• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 5
  • Tagged with
  • 15
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semiclassical Lp Estimates for Quasimodes on Submanifolds

Tacy, Melissa Evelyn, melissa.tacy@anu.edu.au January 2010 (has links)
Motivated by the desire to understand classical-quantum correspondences, we study concentration phenomena of approximate eigenfunctions of a semiclassical pseudodifferential operator $P(h)$. Such eigenfunctions appear as steady state solutions of quantum systems. Here we think of $h$ as being a small parameter such that $h^{2}$ is inversely proportional to the energy of such a system. As we understand classical mechanics to be the high energy (or small $h$) limit of quantum mechanics we expect the behaviour of eigenfunctions $u(h)$ for small $h$ to be related to properties of the associated classical system. In particular we study the connection between the classical flow and the quantum concentration properties. The flow, $(x(t),\xi(t))$, of a classical system describes the system's motion through phase space where $x(t)$ is interpreted as position and $\xi(t)$ is interpreted as momentum. In the quantum regime we think of an eigenfunction as being composed of highly localised packets moving along bicharacteristics of the classical flow. With this intuition we relate concentration of eigenfunctions in a region to the time spent by projections of bicharacteristics there. We use the $L^{p}$ norm of $u$ when restricted to submanifolds as a measure of concentration. A high $L^{p}$ norm particularly for small $p$ is indicative of concentration near the submanifold. We reduce the estimates on eigenfunctions to operator norm estimates on associated evolution operators. Using the semiclassical analysis methods developed in Chapter 3 we express these evolution operators as oscillatory integral operators. Chapter 2 covers the technical background needed to work with such operators. In Chapter 4 we determine eigenfunction estimates for eigenfunctions restricted to a smooth embedded submanifold $Y$ of arbitrary dimension. If $Y$ is a hypersurface, the greatest concentration occurs when there are bicharacteristics of the classical flow embedded in $Y$. In Chapter 5 we assume that projections of such bicharacteristics can be at worst simply tangent to $Y$ and thereby obtain better results for small values of $p$.
2

Symmetry in monotone Lagrangian Floer theory

Smith, Jack Edward January 2017 (has links)
In this thesis we study the self-Floer theory of a monotone Lagrangian submanifold $L$ of a closed symplectic manifold $X$ in the presence of various kinds of symmetry. First we consider the group $\mathrm{Symp}(X, L)$ of symplectomorphisms of $X$ preserving $L$ setwise, and extend its action on the Oh spectral sequence to coefficients of arbitrary characteristic, working over an enriched Novikov ring. This imposes constraints on the differentials in the spectral sequence which force them to vanish in certain situations. We then specialise to the case where $L$ is $K$-homogeneous for a compact Lie group $K$, meaning roughly that $X$ is Kaehler, $K$ acts on $X$ by holomorphic automorphisms, and $L$ is a Lagrangian orbit. By studying holomorphic discs with boundary on $L$ we compute the image of low codimension $K$-invariant subvarieties of $X$ under the length zero closed-open string map. This places restrictions on the self-Floer cohomology of $L$ which generalise and refine the Auroux-Kontsevich-Seidel criterion. These often result in the need to work over fields of specific positive characteristics in order to obtain non-zero cohomology. The disc analysis is then developed further, with the introduction of the notion of poles and a reflection mechanism for completing holomorphic discs into spheres. This theory is applied to two main families of examples. The first is the collection of four Platonic Lagrangians in quasihomogeneous threefolds of $\mathrm{SL}(2, \mathbb{C})$, starting with the Chiang Lagrangian in $\mathbb{CP}^3$. These were previously studied by Evans and Lekili, who computed the self-Floer cohomology of the latter. We simplify their argument, which is based on an explicit construction of the Biran-Cornea pearl complex, and deal with the remaining three cases. The second is a family of $\mathrm{PSU}(n)$-homogeneous Lagrangians in products of projective spaces. Here the presence of both discrete and continuous symmetries leads to some unusual properties: in particular we obtain non-displaceable monotone Lagrangians which are narrow in a strong sense. We also discuss related examples including applications of Perutz's symplectic Gysin sequence and quilt functors. The thesis concludes with a discussion of directions for further research and a collection of technical appendices.
3

