Spelling suggestions: "subject:"symplectic""
11 |
Métriques presque-kählériennes extrémalesLejmi, Mehdi 07 1900 (has links) (PDF)
Le thème principal de cette thèse est l'étude des métriques presque-kählériennes extrémales compatibles sur une variété symplectique compacte. Nous allons généraliser les notions d'invariant de Futaki et du champ de vecteurs extrémal sur une variété kählérienne compacte au cas presque-kählérien. Nous allons montrer la périodicité du champ de vecteurs extrémal quand la forme symplectique représente une classe cohomologique entière modulo torsion. Nous donnerons une formule explicite de la courbure scalaire hermitienne en coordonnées de Darboux. Ceci nous permettra, en dimension 4, de construire des exemples de métriques strictement presque-kählériennes qui satisfont l'égalité dans les estimations de LeBrun. Nous allons étudier la stabilité sous déformations des métriques presque-kählériennes extrémales en dimension 4. Étant donné un chemin lisse de métriques presque-kählériennes compatibles avec une forme symplectique fixe, tel que au temps zéro la métrique est kählérienne et extrémale, nous prouverons, pour un temps assez petit et sous une certaine condition, l'existence d'une famille de métriques presque-kählériennes extrémales, compatibles avec la même forme symplectique, telle que chaque structure presque-complexe induite est difféomorphe à celle induite par le chemin. En particulier, le difféomoprhisme est l'identité au temps zéro. Sur une variété torique, nous allons discuter de l'unicité et la stabilité des métriques presque-kählériennes extrémales invariantes par un tore dans l'orbite 'complexifié' par l'action du groupe des hamiltoniens.
______________________________________________________________________________
|
12 |
Sous-variétés lagrangiennes monotonesGadbled, Agnès 14 June 2008 (has links) (PDF)
La condition de monotonie pour les sous-variétés lagrangiennes a été introduite par Oh en 1993. C'est une version relative d'une condition définie par Floer pour les variétés symplectiques. Ces conditions permettent d'obtenir la bonne définition d'homologies de type Floer, en particulier de l'homologie de Floer lagrangienne, outil très utile pour l'étude de plongements lagrangiens.<br /> <br />Dans cette thèse, nous exploitons les hypothèses de monotonie en théorie de Floer sous deux aspects. Un premier aspect est l'étude d'une nouvelle famille d'exemples de variétés symplectiques monotones et de leurs sous-variétés lagrangiennes monotones. Cette famille d'exemples est construite par découpe symplectique à partir du cotangent de variétés munies d'une action libre du cercle. Un second aspect est la construction d'une homologie de type Floer-Novikov pour des sous-variétés lagrangiennes d'un cotangent qui sont dites monotones sur les lacets. On en déduit de nouveaux résultats d'obstruction de plongements lagrangiens monotones sur les lacets dans le cotangent de variétés qui fibrent sur le cercle.
|
13 |
La suite spectrale de Leray-Serre en homologie de Floer des varietes symplectiques compactes a bord de type contactOANCEA, ALEXANDRU 18 September 2003 (has links) (PDF)
Les groupes d'homologie de Floer pour varietes compactes a bord de type contact n'ont pas de correspondant topologique, a la difference des varietes fermees. Le but de cette these est d'en donner des proprietes qualitatives lorsque la variete est munie de structures topologiques supplementaires. Nous avons en vue les fibrations symplectiques (eventuellement triviales). Le premier chapitre de la these comprend deux parties : la premiere compare les differentes constructions de l'homologie de Floer et met en relief le principe specifique aux varietes a bord, a savoir la necessite d'obtenir des estimations a priori sur les solutions de l'equation de Floer. On explique comment les groupes d'homologie de Floer sont relies a la conjecture de Weinstein et on calcule par une methode nouvelle la cohomologie d'une boule dans un espace vectoriel complexe. La deuxieme partie presente une extension de la definition des groupes d'homologie de Floer par des hamiltoniens ``asymptotiquement lineaires", extension que nous utiliserons par la suite. Nous travaillons directement dans des varietes non compactes convexes a l'infini, qui sont des completees symplectiques de varietes compactes a bord de type contact. Le deuxieme chapitre demontre la formule de Kunneth en homologie de Floer pour un produit de varietes a bord de type contact restreint. Ceci correspond au cas d'une fibration triviale. Le troisieme chapitre donne une interpretation de la suite spectrale de Leray-Serre classique en termes exclusifs d'homologie de Morse, qui constitue un modele simple pour l'homologie de Floer. Le quatrieme chapitre etudie l'existence d'une suite spectrale de Leray-Serre pour un certain type de fibrations symplectiques a bord au-dessus d'une base fermee. L'existence de la suite spectrale est etablie pour les fibres en droites hermitiens a courbure negative. Dans le cas general, son existence est ramenee a une estimation d'energie pour trajectoires de Floer, qui est conjecturee.
