151 |
Caracterização, análise físico-química e estabilidade térmica do complexo de inclusão ciclodextrina-17-valerato de betametasona / Physicochemical characterization and thermal stability evaluation of betamethasone 17-valerate cyclodextrincomplexBruno Augusto Leite Evangelista 11 November 2010 (has links)
A preparação de formulações contendo o princípio ativo 17-valerato de betametasona (VB) é amplamente difundida entre as indústrias farmacêuticas, por se tratar de fármaco antiinflamatório de escolha, no tratamento de condições em que a terapia com corticoesteróides é indicada. Muito empregado no tratamento tópico de condições alérgicas e inflamatórias dos olhos, orelhas e nariz, inalação para a profilaxia da asma e também em veterinária. Isto devido ao seu alto poder antiinflamatório, quando comparado a outros corticoesteróides, e sua falta virtual de propriedades mineralocorticóides, causando baixa retenção de sódio e, subsequentemente, de água. Conforme descrita na Farmacopéia Americana USP 32 NF 27, o princípio ativo 17-valerato de betametasona hidrolisa-se em seu isômero 21-valerato de betametasona, seu principal produto de degradação, que possui baixo poder antiinflamatório. Adicionalmente, a norma brasileira em vigência para estudos de estabilidade de medicamentos, RE n°1, de 29 de Julho de 2005, propõe condições estressantes para estudo de estabilidade de longa duração (30°C/75%UR), o que acelera a reação de hidrólise (degradação) do princípio ativo. Conhecidamente, estudos prévios mostram que formulações tópicas contendo o VB (loção, creme, solução e pomada) apresentam uma estabilidade curta. Assim, uma forma de estabilizar o VB é a complexação (inclusão), com compostos de ciclodextrina (CD). O objetivo deste projeto foi estabelecer procedimentos para a obtenção, caracterização físico-química e avaliação de estabilidade térmica do complexo sólido supracitado. Para atender este objetivo técnicas de análise térmica (calorimetria exploratória diferencial e termogravimetria), infravermelho médio com transformada de Fourier, ressonância magnética nuclear e cromatografia líquida de alta eficiência, fizeram-se necessárias. / Preparation of formulations containing the active ingredient betamethasone 17-valerate (VB) is widely defunded within pharmaceutical industry, once it concerns an anti-inflammatory drug and an option, in the treatment of conditions in which corticosteroids therapy is indicated. Often employed in topical treatment of eye, ear and nose allergic and inflammatory conditions, inhalation for asthma prophylaxes, and also in veterinary. This because its high anti-inflammatory activity, when compared to others corticosteroids, and its virtual lack of mineralocorticoids properties, causing a low sodium retention and, subsequently, of water. As described in the United States pharmacopeia USP 32 NF 27, the active ingredient betamethasone 17-valerate hydrolyses into its isomer betamethasone 21- valerate, its main degradation product, that has a low anti-inflammatory activity . Additionally, the Brazilian legislation for drug products stability study, RE n°1, July 29th 2005, introduce long therm stability study stressing conditions (30°C/75%RH), accelerating the reactive hydrolysis (degradation) for the active ingredient. Well known, previous studies show that topical formulations containing VB (lotion, cream, solution and ointment) presents a short stability. Complexation (inclusion) with cyclodextrin (CD) compounds shows a reasonable way to improve the VB stability. The project objective is to establish procedures for the obtainment, physicochemical characterization and solid complex (cited above) thermal stability evaluation. In order to achieve this objective thermal analysis techniques (differential scanning calorimetry and thermogravimetry), Fourier transformation middle infrared, nuclear magnetic resonance and high performance liquid chromatography, were needed.
|
152 |
Two methods for processing an ultrafine ferritic grain size in steels and the thermal stability of the structurePan, L. (Longxiu) 19 October 2004 (has links)
Abstract
In this thesis, methods to process ultrafine ferritic (UFF) structures in steels, i.e. grain sizes below about 3 μm have been investigated. It is shown here, in accordance with the results in the literature, that a steel with a UFF grain size can be obtained by two methods, more or less convenient to mass production: deformation-induced ferrite transformation from fine-grained austenite (the DIF route) and the static recrystallization of various heavily cold-worked initial microstructures (the SRF/SRM route).