Reprezentace Chekanovových-Eliashbergových algeber / Reprezentace Chekanovových-Eliashbergových algeber

Poppr, Marián January 2020 (has links)
In this thesis, we study modern invariants of Legendrian knots on R3 with a standard contact structure. We introduce the notion of Chekanov-Eliashberg algebra (DGA) and Legendrian contact homology. Then we consider representa- tions of DGA as a way how to derive some computable invariants of Legendrian knots. Finally, we will find equivalence classes of graded 2-dimensional irreducible representations for a certain Legendrian knot. i
4

[en] SINGULAR RIEMANNIAN FOLIATIONS WITH SECTIONS AND TRANSNORMAL MAPS / [pt] FOLHEAÇÕES RIEMANNIANAS SINGULARES COM SEÇÕES E APLICAÇÕES TRANSNORMAIS

MARCOS MARTINS ALEXANDRINO DA SILVA 25 February 2003 (has links)
[pt] Um resultado clássico da teoria de grupos de Lie garante que as órbitas da ação adjunta de um grupo de Lie compacto interceptam um toro máximo ortogonalmente. Esta ação é um exemplo das chamadas ações polares. Ações polares são ações de grupos compactos de isometrias que admitem seções (subvariedades totalmente geodésicas que interceptam as órbitas ortogonalmente). Ações polares e subvariedades isoparamétricas são casos particulares das chamadas folheações riemannianas singulares com seções,assunto que é estudado nesta tese. Além de apresentarmos resultados sobre essas folheações singulares apresentamos também resultados sobre as chamadas aplicações transnormais (generalizações das aplicações isoparamétricas) destacando como estes objetos estão relacionados. / [en] It follows from the classical Lie group theory that the orbits of an adjoint action of a compact Lie group intercept a maximal toru in a orthogonal way. This is an example of the so called Polar Action. A compact isometric action is said to be Polar if it admits sections, i.e. totally geodesic submanifolds that intercept the orbits orthogonally. Polar Actions and isoparametric manifolds are examples of a more general structure, the so called singular Riemannian Foliation with Section, the main subject of the thesis. Besides the results about these singular foliations we show also some results about transnormal maps (generalization of isoparametric maps) and stress the its connections with the singulare riemannian foliation with section.
5

Teoria quântica em uma subvariedade: Efeitos clássicos, quânticos e térmicos / Quantum Theory on a Submanifold