|
14 |
Théorèmes de Künneth en homologie de contactZenaidi, Naim 24 September 2013 (has links)
L'homologie de contact est un invariant homologique pour variétés de contact dont la définition est basée sur l'utilisation de courbes holomorphes. Ce travail de thèse concerne l'étude de cet invariant dans le cas des produits de contact. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
15 |
Diamètre spectral et cohomologie symplectiqueMailhot, Pierre-Alexandre 08 1900 (has links)
Le groupe de difféomorphismes hamiltoniens à support compact d’une variété
symplectique admet une distance naturelle bi-invariante, d’après les
travaux de Viterbo, Schwarz, Oh, Frauenfelder et Schlenk, construite à partir
des invariants spectraux en homologie de Floer Hamiltonienne. Cette
distance, appelée la norme spectrale, s’est révélée être un outil fort utile en
topologie symplectique. Par contre, son diamètre reste inconnu en général.
En fait, pour les variétés symplectiques fermées, il n’existe même pas de
critère pour déterminer si la norme spectrale a un diamètre fini ou infini.
Il a été conjecturé que, pour les variétés symplectiquement asphériques, le
diamètre de la norme spectrale est infini.
Dans cette thèse, nous démontrons que pour tout domaine de Liouville, la
norme spectrale a un diamètre infini si et seulement si la cohomologie symplectique
du domaine de Liouville en question est non nulle. Ceci généralise
un résultat de Monzner-Vichery-Zapolsky et admet plusieurs applications
dans le cadre des variétés symplectiques fermées. En particulier, nous démontrons
que le produit de deux variétés symplectiquement asphériques a
un diamètre spectral infini. Plus généralement, nous démontrons que toute
variété symplectiquement asphérique contenant un domaine de Liouville incompressible
de codimension zéro avec cohomologie symplectique non nulle
doit avoir un diamètre spectral infini. / The group of compactly supported Hamiltonian diffeomorphisms of a symplectic
manifold is endowed with a natural bi-invariant distance, due to
Viterbo, Schwarz, Oh, Frauenfelder and Schlenk, coming from spectral invariants
in Hamiltonian Floer homology. This distance, called the spectral
norm, has found numerous applications in symplectic topology. However,
its diameter is still unknown in general. In fact, for closed symplectic manifolds
there is no unifying criterion for the diameter to be finite or infinite.
It has been conjectured that for closed symplectically aspherical manifolds,
the spectral norm has infinite diameter.
In this thesis, we prove that for any Liouville domain the spectral norm has
infinite diameter if and only if its symplectic cohomology does not vanish.
This generalizes a result of Monzner-Vichery-Zapolsky and has applications
in the setting of closed symplectic manifolds. For instance, we show that the
product of two closed symplectically aspherical manifold has an infinite spectral
diameter . More generally, we prove that any symplectically aspherical
manifold which contains an incompressible Liouville domain of codimension
zero with non-vanishing symplectic cohomology must have infinite spectral
diameter.
|
16 |
Structures quantiques de certaines sous-variétés lagrangiennes non-monotonesNgô, Fabien 06 1900 (has links)
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés
lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω,
Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de
Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On
note (QH(L), ∗), l’homologie quantique de L munie du produit quantique.
Le principal objectif de cette dissertation est de généraliser leur construction à un
classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque
monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres
toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L)
va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées
ici.
Dans le cas presque monotone, on s’intéresse principalement à des questions de
déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens.
