’ostéodensitométrie et la géométrie osseuse (CT-scan) aux membres inférieurs, ainsi que des marqueurs sanguins de remodelage osseux (ostéocalcine, télopeptide-C). La taille d’échantillon étant limitée (tests non paramétriques), un changement était significatif si : p<0,1 ; taille d’effet ≥0,5 ; et variation relative >5 %. D’une part, l’algorithme préliminaire a permis de moduler le volume d’entraînement en fonction du profil osseux (ostéoporose, ostéopénie et préservé) et aucun cas de fracture n’a été rapporté pendant le programme d’entrainement. D’autre part, suivant l’intervention, la force et la masse musculaire aux membres supérieurs sont demeurées stables. Néanmoins, la vitesse de propulsion naturelle a augmenté. Par ailleurs, une réponse osseuse prometteuse a été observée aux membres inférieurs (fémur : augmentation du contenu minéral osseux, et des indexes de résistance à la compression et à la flexion, mais réduction de l’épaisseur de l’os cortical ; tibia : augmentation de la section transversale corticale, et de l’index de résistance à la torsion). Ainsi, à la lumière des résultats, des interventions multimodales (ex. : combinées à des exercices plus ciblés aux membres supérieurs ou la pharmacothérapie pour l’ostéoporose aux membres inférieures) pourraient s’avérer nécessaires pour optimiser les effets potentiellement bénéfiques d’un tel programme, tant aux niveaux des membres supérieurs et inférieurs que sur la fonction quotidienne. / Long-term wheelchair use following a spinal cord injury (SCI) is associated with increased sedentary behaviour and decreased levels of physical activity. Unfortunately, these changes lead to a cycle of deconditioning that increases the risk, development, and/or aggravation of one or more secondary health conditions affecting the upper and lower limbs. In the upper limbs, pain and impairments are present in up to 60% of the SCI population. In the lower limbs, osteoporosis is commonly experienced. Further, each year up to 10% of this population experience fractures. Consequently, negative repercussions on function and quality of life are experienced. To counter this vicious cycle, physical activity is recommended. Overground exoskeleton-assisted walking is a promising intervention to help counter the cycle, since it requires muscular efforts in the upper limbs and increases weight bearing on the lower limbs. However, such an intervention is not without risk: cases of fractures in the lower limbs have been reported. Thus, this thesis aimed to develop a preliminary training algorithm to minimize the risk of fractures during the intervention, and to explore the effects of exoskeleton-assisted walking on upper limb muscle strength, performance and self-reported wheelchair skills, and strength and bone remodeling markers in the lower limbs. First, the training algorithm was developed by expert consensus following bone mineral density criteria from the World Health Organization. Thereafter, 10 individuals (4 women, 46±11 years) with chronic SCI (≥18 months), who use a wheelchair as their primary mode of locomotion, were recruited into the walking program (16 weeks, 1 to 3 sessions/week). The following measurements were taken pre and post intervention: functional muscle strength (pushing/pulling on a wheelchair wheel, grip strength), muscle mass (absorptiometry), and relative strength (strength/mass) of the upper limbs; wheelchair performance tests (natural and maximal propulsion speed, slalom) and skills (Wheelchair Skills Test Questionnaire); bone densitometry and bone geometry (CT-scan) in the lower limbs, as well as blood markers of bone remodeling (osteocalcin, telopeptide-C). Since the sample size was limited (non-parametric tests), a significant change was observed if three criteria were met: p<0.1; effect size ≥0.5; and relative change >5%. The preliminary algorithm modulated the training volume according to bone profile (osteoporosis, osteopenia and preserved) and no cases of fracture occurred. Following the intervention, strength and muscle mass in the upper limbs remained stable whereas only natural propulsion speed increased. Overall, a promising bone response was measured in the lower limbs (femur: increased bone mineral content, bone strength index, and stress-strain index, but decreased cortical bone thickness; tibia: increased cortical cross-sectional area, and polar moment of inertia). Ultimately, multimodal interventions (e.g., combining with specific upper limb exercises or pharmacotherapy for osteoporosis in the lower limbs) may be necessary to optimize the potential beneficial effects of such a program, both on the upper and lower limbs, and on function.
583

