• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 1
  • Tagged with
  • 17
  • 17
  • 9
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilité d'un réseau de neurones à délai distribué modélisant la mémoire spatiale

Grégoire-Lacoste, François January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Stabilité d'ondes périodiques, schéma numérique pour le chimiotactisme

Le Blanc, Valérie 24 June 2010 (has links) (PDF)
Cette thèse est articulée autour de deux facettes de l'étude des équations auxdérivées partielles. Dans une première partie, on étudie la stabilité des solutionspériodiques pour des lois de conservation. On démontre d'abord la stabilité asymptotiquedans L1 des solutions périodiques de lois de conservation scalaires et inhomogènes.On montre ensuite un résultat de stabilité structurelle des roll-waves. Plusprécisément, on montre que les solutions périodiques d'un système hyperbolique sansviscosité sont limites des solutions du problème avec viscosité, quand le terme deviscosité tend vers 0. Dans une deuxième partie, on s'intéresse à un système d'équationsaux dérivées partielles issu de la biologie : le modèle de Patlak-Keller-Segelen dimension 2 ; il décrit les phénomènes de chimiotactisme. Pour ce modèle, onconstruit un schéma de type volume fini, ce qui permet d'approcher la solution touten gardant certaines propriétés du système : positivité, conservation de la masse,estimation d'énergie.
3

Analyse de la stabilité des réseaux d'oscillateurs non linéaires, applications aux populations neuronales

Conteville, Laurie 17 October 2013 (has links) (PDF)
Il est bien connu que la synchronisation de l'activité oscillatoire dans les réseaux de neurones joue un rôle important dans le fonctionnement du cerveau et pour le traitement des informations données pas les neurones. Cette thèse porte sur l'analyse de l'activité de synchronisation en utilisant des outils et des méthodes issues de la théorie du contrôle et de la théorie de la stabilité. En particulier, deux modèles ont été étudiés pour décrire l'activité oscillatoire des réseaux de neurones : le modèle de Kuramoto et le modèle de Hindmarsh-Rose. Une partie de ce manuscript est consacrée à l'étude du modèle de Kuramoto, qui est un des systèmes les plus simples utilisé pour modéliser un réseau de neurones, avec une connexion complète (all-to-all). Il s'agit d'un modèle classique qui est utilisé comme une version simplifiée d'un réseau de neurones. Nous construisons un système linéaire qui conserve les informations sur les fréquences naturelles et sur les gains d'interconnexion du modèle original de Kuramoto. Les propriétés de stabilité de ce modèle sont ensuite analysées et nous montrons que les solutions de ce nouveau système linéaire convergent vers un cycle limite périodique et stable. Finalement, nous montrons que contraint au cycle limite, les dynamiques du système linéaire coïncident avec le modèle de Kuramoto. Dans une seconde partie, nous avons considéré un modèle de réseau de neurones plus proche de la réalité d'un point de vue biologique, mais qui est plus complexe que le modèle de Kuramoto. Plus précisément, nous avons utilisé le modèle de Hindmarsh-Rose pour décrire la dynamique de chaque neurone que nous avons interconnecté par un couplage diffusif (c'est à dire linéaire). A partir des propriétés de semi-passivité du modèle de Hindmarsh- Rose, nous avons analysé les propriétés de stabilité d'un réseau hétérogène de Rindmarsh-Rose. Nous avons également montré que ce réseau est pratiquement synchronisé pour une valeur suffisamment grande du gain d'interconnexion. D'autre part, nous avons caractérisé le comportement limite des neurones synchronisés et avons établi une approximation de ce comportement par une moyenne des dynamiques de tous les neurones.
4

Stabilité d’ondes périodiques, schéma numérique pour le chimiotactisme / Stability of periodic waves, numerical scheme for chemiotaxis