Enfin nous terminons par une application combinant les deux approches, concernant
la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans
CPn. / Let (M,ω) be a closed connected symplectic maniflod. We consider lagrangian submanifolds
α : L →֒ (M,ω). If α is monotone, i.e. there exists η > 0 such that ημ = ω, Paul Biran and Octav Cornea defined a relative version of quantum homology. In this
relative setting they deformed the boundary operator of the Morse complex as well as the
intersection product by means of pseudoholomorphic discs. We note (QH(L,Λ), ∗) the quantum homology of L endowed with the quantum product.
The main goal of this dissertation is to generalize their construction to a larger class
of spaces. Namely, we consider : either the so called almost monotone lagrangian submanifolds,
i.e. α is C1-close to a monotone lagrangian embedding, or the toric fibers of
toric Fano manifolds. In those cases, we are able to generalize the constructions made by Biran and Cornea. However, in those non necessarily monotone cases, QH(L) will depend on some
choices, but in a way irrelevant for the applications we have in mind.
In the almost monotone case, we are mainly interested in displaceability, uniruling
and ernegy estimates for hamiltonian diffeomorphsims.
Finally, we end by an application, that combine the two approaches, concerning the
dynamics of hamiltonian that displace all non-monotone toric fibers of CPn.
|
17 |
Rigidité du crochet de Poisson en topologie symplectiqueRathel-Fournier, Dominique 09 1900 (has links)
No description available.
|
18 |
Structures quantiques de certaines sous-variétés lagrangiennes non-monotonesNgô, Fabien 06 1900 (has links)
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés
lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω,
Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de
Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On
note (QH(L), ∗), l’homologie quantique de L munie du produit quantique.
Le principal objectif de cette dissertation est de généraliser leur construction à un
classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque
monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres
toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L)
va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées
ici.
Dans le cas presque monotone, on s’intéresse principalement à des questions de
déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens.
Enfin nous terminons par une application combinant les deux approches, concernant
la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans
CPn. / Let (M,ω) be a closed connected symplectic maniflod. We consider lagrangian submanifolds
α : L →֒ (M,ω). If α is monotone, i.e. there exists η > 0 such that ημ = ω, Paul Biran and Octav Cornea defined a relative version of quantum homology. In this
relative setting they deformed the boundary operator of the Morse complex as well as the
intersection product by means of pseudoholomorphic discs. We note (QH(L,Λ), ∗) the quantum homology of L endowed with the quantum product.
The main goal of this dissertation is to generalize their construction to a larger class
of spaces. Namely, we consider : either the so called almost monotone lagrangian submanifolds,
i.e. α is C1-close to a monotone lagrangian embedding, or the toric fibers of
toric Fano manifolds. In those cases, we are able to generalize the constructions made by Biran and Cornea. However, in those non necessarily monotone cases, QH(L) will depend on some
choices, but in a way irrelevant for the applications we have in mind.
In the almost monotone case, we are mainly interested in displaceability, uniruling
and ernegy estimates for hamiltonian diffeomorphsims.
Finally, we end by an application, that combine the two approaches, concerning the
dynamics of hamiltonian that displace all non-monotone toric fibers of CPn.
|
19 |
Quasi-morphismes et difféomorphismes hamiltoniensPy, Pierre 04 February 2008 (has links) (PDF)
Dans ce travail, nous étudions différents invariants de nature algébrique et dynamique définis sur le groupe des difféomorphismes hamiltoniens d'une surface fermée orientée. Occasionnellement, nous considérerons également le groupe des difféomorphismes hamiltoniens de certaines variétés symplectiques de dimension supérieure. Ces invariants peuvent être vus comme des généralisations du nombre de rotation de Poincaré, et des vecteurs de rotations associés aux difféomorphismes des surfaces. D'autre part, tous ces invariants sont reliés à la théorie de la cohomologie bornée. <br /><br />Dans le premier chapitre nous construisons des quasi-morphismes sur le groupe des difféomorphismes hamiltoniens d'une surface de genre strictement positif, qui sont des homomorphismes en restriction au sous-groupe des difféomorphismes à support dans un ouvert difféomorphe à un disque. Ces constructions sont motivées par une question de Entov et Polterovich. Dans le second chapitre nous construisons un quasi-morphisme défini sur le revêtement universel du groupe des difféomorphismes hamiltoniens d'une variété symplectique monotone. <br /><br />Le troisième chapitre contient quelques résultats concernant les actions préservant l'aire sur les surfaces de réseaux dans les groupes de Lie semi-simples. Dans l'esprit du "programme de Zimmer", nous montrons comment l'existence de nombreux quasi-morphismes, combinée avec des théorèmes d'annulation en cohomologie bornée, pourrait être utile pour exclure l'existence d'actions de réseaux de rang supérieur. Le dernier chapitre contient quelques remarques autour de la distance de Hofer.
