Spelling suggestions: "subject:"symplectic""
41 |
Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theoryAlbouy, Olivier 12 June 2009 (has links) (PDF)
Pour d non puissance d'un nombre premier, le nombre maximal de bases deux à deux décorrélées d'un espace de Hilbert de dimension d n'est pas encore connu. Dans ce mémoire, nous commençons par donner une construction de bases décorrélées en lien avec une famille de représentations irréductibles de l'algèbre de Lie su(2) et faisant appel aux sommes de Gauss.Puis nous étudions de façon systématique la possibilité de construire de telle bases au moyen des opérateurs de Pauli. 1) L'étude de la droite projective sur Zdm montre que, pour obtenir des ensembles maximaux de bases décorrélées à l'aide d'opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels de ces opérateurs. 2) Les sous-modules lagrangiens de Zd2n, dont nous donnons une classification complète, rendent compte des ensembles maximalement commutant d'opérateurs de Pauli. Cette classification permet de savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées : ils correspondent aux demi-modules lagrangiens, qui s'interprètent encore comme les points isotropes de la droite projective (P(Mat(n, Zd)²),ω). Nous explicitons alors un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules lagrangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et bases décorrélées. 3) Des corollaires sur le groupe de Clifford et l'espace des phases discret sont alors développés.Enfin, nous présentons quelques outils inspirés de l'étude précédente. Nous traitons ainsi du rapport anharmonique sur la sphère de Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli continus et nous comparons l'entropie de von Neumann à une mesure de l'intrication par calcul d'un déterminant.
|
42 |
Singularités lagrangiennesSevenheck, Christian 27 January 2003 (has links) (PDF)
Dans cette thèse, nous développons une théorie de<br />déformation pour les singularités lagrangiennes. Pour une singularité<br />lagrangienne, un complexe de modules à différentielle non-linéaire,<br />dont la première cohomologie est isomorphe à l'espace de déformations<br /> infinitésimales de la singularité, est défini. La cohomologie en degré deux contient des informations sur les obstructions. Ce<br />complexe est relié à la théorie des modules différentiels. Nous<br />démontrons que, sous une condition géométrique, sa cohomologie est<br />constituée de faisceaux constructibles. Nous décrivons une méthode<br />utilisant du calcul formel pour déterminer cette cohomologie pour<br />des surfaces quasi-homogènes.
|
43 |
Sur les courbes invariantes par un difféomorphisme C1-générique symplectique d'une surfaceGirard, Marie Anne 18 December 2009 (has links) (PDF)
Au début du XXème siècle, Poincaré puis Birkhoff ont été amenés, lors de leur recherche sur le problème restreint des trois corps, à étudier les courbes invariantes par une transformation d'une surface préservant l'aire. Cinquante ans plus tard, les théorèmes KAM démontrent la persistance de courbes invariantes après perturbation en topologie de classe k plus grande ou égale à trois. On peut alors se demander ce que devient ce résultat en topologie de classe moins élevée. Par ailleurs, l'étude des dynamiques C1-génériques connaît de nombreux développements, grâce notamment au Connecting Lemma. Par exemple, Bonatti et Crovisier on démontré qu'un difféomorphisme C1-générique d'une telle surface possède un ensemble dense de points dont l'orbite sort de tout compact. Ces deux résultats permettent de penser qu'un difféomorphisme C1-générique d'une surface n'admet pas de courbes fermées simples invariantes. C'est ce que nous démontrons dans ce travail. On obtient assez facilement, en utilisant le Connecting Lemma ainsi que les propriétés topologiques de l'anneau, qu'un difféomorphisme C1-générique de l'anneau possède des points périodiques sur toute courbe fermée simple invariante. Cela se généralise à une surface quelconque en utilisant une famille dénombrable d'anneau constituant une base de voisinages d'une courbe fermée simple quelconque. La construction d'une telle famille d'anneaux est le principal résultat du premier chapitre. Il s'agit alors de supprimer les points périodiques sur les courbes invariantes. Dans un premier temps, nous nous inspirerons d'un argument qu'Herman utilise dans le cadre de courbes invariantes par les twists de l'anneau pour montrer que tous les points périodiques ne peuvent être hyperboliques. Ensuite, nous définissons une propriété, la propriété Γ, qui si elle est vérifiée par un difféomorphisme symplectique et l'un de ses points périodiques elliptiques, empêche que ce point périodique appartienne à une courbe invariante. En montrant que cette propriété est vérifiée par un difféomorphisme C1-générique et tous ses points périodiques elliptiques, nous obtenons le résultat souhaité. Dans le quatrième chapitre, nous nous employons à définir de façon rigoureuse la notion de fonction génératrice qui est l'outil classique pour perturber des difféomorphismes symplectiques
|
44 |
Quantisation of the Laplacian and a Curved Version of Geometric QuantisationMeyer, Julien 29 August 2016 (has links)
Let (E,h) be a holomorphic, Hermitian vector bundle over a polarized manifold. We provide a canonical quantisation of the Laplacian operator acting on sections of the bundle of Hermitian endomorphisms of E. If E is simple we obtain an approximation of the eigenvalues and eigenspaces of the Laplacian. In the case when the bundle E is the trivial line bundle, we quantise solutions to the heat equation on the manifold. Furthermore we show that geometric quantisation can be seen as the differential of a natural map between two Riemannian manifolds. Motivated by this fact we compute its next order approximation, namely its Hessian. / Option Mathématique du Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