Monroy, José Antonio Sanchez 09 December 2016 (has links)
O problema de como descrever a dinâmica efetiva de partículas ou campos confinados a um espaço-tempo de baixa dimensão é de interesse em muitas áreas da física. Vários métodos foram propostos na literatura para atacar este problema. Recentemente, foram relatadas algumas evidências experimentais que são consistentes com a chamada abordagem de potencial confinante. À luz destes resultados, o objetivo desta tese é o de construir uma teoria quântica para partículas confinadas em uma subvariedade, imersa em um espaço-tempo plano, empregando o cenário conceitual da abordagem de potencial confinante. A tese está dividida em duas partes. A primeira parte é dedicada exclusivamente ao estudo da mecânica quântica em uma subvariedade. Para esta finalidade, deduzimos as equações efetivas de Schrödinger, Dirac e Klein-Gordon, em uma subvariedade curva, na presença de um campo electromagnético externo. Examinamos as características singulares estas equações e apresentamos algumas aplicações em física da matéria condensada. Na segunda parte, partimos da mecânica quântica na subvariedade e então formulamos a teoria quântica de campos (TQC) na subvariedade. Mostramos que a TQC \"livre\" em uma subvariedade pode ser representada esquematicamente como uma teoria de campos livres, em um fundo curvo, mais um potencial escalar e um campo externo SO(n - m) de Yang-Mills. Calculamos para essa teoria a ação efetiva em ordem de um laço para bósons e férmions a temperatura e potencial químico não nulos, em todas as ordens, usando a expansão de Seely-DeWitt. Para teorias com interações, demonstramos que a teoria conhecida como eletrodinâmica quântica reduzida (RQEDd?,de) pode ser recuperada a partir da abordagem de potencial confinante. Para uma teoria bidimensional, propomos uma grande classe de extensões do modelo de Schwinger, em que a interação entre férmions vai além do potencial linear. Demonstramos que, notavelmente, essas extensões são exatamente solúveis para férmions sem massa e que não há geração de massa dinâmica para os férmions. Além disso, construímos uma nova família de teorias que podem ser exatamente bosonizadas. Também mostramos que RQED4,2 tem as características necessárias para ser identificada como uma teoria de campo efetivo para fios de grafeno. Finalmente, estudamos o efeito da interação de campos magnéticos e pseudomagnéticos no grafeno. Para este sistema, calculamos o condensado fermiônico, a densidade de carga induzida de vácuo, a ação efetiva em ordem de um laço e a magnetização. Demonstramos que a presença de um campo pseudo-magnético diferente de zero torna possível observar experimentalmente uma densidade de carga induzida de vácuo. Além disso, vamos mostrar que é possível ter controle sobre a magnetização, bem como a massa dinâmica para cada vale no grafeno, quer seja por deformações ou variando o campo magnético aplicado. / The problem of how to describe the effective dynamics of particles or fields confined to a lower dimensional curved space-time is of interest in many areas of physics. In the literature, several methods have been proposed to attack this problem. Recently it has been reported some experimental evidences that are consistent with the so-called confining potential approach. In light of these results, the purpose of this thesis is to construct a quantum theory for particles confined in a submanifold of a flat space-time employing the theoretical framework of the confining potential approach. The thesis is divided into two parts. The first one is dedicated exclusively to the study of quantum mechanics on a submanifold. For this purpose, we derive the effective Schrödinger, Dirac and Klein-Gordon equations on a curved submanifold, in the presence of an external electromagnetic field. We examine the singular features of these equations and present some applications to condensed matter. In the second part of this thesis, we start from the quantum mechanics on the submanifold and then we formulate the quantum field theory (QFT) on the submanifold. We will show that the \"free\" QFT on a submanifold can be schematically represented as a quantum theory of free fields on a curved background plus a scalar potential and an external SO(n-m) Yang-Mills field. For this theory, we compute the one-loop effective action for scalars and fermions at finite temperature and chemical potential to all orders using the Seely-DeWitt expansion. For interacting theories, we will prove that the theory known as reduced quantum electrodynamics (RQEDd?,de) can be recovered from the confining potential approach. For a two-dimensional theory, we propose a large class of extensions of the Schwinger model, in which the interaction between fermions goes beyond the linear potential. We demonstrate that, remarkably, these extensions are exactly solvable for massless fermions and that there is no dynamical mass generation for the fermions. Furthermore, we construct a new family of exactly bosonized theories. We also show that RQED4,2 has the necessary features to be identified as an effective field theory for graphene wires. Finally, we study the effect of an interplay of real and pseudomagnetic fields in graphene. We compute the fermion condensate, the induced vacuum charge density, the one-loop effective action and the magnetization, for this system. We will show that the presence of a non-zero pseudomagnetic field makes it possible, experimentally, to observe an induced vacuum charge density. Moreover, we will show that it is possible to have control over the magnetization as well as the dynamical mass for each valley in graphene, by straining or varying the applied magnetic field.
6

Teoria quântica em uma subvariedade: Efeitos clássicos, quânticos e térmicos / Quantum Theory on a Submanifold