In the present work, the influencing factors in the processing of UFF structure in the DIF route have been systematically studied in four low-carbon steels: one C-Mn steel and Nb, Nb-Ti and Nb-high Ti microalloyed steels. A high strain, a low deformation temperature close to Ar3 and a fine prior austenite grain size are beneficial to promote the formation of UFF grains. Especially by using complex pretreatments to refine the prior austenite grain size, cold rolling, repeating the low-temperature reheating cycle or using martensitic initial microstructure, a UFF grain size can be obtained in these steels at the strain of 1.2 (70% reduction) at 780 °C. By controlling the cooling rate, the type of the second phase can be adjusted.
When using the static recrystallization route, it was found that UFF is difficult to obtain from a single-phase ferrite, but it is relatively readily obtained from deformed pearlite, bainite or martensite, especially in high-carbon steels with 0.3–0.8%C. In deformed pearlite, the cementite lamellae fragmented and spheroidised in the course of heavy deformation can provide numerous nucleation sites by the particle stimulated nucleation mechanism and retard the subgrain and recrystallized grain growth. Nucleation and retardation of grain growth are effective also in deformed bainite, martensite or high-carbon tempered martensite, as discussed in detail in the work.
The thermal stability of UFF grained steels was tested and found to be generally excellent, but it varies depending on the processing method. The UFF structure obtained by the SRM route has a thermal stability somewhat weaker than that of the DIF route. For a given steel, UFF grains may show different grain growth modes, related to the dispersion of second phase particles. In the DIF structure, abnormal grain growth occurs at 700 °C after about 2.5 h, while in the SRM structure, normal grain growth takes place slowly at 600 °C. Carbides on the grain boundaries seem to play an important role in inhibiting grain coarsening. No coarse-grained zone was formed at the HAZ of electron beam or laser welded seams, as performed at low heat inputs (up to 1.5 kJ/cm) on thin strips. The hardness even increased from the base metal towards the HAZ and the weld metal in all seams as an indication that they were hardened during the rapid cooling.
|
153 |
Using internet-enabled remote instrumentation for research and training in physics: evaluation of different diffusion barriers for silver metallizationMajiet, Siradz January 2007 (has links)
>Magister Scientiae - MSc / The growth of the Internet has led to many interesting developments for both educational and commercial purposes. In this project an attempt was made to use the Internet for a research purpose to facilitate the determination of the thermal stability of diffusion barriers. Another purpose of this thesis is to investigate the teaching and training use of the Internet through the development of online interactive tools and activities as well as materials. The training aspects are mentioned as it is hoped that this thesis can serve as a form of documentation of the use of the Internet, while the central part was the determination of thermal stability of TiN, TaN and TiW diffusion barriers on Ag.
|
154 |
Amélioration de la stabilité du polydiméthylsiloxane en environnement géostationnaire / Development of new stable polydimethylsiloxanes in geostationary environmentPlanes, Mikael 04 November 2016 (has links)
L’environnement géostationnaire autour de la Terre présente des conditions complexes influençant les performances ainsi que la durée de vie des satellites. En vol et au cours du temps, les polydiméthylsiloxanes se dégradent ce qui se manifeste par une perte de souplesse, de transparence, ou encore une dégradation de l'état de la surface. Dans ce contexte, le but de cette thèse consiste à étudier l’évolution de la stabilité des polydiméthylsiloxanes en environnement géostationnaire simulé et d’autre part à proposer des solutions qui permettent de limiter la dégradation des propriétés d’intérêts technologiques, optiques en particulier. La stabilisation des polydiméthylsiloxanes soumises aux irradiations UV par l’incorporation de différentes structures d’additifs (Hindered Amine Light Stabilizers, absorbeurs UV, nanocristaux de cellulose) a été étudiée. Une autre approche pour augmenter la stabilité des polydiméthylsiloxanes aux rayonnements UV a été envisagée avec le remplacement du système catalytique actuellement utilisé (catalyseur de Karstedt) par l’emploi de dérivés organométalliques à base de Rhodium ou de Platine. Des solutions concernant la stabilisation de ces polydiméthylsiloxanes aux irradiations H+, comme l’ajout d’additifs tels que le polystyrène, les silsesquioxanes ont également été proposées. / The geostationary environment around Earth is complex which strongly influences the satellites performances and lifetime. In flight and over time, polydimethylsiloxanes exhibit degradations like a loss of flexibility and transparency, or a deterioration of the surface state. In this context, the aim of this work was to study the evolution of polydimethylsiloxanes stability in geostationary environment to find solutions to limit the degradation of interest technological properties, in particular the optical one. The stabilization of silicone resins under UV irradiation has been performed by the incorporation of different additives such as Hindered Amine Light Stabilizers, UV Absorbers and cellulose nanocrystals into the PDMS matrix. Generally, polydimethylsiloxanes networks are obtained by hydrosilylation with highly active Karstedt catalyst. Various organometallics derivatives based on Rhodium and Platinum were studied as alternative catalysts for the cross-linking of polydimethylsiloxane in order to improve the UV stability. Finally, different solutions concerning the stabilization of polydimethylsiloxane to proton irradiation, such as the addition of various additives like polystyrene or silsesquioxanes have been investigated.