45 |
Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne / Global and infinitesimal complex geometry of twistor spaces of hyperkähler manifoldsPillet, Basile 13 June 2017 (has links)
L'objet de cette thèse est la construction d'objets géométriques sur une variété C paramétrant des courbes rationnelles dans l'espace des twisteurs d'une variété hyperkählérienne. On établira une correspondance entre la géométrie complexe de l'espace des twisteurs et des propriétés différentielles sur C (opérateurs différentiels et courbure de la structure riemanienne complexe héritée de la variété hyperkählérienne). Les premiers chapitres précisent le cadre et les résultats connus. Dans les chapitres 4, 5 et 6 on établit une équivalence de catégories entre fibrés triviaux en restriction à chaque droite de l'espace des twisteurs et les fibrés à connexion sur C satisfaisant une condition de courbure. Le chapitre 7 prolonge cette correspondance sur le plan cohomologique tandis que le chapitre 8 en fait l'étude infinitésimale en reliant la courbure de la connexion avec les épaississements infinitésimaux des fibrés le long des droites. / The purpose of this thesis is to construct geometric objects on a manifold C parametrizing rational curves in the twistor space of a hyperkähler manifold. We shall establish a correspondence between the complex geometry of the twistor space and some differential properties of C (differential operators and curvature of a complex riemannian structure inherited from the base hyperkähler manifold). The first chapters gather some classical results of the theory of hyperkähler manifolds and their twistor spaces. In the chapters 4, 5 and 6, we construct an equivalence of categories between bundles on the twistor space which are trivial on each line and bundles with a connexion of C satisfying certain curvature conditions. The chapter 7 extends this correspondence on the cohomological level whereas the chapter 8 explores its infinitesimal version ; it links curvature of the connexion with thickening (in the sense of LeBrun) of the bundle along the lines.
|
46 |
Dynamique hors équilibre des théories classiques des champs et des modèles de spin d’Ising / Out-of-equilibrium dynamics in classical field theories and Ising spin modelsRicateau, Hugo 29 September 2017 (has links)
Cette thèse est constituée de deux parties indépendantes. Dans le premier chapitre, nous introduisons une méthode numérique permettant d'intégrer des équations aux dérivées partielles représentant la dynamique Hamiltonienne de théories des champs. Cette méthode est un intégrateur multi-symplectique qui préserve localement le tenseur énergie-impulsion sur de très longues périodes de temps et avec précision. Son principal avantage est d'être extrêmement simple tout en restant bien définie localement. Nous la mettons à l'épreuve sur le cas particulier du modèle phi^4 en 1+1 dimensions; nous expliquons également comment l'implémenter en dimensions supérieures. De plus, nous faisons une présentation géométrique de la structure multi-symplectique et nous introduisons une construction permettant de résoudre le problème de dégénérescence pouvant l'affecter.Le second chapitre traite d'aspects hors équilibre dans les systèmes statistiques: nous nous intéressons en particulier à la question de l'impact d'un taux de refroidissement fini lors d'une trempe à travers une transition de phase du second ordre. Pour décrire plus fidèlement le régime hors équilibre qui se produit avant la transition de phase, nous étendons le mécanisme dit de Kibble-Zurek. Nous décrivons comment la taille caractéristique des objets géométriques présents dans le système dépend du temps et du taux de refroidissement; ceci, avant et une fois le point critique atteint. Ces prédictions théoriques sont mises à l'épreuve sur l'exemple du modèle d'Ising ferromagnétique. Nous décrivons également les propriétés géométriques des domaines qui apparaissent dans le système au cours de la dynamique de refroidissement. / This thesis is made up of two independent parts. In the first chapter, we introduce a novel numerical method to integrate partial differential equations representing the Hamiltonian dynamics of field theories. It is a multi-symplectic integrator that locally conserves the stress-energy tensor with an excellent precision over very long periods. Its major advantage is that it is extremely simple (it is basically a centered box scheme) while remaining locally well defined. We put it to the test in the case of the non-linear wave equation (with quartic potential) in one spatial dimension, and we explain how to implement it in higher dimensions. A formal geometric presentation of the multi-symplectic structure is also given as well as a technical trick allowing to solve the degeneracy problem that potentially accompanies the multi-symplectic structure. In the second chapter, we address the issue of the influence of a finite cooling rate while performing a quench across a second order phase transition. We extend the Kibble-Zurek mechanism to describe in a more faithfully way the out-of-equilibrium regime of the dynamics before crossing the transition. We describe the time and cooling rate dependence of the typical growing size of the geometric objects, before and when reaching the critical point. These theoretical predictions are demonstrated through a numerical study of the emblematic kinetic ferromagnetic Ising model on the square lattice. A description of the geometric properties of the domains present in the system in the course of the annealing and when reaching the transition is also given.