Une neuroprothèse de stimulation bi-corticale pour le contrôle locomoteur chez le chat intact et suivant une contusion spinale thoracique

Duguay, Maude 04 1900 (has links)
86.000 canadiens souffrent de lésions de la moelle épinière, représentant l’une des causes majeures de paralysie. 70% de ces lésions sont partielles, signifiant qu’une partie des voies de communication entre le cortex, important dans la planification, le contrôle et l’exécution de mouvements volontaires, et la moelle épinière, qui les génèrent, reste préservée. Bien que plusieurs études supportent la grande valeur des stratégies ciblant le contrôle supra-spinal en tant qu’approche pour rétablir la marche, la majorité des interventions de réhabilitation n’engagent pas directement le cortex moteur. Afin de pallier ce manque, nous avons développé une neuroprothèse permettant de stimuler électriquement les deux cortex moteur de façon cohérente lors de la marche. Nous avons utilisé un modèle de chat de contusion thoracique (T10) induisant une paralysie transitoire des membres postérieurs et des déficits locomoteurs à long terme, tel que le traînement du pied. Chez n=3 chats, avant et après contusion spinale, nous avons augmenté la réponse motrice évoquée en optimisant l’amplitude, la synchronisation, la durée et le site de la stimulation. Avant et après la contusion spinale, la neuroprothèse corticale a permis de moduler la trajectoire des membres postérieurs durant la locomotion, tel que démontrée par une augmentation significative de la hauteur du pas et de la vitesse de flexion corrélée avec l’augmentation de l’amplitude de stimulation. Après contusion, notre neuroprothèse bi-corticale a permis une réduction de 40% du traînement en comparaison à la locomotion spontanée. Ces données fournissent une preuve de concept que des protocoles de stimulation corticale peuvent être déployés afin d’améliorer la locomotion et pourraient promouvoir la récupération après une lésion médullaire. / 86.000 Canadians suffer from traumatic spinal cord injury (SCI), which is one of the leading causes of paralysis. Most SCIs are “incomplete”, meaning that some connections between the cortex -which is essential for planning, controlling and executing voluntary movements- and the spinal circuits, which generate them, are spared. Despite several studies supporting the concept that targeting supraspinal centers is a valuable approach to restore walking, most rehabilitation interventions do not directly engage the motor cortex. To address this need, we developed a neuroprosthesis that allows timely delivery of stimulation to the motor cortices during locomotion. We used a cat model of thoracic spinal cord contusion (T10) which induces a transient paralysis of both hindlimbs and long-term locomotor impairments, such as foot drag. In n=3 cats, we bilaterally implanted chronic intracortical electrode arrays within the leg representation of the primary motor cortex. Before and after spinal contusion, we enhanced the evoked motor response by optimizing the amplitude, timing, duration and site of stimulation. Both before and after SCI, we modulated the hindlimb trajectory during gait, which was shown by a significant increase in step height and velocity of flexion that correlated with the increase of stimulation amplitude. After SCI, the use of our bi-cortical neuroprosthesis led to a reduction of 40% in foot drag compared to spontaneous locomotion. These data provide a proof of concept that cortical stimulation protocols can be deployed to improve locomotion acutely after SCI and could be used for movement assistance therapies to promote recovery.
584

The data-driven CyberSpine : Modeling the Epidural Electrical Stimulation using Finite Element Model and Artificial Neural Networks / Den datadrivna CyberSpine : Modellering Epidural Elektrisk Stimulering med hjälp av Finita Elementmodellen och Artificiella Neurala Nätverk