|
155 |
Nouvelles formulations de résines polyesters insaturés pour l’amélioration du comportement au feu / New formulations of polyester resins to improve fire resistanceTibiletti, Lucie 19 July 2011 (has links)
Les polyesters insaturés sont des résines thermodurcissables particulièrement appréciées pour leur facilité de mise en œuvre et leur coût modéré. Cependant, comme tous les polymères organiques ils ont une réaction au feu médiocre, ce qui est critique dans un certains nombres de d'applications. L'objectif de cette thèse était d'élaborer de nouvelles formulations de résines ayant un comportement au feu amélioré. La première stratégie développée a été le greffage de monomères phosponés dans la matrice polyester. Des monomères méthacryliques et styrénique ont été synthétisés et utilisés pour remplacer une partie du styrène dans la résine. La stabilité thermique des résines modifiées est diminuée, mais leur comportement au feu est globalement meilleur. Des effets du phosphore en phase gazeuse et en phase condensée ont pu être mis en évidence.Dans une seconde partie, une sélection de particules se distinguant par leur nature, leur taille et leur facteur de forme a été testée. Si l'impact des ces charges est assez limité lorsqu'elles sont utilisées individuellement, des tests calorimétriques ont révélé que certaines combinaisons de particules pouvaient améliorer significativement la réaction au feu des résines. Enfin, des associations d'additifs phosphorés et de particules submicroniques ont été investiguées. Le polyphosphate d'ammonium se distingue des autres additifs par un impact très important sur le comportement au feu et particulièrement par le charbonnement important qu'il engendre, cependant sa combinaison avec des charges inorganiques ne s'est pas révélée probante. / Unsaturated polyesters are thermoset resins particularly appreciated for their low cost and easy processing. Nevertheless one of their main drawbacks is their poor fire resistance. The aim of this PhD thesis was to prepare new resin formulations with an improved fire behaviour. The first part of this work was dedicated to the grafting of phosphorous monomers in the polyester matrix. Methacrylic and styrenic monomers were synthesized and used to replace of part of the styrene in the resin. Resin thermal stability was decreased, but on the whole their fire behaviour was improved. Condensed phase and gas phase effects of phosphorus were highlighted.In a second part, a screening of various kinds of particles with different sizes was performed. Calorimetric tests revealed that, while the effect of these particles used alone is limited, a decrease of resin flammability could be achieved with specific combinations. Finally, commercial phosphorous additives were associated with submicronic fillers. From all the additives tested, ammonium polyphosphate stands out, with a powerful impact on the resin fire reaction and especially a much increased charring. However, its combination with inorganic particles was not conclusive.