José Antonio Sanchez Monroy 09 December 2016 (has links)
O problema de como descrever a dinâmica efetiva de partículas ou campos confinados a um espaço-tempo de baixa dimensão é de interesse em muitas áreas da física. Vários métodos foram propostos na literatura para atacar este problema. Recentemente, foram relatadas algumas evidências experimentais que são consistentes com a chamada abordagem de potencial confinante. À luz destes resultados, o objetivo desta tese é o de construir uma teoria quântica para partículas confinadas em uma subvariedade, imersa em um espaço-tempo plano, empregando o cenário conceitual da abordagem de potencial confinante. A tese está dividida em duas partes. A primeira parte é dedicada exclusivamente ao estudo da mecânica quântica em uma subvariedade. Para esta finalidade, deduzimos as equações efetivas de Schrödinger, Dirac e Klein-Gordon, em uma subvariedade curva, na presença de um campo electromagnético externo. Examinamos as características singulares estas equações e apresentamos algumas aplicações em física da matéria condensada. Na segunda parte, partimos da mecânica quântica na subvariedade e então formulamos a teoria quântica de campos (TQC) na subvariedade. Mostramos que a TQC \"livre\" em uma subvariedade pode ser representada esquematicamente como uma teoria de campos livres, em um fundo curvo, mais um potencial escalar e um campo externo SO(n - m) de Yang-Mills. Calculamos para essa teoria a ação efetiva em ordem de um laço para bósons e férmions a temperatura e potencial químico não nulos, em todas as ordens, usando a expansão de Seely-DeWitt. Para teorias com interações, demonstramos que a teoria conhecida como eletrodinâmica quântica reduzida (RQEDd?,de) pode ser recuperada a partir da abordagem de potencial confinante. Para uma teoria bidimensional, propomos uma grande classe de extensões do modelo de Schwinger, em que a interação entre férmions vai além do potencial linear. Demonstramos que, notavelmente, essas extensões são exatamente solúveis para férmions sem massa e que não há geração de massa dinâmica para os férmions. Além disso, construímos uma nova família de teorias que podem ser exatamente bosonizadas. Também mostramos que RQED4,2 tem as características necessárias para ser identificada como uma teoria de campo efetivo para fios de grafeno. Finalmente, estudamos o efeito da interação de campos magnéticos e pseudomagnéticos no grafeno. Para este sistema, calculamos o condensado fermiônico, a densidade de carga induzida de vácuo, a ação efetiva em ordem de um laço e a magnetização. Demonstramos que a presença de um campo pseudo-magnético diferente de zero torna possível observar experimentalmente uma densidade de carga induzida de vácuo. Além disso, vamos mostrar que é possível ter controle sobre a magnetização, bem como a massa dinâmica para cada vale no grafeno, quer seja por deformações ou variando o campo magnético aplicado. / The problem of how to describe the effective dynamics of particles or fields confined to a lower dimensional curved space-time is of interest in many areas of physics. In the literature, several methods have been proposed to attack this problem. Recently it has been reported some experimental evidences that are consistent with the so-called confining potential approach. In light of these results, the purpose of this thesis is to construct a quantum theory for particles confined in a submanifold of a flat space-time employing the theoretical framework of the confining potential approach. The thesis is divided into two parts. The first one is dedicated exclusively to the study of quantum mechanics on a submanifold. For this purpose, we derive the effective Schrödinger, Dirac and Klein-Gordon equations on a curved submanifold, in the presence of an external electromagnetic field. We examine the singular features of these equations and present some applications to condensed matter. In the second part of this thesis, we start from the quantum mechanics on the submanifold and then we formulate the quantum field theory (QFT) on the submanifold. We will show that the \"free\" QFT on a submanifold can be schematically represented as a quantum theory of free fields on a curved background plus a scalar potential and an external SO(n-m) Yang-Mills field. For this theory, we compute the one-loop effective action for scalars and fermions at finite temperature and chemical potential to all orders using the Seely-DeWitt expansion. For interacting theories, we will prove that the theory known as reduced quantum electrodynamics (RQEDd?,de) can be recovered from the confining potential approach. For a two-dimensional theory, we propose a large class of extensions of the Schwinger model, in which the interaction between fermions goes beyond the linear potential. We demonstrate that, remarkably, these extensions are exactly solvable for massless fermions and that there is no dynamical mass generation for the fermions. Furthermore, we construct a new family of exactly bosonized theories. We also show that RQED4,2 has the necessary features to be identified as an effective field theory for graphene wires. Finally, we study the effect of an interplay of real and pseudomagnetic fields in graphene. We compute the fermion condensate, the induced vacuum charge density, the one-loop effective action and the magnetization, for this system. We will show that the presence of a non-zero pseudomagnetic field makes it possible, experimentally, to observe an induced vacuum charge density. Moreover, we will show that it is possible to have control over the magnetization as well as the dynamical mass for each valley in graphene, by straining or varying the applied magnetic field.
7