|
47 |
Fibrés vectoriels algébriques de petit rang sur la variété projective P^n / Algebraic vector bundles of small rank on the projective variety P^nBahtiti, Mohamed 08 March 2017 (has links)
1- Généralisation des fibrés instantons spéciaux sur P^2n+1 qui est appelée les fibrés (b+1)-instantons pondérés sur P^2n+1. On a étudié la stabilité de ces fibrés dans le cas où b=0. On a étudié la déformation de fibrés de Steiner pondérés sur P^2n+1. 2- Généralisation des fibrés de Tango sur P^n qui est appelée les fibrés de Tango pondérés sur P^n. On a étudié la stabilité de ces fibrés vectoriels. On a étudié la déformation de ces fibrés vectoriels. 3- Construction de fibrés vectoriels de rang 3 sur P^4. On a étudié la condition pour avoir des fibrés vectoriels qui ne sont pas isomorphes à une somme directe de trois fibrés en droites. / 1 - Generalization of the special instanton bundles on P^2n+1 which is called the (b+1)-weighted instanton bundles on P^2n+1. The stability of these vector bundles was studied in the case b=0. We studied the deformation of weighted Steiner bundles on P^2n+1. 2 - Generalization of the Tango bundles on P^n which is called the weighted Tango bundles on P^n. The stability of these vector bundles has been studied. The deformation of these vector bundles has been studied. 3 - Construction of vector bundles of rank 3 on P^4. We have studied the condition to have vector bundles that do not isomorphic to a direct sum of three line bundles.
|
48 |
Sur les relations entre la topologie de contact et la dynamique de champs de Reeb / On the relationship between contact topology and the dynamics of Reeb flowsAlves, Marcelo Ribeiro de Resende 19 November 2015 (has links)
L'objectif de cette thèse est d'investiguer les relations entre les propriétés topologiques d'une variété de contact et la dynamique des flots de Reeb dans la variété de contact en question. Dans la première partie de la thèse, nous établissons une relation entre la croissance de l’homologie de contact cylindrique d'une variété de contact et l'entropie topologique des flots de Reeb dans cette variété de contact. Nous utilisons ce résultat dans les chapitres 8 et 9 pour montrer l'existence d'un grand nombre des nouvelles variétés de contact de dimension 3 dans lesquelles tous les flots de Reeb ont entropie topologique positive. Dans le chapitre 10, nous prouvons un résultat obtenu en collaboration avec Chris Wendl qui donne une obstruction dynamique pour qu'une variété de contact de dimension 3 soit planaire. Cette obstruction est utilisée pour montrer que, si une variété de contact de dimension 3 possède un flot de Reeb qui est uniformément hyperbolique (Anosov) avec variétés invariantes traversalement orientables, alors cette variété de contact n'est pas planaire. Dans le chapitre 11, nous étudions l'entropie topologique des flots de Reeb dans les fibrés unitaires des surfaces de genre plus grand que 1. Nous montrons que la restriction de chaque flot de Reeb en au ensemble limite de presque toute fibre unitaire a une entropie topologique positive. / In this thesis we study the relations between the contact topological properties of contact manifolds and the dynamics of Reeb flows. On the first part of the thesis, we establish a relation between the growth of the cylindrical contact homology of a contact manifold and the topological entropy of Reeb flows on this manifold. We build on this to show in Chapter 6 that if a contact manifold M admits a hypertight contact form A for which the cylindrical contact homology has exponential homotopical growth rate, then the Reeb flow of every contact form on M has positive topological entropy. Using this result, we exhibit in Chapter 8 and 9 numerous new examples of contact 3-manifolds on which every Reeb flow has positive topological entropy. On Chapter 10 we present a joint result with Chris Wendl that gives a dynamical obstruction for contact 3-manifold to be planar. We then use the obstruction to show that a contact 3-manifold that possesses a Reeb flow that is a transversely orientable Anosov flow, cannot be planar. On Chapter 11 we study the topological entropy for Reeb flows on spherizations. The result we obtain is a refinement of a result of Macarini and Schlenk, that states that every Reeb flow on the unit tangent bundle U of a high genus surface S has positive topological entropy. We show that for any Reeb flow on U, the omega-limit of almost every Legendrian fiber is a compact invariant set on which the dynamics has positive topological entropy.