Qin, Yu January 2023 (has links)
Every year, 250,000 people worldwide suffer a spinal cord injury (SCI) that leaves them with chronic paraplegia - permanent loss of ability to move their legs. SCI interrupts axons passing along the spinal cord, thereby isolating motor neurons from brain inputs. To date, there are no effective treatments that can reconnect these interrupted axons. In a recent breakthrough, .NeuroRestore developed the STIMO neuroprosthesis that can restore walking after paralyzing SCI using Epidural Electrical Stimulation (EES) of the lumbar spinal cord. Yet, the calibration of EES requires highly trained personnel and a vast amount of time, and the mechanism by which EES restores movement is not fully understood. In this master thesis, we propose to address this issue using modeling combined with Artificial Neural Networks (ANNs). To do so, we introduce the CyberSpine model to predict EES-induced motor response. The implementation of the model relies on the construction of a multipolar basis of solution of the Poisson equation which is then coupled to an ANN trained against actual data of an implanted STIMO user. Furthermore, we show that our CyberSpine model is particularly well adapted to extract biologically relevant information regarding the efficient connectivity of the patient’s spine. Finally, a user-friendly interactive visualization software is built. / Varje år drabbas 250 000 människor i hela världen av en ryggmärgsskada som ger dem kronisk paraplegi - permanent förlust av förmågan att röra benen. Vid en ryggmärgsskada bryts axonerna som passerar längs ryggmärgen, vilket isolerar de motoriska neuronpoolerna från hjärnans ingångar. Hittills finns det inga effektiva behandlingar som kan återansluta dessa avbrutna axoner. NeuroRestore utvecklade nyligen neuroprotesen STIMO som kan återställa gångförmågan efter förlamande ryggmärgsskada med hjälp av epidural elektrisk stimulering (EES) av ländryggmärgen. Kalibreringen av EES-stimuleringar kräver dock högutbildad personal och mycket tid, och den mekanism genom vilken EES återställer rörelse är inte helt klarlagd. I denna masteruppsats föreslår vi att vi tar itu med denna fråga med hjälp av modellering i kombination med artificiell intelligens. För att göra detta introducerar vi CyberSpine-modellen, en modell som kan förutsäga EES-inducerad motorisk respons. Implementeringen av modellen bygger på konstruktionen av en multipolär bas för lösning av Poisson-ekvationen som sedan kopplas till ett artificiellt neuralt nätverk som tränas mot faktiska data från en implanterad STIMO-deltagare. Dessutom visar vi att vår CyberSpine-modell är särskilt väl anpassad för att extrahera biologiskt relevant information om den effektiva anslutningen av patientens ryggrad. Slutligen bygger vi en användarvänlig interaktiv visualiseringsprogramvara.
585

Développement d’un outil d’évaluation neurologique simplifié pour les lésions médullaires traumatiques en contexte aigu