Le Blanc, Valérie 24 June 2010 (has links)
Cette thèse est articulée autour de deux facettes de l’étude des équations auxdérivées partielles. Dans une première partie, on étudie la stabilité des solutionspériodiques pour des lois de conservation. On démontre d’abord la stabilité asymptotiquedans L1 des solutions périodiques de lois de conservation scalaires et inhomogènes.On montre ensuite un résultat de stabilité structurelle des roll-waves. Plusprécisément, on montre que les solutions périodiques d’un système hyperbolique sansviscosité sont limites des solutions du problème avec viscosité, quand le terme deviscosité tend vers 0. Dans une deuxième partie, on s’intéresse à un système d’équationsaux dérivées partielles issu de la biologie : le modèle de Patlak-Keller-Segelen dimension 2 ; il décrit les phénomènes de chimiotactisme. Pour ce modèle, onconstruit un schéma de type volume fini, ce qui permet d’approcher la solution touten gardant certaines propriétés du système : positivité, conservation de la masse,estimation d’énergie. / This thesis is organized around two aspects of the study of partial differentialequations. In a first part, we study the stability of periodic solutions for conservationlaws. First, we prove asymptotic L1-stability of periodic solutions of scalarinhomogeneous conservation laws. Then, we show a result on structural stability ofroll-waves. More precisely, we prove that periodic solutions of a hyperbolic systemwithout viscosity are the limits of the solutions of the problem with viscosity, as theviscous term tends to 0. In a second part, we study a system of partial differentialequations derived from biology: the model of Patlak-Keller-Segel in dimension 2, describingthe phenomena of chemotaxis. For this model, we construct a finite-volumescheme, which approaches the solution while keeping some properties of the system:positivity, conservation of mass, energy estimate.
5

Modèles mathématiques de la théorie du transfert radiatif

Lin, Chunjin 19 June 2007 (has links) (PDF)
On s'intéresse dans ce travail à différents modèles de transfert radiatif, décrivant les interactions entre la matière et les photons. Les radiations sont décrites en termes d'énergie et flux d'énergie, dans le cas macroscopique, le flfluide environnant est quant à lui décrit par les équations d'Euler (modèle d'hydrodynamique radiative). Dans le cas microscopique, le champ radiatif est vu comme une collection des photons interagissant avec la matière par des mécanismes d'absorption-émission. Ces mécanismes dépendent des états d'excitation interne et d'ionisation de la matière. On commence par monter l'existence locale de solutions régulières pour un système couplant les équations d'Euler et l'équation du transfert radiatif. Ce système est obtenu à partir du bilan d'énergie et d'impulsion totale. Puis on fait une discussion asymptotique pour ce modèle dans le régime hors équilibre et on obtient un système simple couplant les équations d'Euler et une équation elliptique. On montre l'existence des profifils de choc (réguliers) pour ce système, et la régularité de ces profils en fonction de l'amplitude du choc. Puis on étudie la stabilité asymptotique de ces profifils. Enfifin, on présente une étude d'un système décrivant le champ radiatif et les états internes de la matière. On montre l'existence de solutions pour ce système et on établit rigoureusement la convergence vers l'équilibre statistique. Les résultats théoriques sont illustrés par des simulations numériques.
6

Etude mathématique d'équations aux dérivées partielles hyperboliques modélisant les processus de régulation des cellules sanguines - Applications aux maladies hématologiques cycliques

Crauste, Fabien 21 June 2005 (has links) (PDF)
L'ensemble des événements permettant la fabrication et le renouvellement continu des cellules du sang représente une série de processus complexes, appelée hématopoïèse, ayant lieu dans la moelle osseuse. L'hématopoïèse repose sur une réserve de cellules souches, dites hématopoïétiques, possédant des capacités uniques de différenciation (capacité à générer l'ensemble des cellules du sang) et d'auto-renouvellement (capacité à générer une cellule fille identique à la cellule mère). Nous avons réalisé une étude mathématique de l'hématopoïèse à l'aide de modèles non-linéaires structurés en âge et maturité. Elle a permis de mettre en évidence l'influence des cellules souches hématopoïétiques sur la population totale de cellules du sang, ces cellules agissant activement sur la stabilité de la population. Par l'étude de modèles non structurés en maturité, réduits par intégration à un système d'équations différentielles avec retard distribué, nous avons mis en évidence l'existence de solutions oscillantes et, à travers l'étude d'une bifurcation de Hopf, de solutions périodiques, avec de très longues périodes en comparaison de la durée du cycle cellulaire. Ces oscillations sont caractéristiques de maladies du sang dites cycliques, dont la leucémie myéloïde chronique, une forme très répandue de leucémie. Notre travail représente une contribution à l'étude de cette maladie. Enfin, nous nous sommes intéressés à un modèle d'hématopoïèse prenant en compte l'action de facteurs extérieurs à la moelle osseuse qui agissent sur la différenciation des cellules souches. Nous avons établi l'existence de solutions oscillantes pouvant décrire certaines maladies hématologiques cycliques.
7