|
156 |
Papel das redes estruturais proteicas nas propriedades de uma beta-glicosidase / The role of protein structural networks in the properties of a beta-glycosidaseValquiria Pianheri Souza 13 September 2017 (has links)
A análise de proteínas como redes é uma ferramenta poderosa para compreender as suas propriedades e a importância relativa de seus resíduos. Nesta análise, os resíduos que interagem entre si, covalentemente ou não, são chamados conectados. Nesta abordagem, alguns resíduos contribuem mais fortemente para manter as propriedades da rede, sendo chamados de centrais. Diversos trabalhos têm apontado que resíduos centrais da Rede de Estrutura Proteica também são importantes nas propriedades das proteínas, desempenhando papéis na catálise, estabilidade térmica e alosteria. No entanto, existe falta de trabalhos desenhados de forma sistemática para confirmar esta hipótese. Neste sentido, esta tese tem como objetivo avaliar se existe correlação entre a centralidade dos resíduos de uma enzima, a beta-glicosidase de Spodoptera frugiperda, Sfβgli, e a importância destes resíduos na determinação das suas propriedades. Para isso, foram utilizadas duas abordagens (capítulo 1): Na primeira, os resíduos centrais foram diretamente perturbados substituindo-os, através de mutação sítio-dirigida, por alanina. Na segunda, perturbações no resíduo central foram feitas modificando a vizinhança deste resíduo através de mutações que introduziram ou removeram volume de seu entorno. A partir disso, foi avaliado se estas perturbações afetaram as propriedades Sfβgli. De forma geral, foi observado (capítulo 2) que as perturbações nos resíduos centrais por ambas abordagens afetam significativamente a termoestabilidade da proteína, reduzindo a sua Tm em até 15°C e aumentando a velocidade de sua desnaturação térmica em até mais de 20 vezes. Além disso, a atividade catalítica de Sfβgli é reduzida por estas perturbações (capítulo 3), sendo que este efeito e a perda da termoestabilidade parecem resultar da mesma causa, a perturbação do resíduo central. No capítulo 4, a investigação do estado oligomérico da Sfβgli por SAXS revelou que esta ocorre preponderantemente como dímero em citrato-fosfato 100 mM pH 6,0, mas como um grande oligômero, possivelmente um dodecâmero, em fosfato 10 mM pH 6,0. Paralelamente foi demonstrado que Sfβgli passa por uma ativação quando em tampão fosfato 10 mM, convergindo para as propriedades cinéticas de Sfβgli em citrato-fosfato 100 mM. Redes de Estrutura Proteica foram produzidas considerando-se também a interação entre as cadeias polipeptídicas constituintes de oligômeros de Sfβgli (dímeros, tetrâmeros e hexâmeros). Assim, observou-se que cinco resíduos são sempre centrais por betweeness, mesmo considerando diferentes oligomêros da Sfgli. Destes, E187, P188 e N329 desempenham papéis conhecidos na catálise e S247 e N249 foram caracterizados nesta tese. Por fim, no capítulo 5, analisando a centralidade dos resíduos da Rede Estrutural da Sfβgli, observa-se uma preponderante presença de resíduos centrais por CΔLp, closeness e betweeness no topo do beta-barril, demonstrando que esta região é muito próxima dos demais resíduos da proteína. Além disso, uma análise da centralidade dos resíduos de 21 beta-glicosidases GH1 revelou que resíduos centrais por closeness são bastante conservados, sendo encontrados predominantemente no sítio ativo destas enzimas, enquanto que dentre os centrais por betweeness há variabilidade. Portanto os resultados apresentados nesta tese suportam experimentalmente a hipótese de que a centralidade dos resíduos na Rede de Estrutura Proteica é correlacionada com propriedades funcionais das proteínas. / Analysis of protein structures as networks has been shown a powerful tool to understand their properties and to identify important residues. In the network analysis, residues that interact with each other are called connected. Some residues are essential to shorten the connection pathways between distant residues in the protein structure, being called central. Central residues have been proposed to have important roles in catalysis, thermal stability and allostery. In order to experimentally assess the correlation between the residue centrality and its importance in the protein properties, we use two approaches (chapter 1): The first one is to make single mutations at the central residues of a betaglucosidase Sfβgly, changing those residues to alanine. The second one is to perturb a central residue (F251) by changing its environment through single mutations that introduces voids or additional volume. Next, we evaluate how those mutations affect the protein thermostability and function. In general, we have observed (chapter 2) that mutations at central residues reduce the Tm in 2 - 15°C and increase the unfolding rate up to 20 times, suggesting that damages in the central residues make the protein more unstable. Moreover, we have observed (chapter 3) that the perturbation of the central residues reduces Sfβgly catalysis, which seems to arise from the same cause that lead to the loss of thermal stability. Besides that, in chapter 4, the investigation of oligomeric state of Sfgli using SAXS indicated that this protein is mainly a dimer in 100 mM citrate-phosphate pH 6,0, whereas it forms large oligomers, possibly dodecamers, in 10 mM phosphate pH 6,0. In parallel it was shown that Sfβgly undergoes an activation process in 10 mM phosphate and its kinetic parameters converge to those observed for Sfβgly in 100 mM citrate-phosphate. Protein Structural Networks were built considering also that there are links between the polypeptidic chains of the Sfβgly oligomers. We observed 5 residues that are central in all kind of oligomeric structures here analyzed. Three of these residues, E187, P188 and N329, play important roles in the catalysis of this enzyme, and two of them (S247 and N249 are described in this thesis. Lastly, in the chapter 5, we observed that central residues by closeness, betweeness and CΔLp are concentrated at the top of the beta-barrel (C-terminal end of the beta-strands and subsequent loops), suggesting that this region, where the active site is placed, is close, in terms of contacts, to the whole Sfβgly structure. Moreover, we have built the Protein Structural Network of 21 beta-glucosidases of the Glucoside Hydrolases family 1, revealing that the closeness central residues are highly conserved, being located in the active site of these enzymes. On the other hand, betweeness central residues are located in the same sites in the structure of different beta-glucosidases, but they are not always conserved. Shortly, these data experimentally support the hypothesis that the residue centrality in Protein Structural Network is correlated with the protein properties, as catalysis and stability.