Pelletier-Roy, Rémi 07 1900 (has links)
La prise en charge rapide et systématique des patients en traumatologie par des protocoles tels que l’Advanced Trauma Life SupportTM maximise la survie. À l’intérieur de ces protocoles, l’examen le plus souvent proposé pour l’évaluation neurologique est l’International Standards For Neurological Classification of Spinal Cord Injury (ISNCSCI). Cet outil d’évaluation des patients avec une lésion médullaire traumatique (LMT) est le plus reconnu mondialement, mais n’est pas adapté à la prise en charge initiale en traumatologie de par son exhaustivité. L’objectif principal de ce mémoire était de combler le besoin pour un outil d’évaluation neurologique adapté au patient avec une LMT en contexte aigu.La première partie de ce travail consista au développement et à la validation d’une version simplifiée de l’ISNCSCI qui a été nommée le Montreal Acute Classification of Spinal Cord Injury (MAC-SCI). Sa validation par rapport à l’ISNCSCI révéla une capacité à déterminer correctement le grade de sévérité ainsi que l’étage lésionnel de la LMT dans 100% des cas. La seconde partie de ce travail évalua la capacité du MAC-SCI à détecter les variations neurologiques périopératoires et montra qu’aucune détérioration neurologique n’était ratée. Finalement, la troisième partie de ce travail évalua l’implémentation clinique du MAC-SCI et montra des taux de complétion 2,4 fois supérieurs à ceux de l’ISNCSCI. Nous souhaitons que le MAC-SCI soit incorporé dans les protocoles de traumatologie à grande échelle dans le but d’uniformiser l’évaluation neurologique des patients en situation de traumatologie et ultimement d’améliorer les soins prodigués aux patients blessés médullaires. / Rapid and systematic management of trauma patients using protocols such as the Advanced Trauma Life SupportTM maximizes survival. Within these protocols, the tool the most often suggested for neurological assessment is the International Standards For Neurological Classification of Spinal Cord Injury (ISNCSCI). This assessment tool for patients with traumatic spinal cord injury (TSCI) is the most recognized worldwide, but is not suitable for initial trauma care due to its comprehensiveness. The main objective of this thesis was to fulfill the need for a neurological assessment tool adapted to the patient with TSCI in an acute context. The first part of this study consisted in the development and validation of a simplified version of the ISNCSCI which was named the Montreal Acute Classification of Spinal Cord Injury (MAC-SCI). Its validation against the ISNCSCI revealed an ability to correctly determine the grade of severity as well as the neurological level of injury of the TSCI in 100% of cases. The second part of this study assessed the ability of the MAC-SCI to detect perioperative neurological variations and showed that no neurological deterioration was missed. Finally, the third part of this study evaluated the clinical implementation of the MAC-SCI and showed completion rates 2.4 times higher than the ISNCSCI. We would like the MAC-SCI to be incorporated into large-scale trauma protocols in order to standardize the neurological assessment of trauma patients and ultimately improve the care provided to patients with spinal cord injuries.
586

Closed-Loop Control and Variable Constraint Mechanisms of a Hybrid Neuroprosthesis to Restore Gait after Spinal Cord Injury

To, Curtis Sai-Hay 17 May 2010 (has links)
No description available.
587

In Vivo Observations of Resident Microglia and Blood Derived Macrophages in the Brain and Spinal Cord

Evans, Teresa Ann 11 June 2014 (has links)
No description available.
588

THE ROLE OF PTPs IN REGENERATION FAILURE FOLLOWING SPINAL CORD INJURY

Lang, Bradley Thomas 13 February 2015 (has links)
No description available.
589

Anatomically-Versatile Peripheral Nerve Electrodes Preserve Nerve Health, Recruit Selectively, and Stabilize Quickly

Freeberg, Max J. 02 February 2018 (has links)
No description available.
590

Study of Combinatorial Cell Therapy and Neuroprotective Agents for the Treatment of Spinal Cord Injury in Experimental Models