Modélisation de mélanges gazeux réactifs ionisés dissipatifs

Graille, Benjamin 09 November 2004 (has links) (PDF)
Nous élaborons des modèles macroscopiques d'EDP pour les mélanges gazeux réactifs ionisés et nous effectuons diverses études mathématiques puis quelques simulations numériques. On détermine les équations macroscopiques ainsi que des expressions des flux de<br />transport à partir d'un modèle de type Boltzmann par un développement de Enskog. Nous étudions alors les propriétés de symétrie apportées par l'entropie de ces équations couplées avec celles de Maxwell pour obtenir un théorème d'existence locale en temps d'une solution bornée et régulière pour le problème de Cauchy. Nous étudions ensuite un modèle de plasma ambipolaire en considérant la masse de l'électron comme un paramètre. Nous démontrons que la solution globale dépend continument de la masse de l'électron lorsque celle-ci s'annule. Nous calculons enfin des flammes ionisées planes et étirées d'un mélange hydrogène-air et obtenons des structures de flammes typiques avec un faible impact de l'ionisation.
8

Comportement en temps long des fluides visqueux bidimensionnels.

Rodrigues, Luis Miguel 07 December 2007 (has links) (PDF)
Ce mémoire se propose d'examiner le comportement asymptotique en temps long des fluides visqueux bidimensionnels, homogènes ou faiblement inhomogènes. On y examine souvent la dynamique des écoulements en fonction de l'évolution de la densité et, plutôt que de la vitesse, du vecteur de rotation instantanée appelé tourbillon ou vorticité. Les travaux de Thierry Gallay et C. Eugene Wayne ont mis en relief le rôle primordial d'une famille de solutions auto-similaires --- les tourbillons d'Oseen ou vortex --- pour décrire l'asymptotique des écoulements à densité constante. Toute solution de l'équation de Navier-Stokes, ayant une mesure finie comme tourbillon initial et de circulation non nulle, est asymptotique en temps long à un tourbillon d'Oseen. Le résultat de Gallay et Wayne ne présente que l'inconvénient de ne pas être explicite, la première tâche de ce mémoire est de l'expliciter, ce qui fournit ainsi une borne sur le temps de vie de la turbulence bidimensionnelle. On montre ensuite que les tourbillons d'Oseen sont asymptotiquement stables en tant que fluides à densité variable, retrouvant également, par là-même, le résultat de Gallay et Wayne pour des écoulements incompressibles faiblement inhomogènes et lents. Quant aux fluides compressibles faiblement inhomogènes, on établit qu'ils se comportent essentiellement comme des fluides à densité constante dès lors que l'on considère des écoulements lents et de circulation nulle.
9

Étude de la stabilité des petites solutions<br />stationnaires pour une classe d'équations de Dirac non linéaires