Superfícies mínimas e curvatura de gauss de conóides em espaços de finsler com (α,β) - métricas / Minimal surfaces and gauss curvature of conoid in finsler spaces with (α,β) - metrics

Daza, John Elber Gómez 28 March 2014 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-11-14T20:38:05Z No. of bitstreams: 2 Dissertação - John Elber Gómez Daza - 2014.pdf: 3536612 bytes, checksum: f7e71dbc62f224cd024c41999d7b2f0c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-11-18T15:40:54Z (GMT) No. of bitstreams: 2 Dissertação - John Elber Gómez Daza - 2014.pdf: 3536612 bytes, checksum: f7e71dbc62f224cd024c41999d7b2f0c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-11-18T15:40:54Z (GMT). No. of bitstreams: 2 Dissertação - John Elber Gómez Daza - 2014.pdf: 3536612 bytes, checksum: f7e71dbc62f224cd024c41999d7b2f0c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-03-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We consider(α,β)−metric F=αφ(β α), whereα is the euclidean metric,φ is a smooth positive function on a symmetric interval I=(−b0,b0) and β is a 1-form with the norm b,0 ≤b<b0, on the Finsler manifoldM. We study the minimal surfaces on these spaces with respect to the Holmes-Thompson volume form and we present the equation that characterize the minimal hypersurfaces in general Minkowski space. We prove that the conoids in three-dimensional space are minimal if and only if is a helicoid or a plane, also we show that the Gauss curvature of conoid in Randers-Minkowski 3-space is not always nonpositive on minimal surfaces. Finally, an ordinary differential equation that characterizes minimal surfaces of revolution and an example of minimal surface of rotationaregiven. / Neste trabalho consideramos (α,β)−métricas do tipo F=αφ(β α), ondeα é a métrica euclidiana,φ é uma função positiva suave sobre um intervalo simétrico I=(−b0,b0) e β é uma 1-forma de norma b,0 ≤ b < b0, sobre uma variedade de Finsler M. Estudamos superfícies mínimas nestes espaços (M,F) com respeito à forma volume de Holmes-Thompson e apresentamos uma equação que caracteriza as hipersuperfícies mínimasemumespaçogeral(α,β)−Minkowski.Mostramosqueosconóidesnoespaço tridimensional comβ na direção do eixo ˜y3 são mínimas se, e somente se, é um helicóide ou um plano, provamos também que a curvatura de Gauss do conóide em um espaço tridimensional de Randers-Minkowski pode ser positiva em superfícies mínimas. Finalmente apresentamos uma equação diferencial ordinária que caracteriza superfícies mínimas de rotação eum exemplo de superfíciemínimade rotação.
8