|
157 |
Ultrafine grained nickel processed by powder metallurgy : microstructure, mechanical properties and thermal stability / Nickel à grains ultrafins : microstructure, propriétés mécaniques et stabilité thermiqueGarcia de la Cruz, Lucia 14 October 2019 (has links)
La synthèse par métallurgie des poudres de nickel à grains ultrafins (UFG) a été effectuée, et l’effet de l’affinement de la microstructure sur le comportement mécanique et les propriétés physiques a été étudié. La possibilité de coupler le broyage et le frittage flash est étudiée avec des résultats prometteurs. Des échantillons de haute densité avec des tailles de grains d = 0.65 – 4 µm, caractérisés par une fraction élevée des joints de grains Σ3 et un faible niveau de contrainte ont été synthétisés. Les propriétés mécaniques des échantillons UFG montrent une bonne combinaison ductilité-résistance mécanique, avec un impact mineur des porosités présentes. L’étude de l’influence de la taille de grain dans le régime UFG sur les propriétés mécaniques montre une limite d’élasticité supérieure à celle attendue et une capacité d’écrouissage plus faible. Ces observations sont cohérentes avec la microstructure déformée à rupture, étudiée par diffraction d’électrons rétrodiffusés et microscopie électronique en transmission. Une haute diffusivité, mesurée par des expériences de traceurs radioactifs, montrent des profils de pénétration très différents liés aux structures de porosités diverses présents dans les échantillons. Ces différentes structures sont aussi responsables de la densification rétrograde observée, uniquement pour les échantillons frittés à partir de poudres broyées. / The present manuscript concerns the synthesis of ultrafine grained (UFG) Ni by powder metallurgy, and the study of the influence of UFG microstructures on the mechanical behavior and physical properties. The possibilities of coupling ball milling and Spark Plasma Sintering are presented showing promising results. Highly dense homogeneous specimens are obtained, with average grain sizes d = 0.65 - 4 µm, and microstructures highlighted by a high fraction of Σ3 grain boundaries dependent on grain size. The mechanical properties in tensile testing for UFG samples are evaluated showing a good combination of strength and ductility, with little impact from porosities, the major drawback of powder metallurgy. The influence of grain size in the UFG regime on the mechanical properties is investigated, showing strength values that deviate from the expected behavior for grain refinement. Likewise, a reduced strain hardening capacity is depicted which correlates to the microstructural observations performed on the deformed state. High diffusivity measured by means of radiotracer experiments is observed in the sintered samples, displaying different penetration profiles that relate to diverse porosity structures. Such structures are also responsible for retrograde sintering observed exclusively in samples processed from BM powders.