Boussaid, Nabile 06 July 2006 (has links) (PDF)
Cette thèse est consacrée à l'étude de la<br />stabilité de petits états stationnaires d'une équation d'évolution<br />non linéaire issue de la mécanique quantique relativiste :<br />l'équation de Dirac non linéaire.<br /><br />Tout le long de notre étude, les équations non linéaires sont vues<br />comme des petites perturbations non linéaires de systèmes linéaires.<br />Une partie de cette thèse est donc consacrée à l'étude de problèmes<br />linéaires. Nous montrons que, pour un opérateur de Dirac n'ayant pas<br />de résonance aux seuils ni de valeur propre aux seuils, le<br />propagateur vérifie des estimations de propagation et de dispersion.<br />Nous en déduisons également des estimations de régularité au sens de<br />Kato et des estimations de Strichartz.<br /><br />En faisant des hypothèses ad hoc sur le spectre discret d'un<br />opérateur de Dirac, nous construisons des petites variétés formées<br />d'états stationnaires. Puis en faisant varier ces hypothèses, nous<br />faisons apparaître des phénomènes de stabilisation et d'instabilité<br />orbitale pour certains de ces états.
10

Comportement asymptotique des systèmes de fonctions itérées et applications aux chaines de Markov d'ordre variable / Asymptotic behaviour of iterated function systems and applications to variable length Markov chains

Dubarry, Blandine 14 June 2017 (has links)
L'objet de cette thèse est l'étude du comportement asymptotique des systèmes de fonctions itérées (IFS). Dans un premier chapitre, nous présenterons les notions liées à l'étude de tels systèmes et nous rappellerons différentes applications possibles des IFS telles que les marches aléatoires sur des graphes ou des pavages apériodiques, les systèmes dynamiques aléatoires, la classification de protéines ou encore les mesures quantiques répétées. Nous nous attarderons sur deux autres applications : les chaînes de Markov d'ordre infini et d'ordre variable. Nous donnerons aussi les principaux résultats de la littérature concernant l'étude des mesures invariantes pour des IFS ainsi que ceux pour le calcul de la dimension de Hausdorff. Le deuxième chapitre sera consacré à l'étude d'une classe d'IFS composés de contractions sur des intervalles réels fermés dont les images se chevauchent au plus en un point et telles que les probabilités de transition sont constantes par morceaux. Nous donnerons un critère pour l'existence et pour l'unicité d'une mesure invariante pour l'IFS ainsi que pour la stabilité asymptotique en termes de bornes sur les probabilités de transition. De plus, quand il existe une unique mesure invariante et sous quelques hypothèses techniques supplémentaires, on peut montrer que la mesure invariante admet une dimension de Hausdorff exacte qui est égale au rapport de l'entropie sur l'exposant de Lyapunov. Ce résultat étend la formule, établie dans la littérature pour des probabilités de transition continues, au cas considéré ici des probabilités de transition constantes par morceaux. Le dernier chapitre de cette thèse est, quant à lui, consacré à un cas particulier d'IFS : les chaînes de Markov de longueur variable (VLMC). On démontrera que sous une condition de non-nullité faible et de continuité pour la distance ultramétrique des probabilités de transitions, elles admettent une unique mesure invariante qui est attractive pour la convergence faible. / The purpose of this thesis is the study of the asymptotic behaviour of iterated function systems (IFS). In a first part, we will introduce the notions related to the study of such systems and we will remind different applications of IFS such as random walks on graphs or aperiodic tilings, random dynamical systems, proteins classification or else $q$-repeated measures. We will focus on two other applications : the chains of infinite order and the variable length Markov chains. We will give the main results in the literature concerning the study of invariant measures for IFS and those for the calculus of the Hausdorff dimension. The second part will be dedicated to the study of a class of iterated function systems (IFSs) with non-overlapping or just-touching contractions on closed real intervals and adapted piecewise constant transition probabilities. We give criteria for the existence and the uniqueness of an invariant probability measure for the IFSs and for the asymptotic stability of the system in terms of bounds of transition probabilities. Additionally, in case there exists a unique invariant measure and under some technical assumptions, we obtain its exact Hausdorff dimension as the ratio of the entropy over the Lyapunov exponent. This result extends the formula, established in the literature for continuous transition probabilities, to the case considered here of piecewise constant probabilities. The last part is dedicated to a special case of IFS : Variable Length Markov Chains (VLMC). We will show that under a weak non-nullness condition and continuity for the ultrametric distance of the transition probabilities, they admit a unique invariant measure which is attractive for the weak convergence.

Page generated in 0.1115 seconds