Exact Lagrangian cobordism and pseudo-isotopy

Suárez López, Lara Simone 09 1900 (has links)
Dans cette thèse, on étudie les propriétés des sous-variétés lagrangiennes dans une variété symplectique en utilisant la relation de cobordisme lagrangien. Plus précisément, on s'intéresse à déterminer les conditions pour lesquelles les cobordismes lagrangiens élémentaires sont en fait triviaux. En utilisant des techniques de l'homologie de Floer et le théorème du s-cobordisme on démontre que, sous certaines hypothèses topologiques, un cobordisme lagrangien exact est une pseudo-isotopie lagrangienne. Ce resultat est une forme faible d'une conjecture due à Biran et Cornea qui stipule qu'un cobordisme lagrangien exact est hamiltonien isotope à une suspension lagrangianenne. / In this thesis we study the properties of Lagrangian submanifolds of a symplectic manifold by using the relation of Lagrangian cobordism. More precisely, we are interested in determining when an elementary Lagrangian cobordism is trivial. Using techniques coming from Floer homology and the s-cobordism theorem, we show that under some topological assumptions, an exact Lagrangian cobordism is a Lagrangian pseudo-isotopy. This is a weaker version of a conjecture proposed by Biran and Cornea, which states that any exact Lagrangian cobordism is Hamiltonian isotopic to a Lagrangian suspension.
9

Structures quantiques de certaines sous-variétés lagrangiennes non-monotones

Ngô, Fabien 06 1900 (has links)
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω, Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On note (QH(L), ∗), l’homologie quantique de L munie du produit quantique. Le principal objectif de cette dissertation est de généraliser leur construction à un classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L) va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées ici. Dans le cas presque monotone, on s’intéresse principalement à des questions de déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens. Enfin nous terminons par une application combinant les deux approches, concernant la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans CPn. / Let (M,ω) be a closed connected symplectic maniflod. We consider lagrangian submanifolds α : L →֒ (M,ω). If α is monotone, i.e. there exists η > 0 such that ημ = ω, Paul Biran and Octav Cornea defined a relative version of quantum homology. In this relative setting they deformed the boundary operator of the Morse complex as well as the intersection product by means of pseudoholomorphic discs. We note (QH(L,Λ), ∗) the quantum homology of L endowed with the quantum product. The main goal of this dissertation is to generalize their construction to a larger class of spaces. Namely, we consider : either the so called almost monotone lagrangian submanifolds, i.e. α is C1-close to a monotone lagrangian embedding, or the toric fibers of toric Fano manifolds. In those cases, we are able to generalize the constructions made by Biran and Cornea. However, in those non necessarily monotone cases, QH(L) will depend on some choices, but in a way irrelevant for the applications we have in mind. In the almost monotone case, we are mainly interested in displaceability, uniruling and ernegy estimates for hamiltonian diffeomorphsims. Finally, we end by an application, that combine the two approaches, concerning the dynamics of hamiltonian that displace all non-monotone toric fibers of CPn.
10

Étude des sous-variétés dans les variétés kählériennes, presque kählériennes et les variétés produit / Study of submanifolds of Kaehler manifolds, nearly Kaehler manifolds and product manifolds

Moruz, Marilena 03 April 2017 (has links)
Cette thèse est constituée de quatre chapitres. Le premier contient les notions de base qui permettent d'aborder les divers thèmes qui y sont étudiés. Le second est consacré à l'étude des sous-variétés lagrangiennes d'une variété presque kählérienne. J'y présente les résultats obtenus en collaboration avec Burcu Bektas, Joeri Van der Veken et Luc Vrancken. Dans le troisième, je m'intéresse à un problème de géométrie différentielle affine et je donne une classification des hypersphères affines qui sont isotropiques. Ce résultat a été obtenu en collaboration avec Luc Vrancken. Et enfin dans le dernier chapitre, je présente quelques résultats sur les surfaces de translation et les surfaces homothétiques, objet d'un travail en commun avec Rafael López. / Abstract in English not available

Page generated in 0.0489 seconds