Bonilla Villamil, Pablo 30 January 2023 (has links)
Tesis por compendio / [ES] La lesión medular (LM) es un trastorno neurológico devastador y debilitante que se caracteriza por un grado variable de disfunción motora, sensorial y/o autonómica permanente. El trasplante de células madre neurales (NSC) ofrece una herramienta terapéutica prometedora para el tratamiento de la LM al proporcionar neuroprotección y neuroregeneración. Sin embargo, el entorno generado tras la lesión limita el potencial terapéutico de las terapias celulares al dar lugar a una escasa supervivencia y engraftment de las células y a una diferenciación inadecuada. Además, las terapias celulares han mostrado hasta la fecha una recuperación funcional limitada en los ensayos clínicos. Por lo tanto, se ha postulado el uso de terapias combinatorias para superar estas limitaciones y potenciar los beneficios terapéuticos de las terapias celulares. En esta tesis doctoral, se han estudiado distintas estrategias de combinación con el trasplante de NSC, como el uso de fármacos y biomateriales, con el objetivo de mejorar y potenciar el efecto de la terapia celular en el rescate de la actividad neuronal, en la modulación del proceso inflamatorio, en la supervivencia del trasplante, así como en su integración y diferenciación en el tejido medular. Así, En el capítulo 1 evaluamos la terapia combinada de células madre neurales humanas derivadas de células madre pluripotentes inducidas (iPSC-NSCs), células madre mesenquimales (MSCs) y un nanoconjugado de curcumina (PA-C) en un modelo de LM subagudo, proporcionando un mayor grado de neuroprotección en comparación con los tratamientos individuales. En el capítulo 2 desarrollamos una estrategia mínimamente invasiva mediante el uso de un scaffold de ácido hialurónico en forma de semi-luna para el transplante de iPSC-NSCs combinado con PA-C. Así, los análisis histológicos demostraron que el tratamiento combinado de iPSC-NSCs y la PA-C presentaban una mayor preservación de fibras neuronales en la zona de la lesión y una reducción de la extensión de la cicatriz fibrótica. Por último, en el capítulo 3 se describe una estrategia terapéutica que se aproxima más a la traslación clínica mediante el trasplante de progenitores neurales fetales humanos (hfNPCs) condicionados previamente con una forma conjugada del inhibidor de Rho/Rock fasudil (PGA-SS-FAS). Así, la combinación de las hfNPCs con el PGA-SS-FAS favoreció la migración del transplante en el tejido medular, la preservación de las interneuronas somatosensoriales Lbx1 inhibitorias y las Tlx3 excitatorias, así como la activación neuronal alrededor del epicentro de la lesión. Así pues, en la presente tesis doctoral se estudia y describe el beneficio aportado por tres estrategias combinatorias, que incrementan los efectos neuroprotectores proporcionados por la terapia celular en el tratamiento de lesiones medulares agudas y sub-agudas. / [CA] La lesió medul·lar (LM) és un trastorn neurològic devastador i debilitant que es caracteritza per un grau variable de disfunció motora, sensorial i/o autonòmica permanent. El trasplantament de cèl·lules mare neurals (NSC) ofereix una eina terapèutica prometedora per al tractament de la LM proporcionant neuroprotecció i neuroregeneració. Tot i això, l'entorn generat després de la lesió limita el potencial terapèutic de les teràpies cel·lulars donant lloc a una escassa supervivència i engraftment de les cèl·lules i a una diferenciació inadequada. A més, les teràpies cel·lulars han mostrat fins ara una recuperació funcional limitada als assajos clínics. Per tant, s'ha postulat l'ús de teràpies combinatòries per superar aquestes limitacions i potenciar els beneficis terapèutics de les teràpies cel·lulars. En aquesta tesi doctoral, s'han estudiat diferents estratègies de combinació amb el trasplantament de NSC, com ara l'ús de fàrmacs i biomaterials, amb l'objectiu de millorar i potenciar l'efecte de la teràpia cel·lular en el rescat de l'activitat neuronal, en la modulació del procés inflamatori, en la supervivència del trasplantament, així com en la seva integració i diferenciació al teixit medul·lar. Així, Al capítol 1 avaluem la teràpia combinada de cèl·llules mare neurals humanes derivades de cèl·lules mare pluripotents induïdes (iPSC-NSCs), cèl·lules mare mesenquimals (MSCs) i un nanoconjugat de curcumina (PA-C) en un model de LM subagut, proporcionant un major grau de neuroprotecció en comparació dels tractaments individuals. Al capítol 2 desenvolupem una estratègia mínimament invasiva mitjançant l'ús d'un scaffold d'àcid hialurònic en forma de semilluna per al trasplantament d'iPSC-NSC combinat amb