|
49 |
Rigidité symplectique et EDPs hamiltoniennes / Symplectic rigidity and Hamiltonian PDEsBustillo, Jaime 02 July 2018 (has links)
On étudie les propriétés de rigidité symplectique des difféomorphismes hamiltoniens en dimension finie et en dimension infinie. En dimension finie, les outils principaux qu'on utilise sont les fonctions génératrices et les capacités symplectiques. En dimension infinie on regarde les flots des équations en dérivées partielles (EDPs) hamiltoniennes et, en particulier, les flots qui peuvent être approchés uniformément par des flots hamiltoniens de dimension finie.Dans la première partie de la thèse on étudie les sélecteurs d'action définies à partir des fonctions génératrices et on construit des invariants hamiltoniens pour les sous-ensembles de $R^{2m}times T^*T^k$. Cela nous permet de démontrer un théorème non-squeezing coisotrope pour les difféomorphismes hamiltoniens à support compact de $R^{2n}$. On montre à continuation que cette propriété apparaisse dans certains cas non compacts. Finalement, on explique comment ce résultat donne aussi l'information sur le problème de rigidité symplectique en dimension intermédiaire. Encore en dimension finie, on démontre qu'on peut utiliser le théorème du chameau symplectique pour produire des sous-ensembles invariants compacts dans des surfaces d'energie.Dans la deuxième partie on étudie les propriétés de rigidité symplectique des flots des EDPs hamiltoniennes. On se place dans le contexte introduit par Kuksin et on étudie une classe particulière de EDPs semi-linéaires qui peuvent être approchées par flots hamiltoniens de dimension finie. D'abord on donne une nouvelle construction de capacité symplectique en dimension infinie à partir des capacités de Viterbo. Puis on démontre l'analogue de la rigidité intermédiaire pour certaines EDPs hamiltoniennes. Cette classe inclue l'équation d'ondes en dimension 1 avec une non-linéarité bornée, comme par exemple l'équation de Sine-Gordon. Dans la dernière partie de la thèse on s'intéresse à un analogue de la conjecture d'Arnold pour l'équation de Schrödinger périodique avec une non linéarité de convolution. / We study symplectic rigidity properties in both finite and infinite dimension. In finite dimension, the main tools that we use are generating functions and symplectic capacities. In infinite dimension we study flows of Hamiltonian partial differential equations (PDEs) and, in particular, flows which can be uniformly approximated by finite dimensional Hamiltonian diffeomorphisms.In the first part of this thesis we study the action selectors defined from generating functions and we build Hamiltonian invariants for subsets of $R^{2m}times T^*T^k$. This allows us to prove a coisotropic non-squeezing theorem for compactly supported Hamiltonian diffeomorphisms of $R^{2n}$. We then extend this result to some non-compact settings. Finally we explain how this result can give information about the middle dimensional symplectic rigidity problem. Still in finite dimensions, we show that it is possible to use the symplectic camel theorem to create energy surfaces with compact invariant subsets.In the second part of the thesis we study symplectic rigidity properties of flows of Hamiltonian PDEs. We work in the context introduced by Kuksin and study a particular class of semi-linear Hamiltonian PDEs that can be approximated by finite dimensional Hamiltonian diffeomorphisms. We first give a new construction of an infinite dimensional capacity using Viterbo's capacities. The main result of this part is the proof of the analogue of the middle dimensional rigidity for certain types of Hamiltonian PDEs. These include nonlinear string equations with bounded nonlinearity such as the Sine-Gordon equation. In the final part of this thesis we study an analogue of Arnold's conjecture for the periodic Schrödinger equations with a convolution nonlinearity.
|
50 |
L'invariant de Gromov-WittenLiu, Qing Zhe 02 1900 (has links)
Ce mémoire revient sur l'invariant de Gromov-Witten dans le contexte de topologie symplectique. D'abord, on présente un survol des notions nécessaires de la topologie symplectique, qui inclut les espaces vectoriels symplectiques, les variétés symplectiques, les structures presque complexes et la première classe de Chern. Ensuite, on présente une définition de l'invariant de Gromov-Witten, qui utilise les courbes pseudoholomorphes, les espaces de modules ainsi que les applications d'évaluation. Finalement, on donne quelques exemples de calcul d'invariant à la fin de ce mémoire. / The present work reviews the Gromov-Witten invariant in the context of symplectic topology. First, we showcase the basic concepts required for the understanding of the matter, which includes symplectic vector spaces, symplectic manifolds, almost complex structures and the first Chern class. Then, we provide a definition of the Gromov-Witten invariant, after studying pseudoholomorphic curves, moduli spaces and evaluation maps. In the end, we present some examples of Gromov-Witten invariant calculations.
|
Page generated in 0.0428 seconds