|
158 |
Tepelně technické posouzení skladby vegetační střechy s vlivem vlhkosti / The effects of vegetative roofs onto the thermal stability of a building objectMajsniar, Michal Unknown Date (has links)
Dissertation deals with thermal technical assessment songs vegetation roof with moisture, the more the influence of vegetation on the roof thermal stability of the structure. The aim of this work is to demonstrate the beneficial effect of vegetation roofs, specifically growing Formation of thermo-technical point of view on the favorable temperature conditions in the building. Such speech can be captured only if it is judged-temperature profile dynamically daily operation of real marginal climatic temperatures. Using a stationary or quasi-stationary boundary climatic temperatures which are usually used for the determination of the energy performance of buildings, said effect can not be collected. Demanding simulation calculation, which apply material properties - thermal conductivity, density and thermal capacity, but gives a realistic picture of the thermal processes in progress not only in the roof structure of the building, but also across the entire circuit construction of a building. During the preparation of the dissertation was assembled machine program that works with the energy flow between rooms in the building and the surrounding environment. Furthermore calculates temperature gain of residence of persons, internal lighting and sunlight. The values of the internal environment are calculated from surface temperature, relative humidity, air exchange and, of course, the indoor air temperature with hourly weather data. In constructing the program was included in the calculation of the solar radiation both on flat and on an inclined surface. The output of the energy value and temperature conditions in individual rooms, which include not only thermal insulation but also thermal storage properties of an object. Using experimental measurements were able to demonstrate that the calculated values closely correlate real thermal processes, so it can be demonstrated through the calculated results of the vegetation roof has a favorable effect on the thermal state espe
|
159 |
Facile Synthesis and Characterization of a Thermally Stable Silica-Doped Alumina with Tunable Surface Area, Porosity, and AcidityKhosravi Mardkhe, Maryam 12 March 2014 (has links)
Mesoporous γ-Al2O3 is one of the most widely used catalyst supports for commercial catalytic applications. The performance of a catalyst strongly depends on the combination of textural, chemical and physical properties of the support. Pore size is essential since each catalytic system requires a unique pore size for optimal catalyst loading, diffusion and selectivity. In addition, high surface area and large pore volume usually result in higher catalyst loading, which increases the number of catalytic reaction sites and decreases reaction time. Therefore, determination of surface area and porosity of porous supports is critical for the successful design and optimization of a catalyst support. Moreover, it is important to produce supports with good thermal stability since pore collapsing due to sintering at high temperatures often results in catalyst deactivation. In addition, the ability to control the acidity of the catalyst enables us to design desirable acid sites to optimize product selectivity, activity, and stability in different catalytic applications. This dissertation presents a simple, one-pot, solvent-deficient method to synthesize thermally stable silica-doped alumina (SDA) without using templates. The XRD (X-ray diffraction), HTXRD (high temperature X-ray diffraction), SS NMR (solid state nuclear magnetic resonance), TEM (transmission electron microscopy), TGA(thermogravimetric analysis), and N2 adosorption techniques are used to characterize the structures of the synthesized SDAs and understand the origin of increased thermal stability. The obtained SDAs have a surface area of 160 m2/g, pore volume of 0.99 cm3/g, and a bimodal pore size distribution of 23 and 52 nm after calcination at 1100◦C. Compared to a commercial SDA, the surface area, pore volume, and pore diameter of synthesized SDAs are higher by 46%, 155%, and 94%, respectively. A split-plot fractional-factorial experimental design is also used to obtain a useful mathematical model for the control of textural properties of SDAs with a reduced cost and number of experiments. The proposed quantitative models can predict optimal conditions to produce SDAs with high surface areas greater than 250 m2/g, large pore volume greater than 1 cm3/g, and large (40-60 nm) or medium (16-19 nm) pore diameters. In my approach, I control acid sites formation by altering preparation variables in the synthesis method such as Si/Al ratio and calcination temperatures. The total acidity concentration (Brønsted and Lewis) of the synthesized SDAs are determined using ammonia temperatured program, pyridine fourier transform infrared spectroscopy (FTIR), and MAS NMR. The total acidity concentration is increased by introducing a higher mole ratio of Si to Al. In addition, the total acidity concentration is decreased by increasing calcination temperature while maintaining high surface area, large porosity, and thermal stability of γ-alumina support. I also present an optimized synthesis of various aluminum alkoxides (aluminum n-hexyloxide (AH), aluminum phenoxide (APh) and aluminum isopropoxide (AIP)) with high yields (90-95%). One mole of aluminum is reacted with excess alcohol in the presence of 0.1 mole % mercuric chloride catalyst. The synthesized aluminum alkoxides are used as starting materials to produce high surface area alumina catalyst supports. Aluminum alkoxides and nano aluminas are analyzed by 1H NMR, 13C NMR, 27Al NMR, gCOSY (2D nuclear magnetic resonance spectroscopy), IR (infrared spectroscopy), XRD, ICP (induced coupled plasma), and elemental analysis.
|
160 |
Teplotní stabilita Mg-slitiny AZ91 připravené pomocí intenzivní plastické deformace / Thermal stability of Mg-alloy AZ91 prepared by severe plastic deformationŠtěpánek, Roman January 2012 (has links)
This thesis dealt with thermal stability of magnesium alloy AZ91 prepared by severe plastic deformation, which leeds to fine grained structure. This structure is characterised by its inherent instability and this thesis tries to find out the value of critical temperature and rate of this instability, which manifests as grain coarsening.
|
Page generated in 0.0693 seconds