PA-C. Així, els anàlisis histològics mostraren que el tractament combinat d'iPSC-NSCs i la PA-C incrementaba la preservació de fibres neuronals a la zona de la lesió i reduïa l'extensió de la cicatriu fibròtica. Finalment, al capítol 3 es descriu una estratègia terapèutica que s'aproxima més a la translació clínica mitjançant el trasplantament de progenitors neurals fetals humans (hfNPCs) condicionats prèviament amb una forma conjugada de l'inhibidor de Rho/Rock fasudil (PGA-SS-FAS. Així, la combinació de les hfNPCs amb el PGA-SS-FAS va afavorir la migració del trasplantament al teixit medul·lar, la preservació de les interneurones somatosensorials Lbx1 inhibitòries i les Tlx3 excitatòries, així com l'activació neuronal al voltant de l'epicentre de la lesió. Així doncs, en aquesta tesi doctoral s'estudia i descriu el benefici aportat per tres estratègies combinatòries, que incrementen els efectes neuroprotectors proporcionats per la teràpia cel·lular en el tractament de lesions medul·lars agudes i sub-agudes. / [EN] Spinal cord injury (SCI) is a devastating and debilitating neurological disorder characterized by a variable degree of permanent motor, sensory and/or autonomic dysfunction. Neural stem cell (NSC) transplantation offers a promising therapeutic tool for the treatment of SCI by providing neuroprotection and neuroregeneration. However, the environment generated after injury limits the therapeutic potential of cell therapies by resulting in poor cell survival and engraftment and inadequate differentiation. In addition, cell therapies have shown limited functional recovery in clinical trials to date. Therefore, the use of combinatorial therapies has been postulated to overcome these limitations and enhance the therapeutic benefits of cell therapies. In this doctoral thesis, we have studied different combination strategies with NSC transplantation, such as the use of drugs and biomaterials, with the aim of improving and enhancing the effect of cell therapy in the rescue of neuronal activity, in the modulation of the inflammatory process, in the survival of the transplant, as well as in its integration and differentiation in the medullary tissue. Thus, In Chapter 1 we evaluated the combined therapy of human induced pluripotent stem cell-derived neural stem cells (iPSC-NSCs), mesenchymal stem cells (MSCs) and a curcumin nanoconjugate (PA-C) in a subacute LM model, providing a higher degree of neuroprotection compared to single treatments. In Chapter 2, we developed a minimally invasive strategy by using a demilune hyaluronic acid scaffold for combined transplantation of iPSC-NSCs with PA-C. Thus, histological analyses demonstrated that the combined treatment of iPSC-NSCs and PA-C exhibited increased preservation of neuronal fibers in the lesion area and a reduction in the extension of the fibrotic scar. Finally, Chapter 3 describes a therapeutic strategy that more closely approximates clinical translation by transplanting human fetal neural progenitors (hfNPCs) preconditioned with a conjugated form of the Rho/Rock inhibitor fasudil (PGA-SS-FAS). Thus, the combination of hfNPCs with PGA-SS-FAS favored transplant migration within the spinal parenchyma, preservation of endogenous inhibitory Lbx1 and excitatory Tlx3 somatosensory interneurons, as well as endogenous neuronal activation around the lesion epicenter. Thus, this PhD thesis studies and describes the benefit provided by three combinatorial strategies, which increase the neuroprotective effects provided by cell therapy in the treatment of acute and sub-acute spinal cord injury. / This research was funded by Fundació Marató TV3 2017/refs.20172230, 20172231 and 20172110; FEDER/Ministerio de Ciencia e Innovación–Agencia Estatal de Investigación “RTI2018- 095872-B-C21/ERDF”, Agencia Valenciana de Innovación (AVI) INNVAL10/19/047 and TERCEL (RD12/0019/0011) funds from the Instituto de Salud Carlos III of Spain; Science by Women program, Women for Africa Foundation to HE and the grants FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación [RTI2018-095872-B-C21 and –C22/ERDF]; RISEUP project FetOpen in H2020 Program: H2020-FETOPEN-2018-2019-2020-01 and by Grants RTI2018-095872-B- C21 and PDI2021-1243590B-I00/ERDF funded by MCIN/AEI//10.13039/501100011033 and by ERDF A way of making Europe). This project was also funded by Project 964562 (RISEUP), H2020 FetOpen program / Bonilla Villamil, P. (2022). Study of Combinatorial Cell Therapy and Neuroprotective Agents for the Treatment of Spinal Cord Injury in Experimental Models [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/191500 / Compendio

Page generated in 0.0568 seconds