|
20 |
Geometry and quantization of Howe pairs of symplectic actions / Géométrie et quantification de paires de Howe d'actions symplectiquesBalleier, Carsten 01 July 2009 (has links)
Motivé par la dualité de Howe dans la théorie des représentations de groupes de Lie, on cherche une construction analogue en géométrie symplectique, c'est-à-dire on souhaite que sa quantification géométrique décomposé de manière Howe-duale. On trouve que dans le contexte symplectique, le cadre correct est donné par deux groupes de Lie agissant sur la même variété symplectique si ces actions commutent et satisfont la condition de Howe symplectique, i. e., ces actions sont hamiltoniennes et leurs fonctions collectives sont leurs centralisateurs mutuelles dans l'algèbre de Poisson des fonctions lisses sur la variété symplectique. Une fois cette condition est remplie, nous pouvons décrire la structure d'orbites en détail. En particulier, il y a une bijection entre les orbites coadjointes dans une image d'application moment et celles dans l'image de l'autre application moment – or, il est cette bijection que nous appelerons la correspondance d’orbites coadjointes. On poursuit l'étude de la correspondance d’orbites coadjointes et on montre que, si les groupes de Lie qui agissent sont compacts et la variété symplectique est préquantifiable, l'intégralité est préservée par la correspondance. Ainsi, il est possible d'associer en même temps des représentations irréductibles aux deux orbites de la correspondance. Donc, nous avons une bijection entre certaines parties des duaux unitaires des deux groupes de Lie qui agissent sur la variété symplectique. En appliquant des résultats connus qui assurent que la quantification et la réduction commutent, nous constatons que la quantification d’une variété kählerienne (vue comme une représentation du produit des deux groupes qui agissent sur la variété) admet une décomposition en somme direct sans multiplicités de produits tensoriels des représentations irréductibles des deux groupes, les paires étant données par la bijection obtenue précédemment –parfaitement en accord avec la dualité de Howe. Ce résultat principal est accompagné par l’étude de la structure locale d’une variété avec deux actions hamiltoniennes qui commutent, ce qui donne une version locale de la correspondance d'orbites, ainsi que par des réflexions sur la relation entre la correspondance d'orbites coadjointes et la correspondance de feuilles symplectiques généralisées dans des paires duales singulières / Motivated by the representation-theoretic notion of Howe duality, we seek an analogous construction in symplectic geometry in the sense that its geometric quantization decomposes in a Howe dual fashion. We find that in the symplectic context, the correct setting is given by two Lie groups acting on a symplectic manifold when these two actions commute and satisfy the symplectic Howe ondition, i. e., these actions are Hamiltonian and their collective functions are their mutual centralizers in the Poisson algebra of smooth functions on the symplectic manifold. Once this condition is satisfied, we can describe the orbit structure in detail. In particular, there is a bijection between the coadjoint orbits in one moment image and those in the other moment image – this bijection is what we call the coadjoint orbit correspondence. We study the coadjoint orbit correspondence further and show, if the acting Lie groups are compact and the symplectic manifold is prequantizable, that it preserves integrality of the coadjoint orbits, so to both coadjoint orbits in the correspondence an irreducible representation can be associated. We thus have a bijection between certain parts of the unitary duals of both Lie groups acting on the symplectic manifold. Applying known results about the interchangeability of quantization and reduction, we see that for a Kähler manifold, its quantization (as a representation of the product of both groups acting on the manifold) decomposes into a multiplicity-free direct sum of tensor products of irreducibles of the individual groups, the pairs being given by the bijection obtained before – as one would expect according to Howe duality. This main result is accompanied by a study of the local structure of a manifold carrying two commuting Hamiltonian action which proves a local version of the orbit correspondence and by a discussion about the relation of the coadjoint orbit correspondence to the generalized symplectic leaf correspondence in singular dual pairs
|
Page generated in 0.058 seconds