• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 13
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Termalização e correlações quânticas nos contextos de sistemas quânticos abertos e cadeias de spins

Oliveira, Thiago Werlang de 11 January 2013 (has links)
Made available in DSpace on 2016-06-02T20:15:26Z (GMT). No. of bitstreams: 1 4780.pdf: 9997745 bytes, checksum: 24a1f1c6cc3ce4ef4b6ac0cc5009255c (MD5) Previous issue date: 2013-01-11 / Universidade Federal de Sao Carlos / In this thesis, we study the behavior of Quantum Discord in the contexts of open quantum systems and spin chains. Furthermore, we investigate the thermalization process of a spin chain due to interaction with the environment. First, we present a review on the concept of quantum correlation, beginning with the first ideas on non-locality, and leading to the measure of quantum correlations called Quantum Discord. Afterwards, we study the dynamics of the quantum correlations between two non-interacting qubits coupled to Markovian and non- Markovian thermal reservoirs. In the context of spin chains, we investigate the behavior of quantum correlations at finite temperatures, starting with a system composed of two interacting spins, described by XYZ model, in order to generalize this study to the case of infinite unidimensional spin chains, described by XY and XXZ models. In this context, we investigate the relationship between quantum correlations and quantum phase transitions present in these two models. We conclude this thesis with a study of the thermalization process of two interacting spins weakly coupled to independent bosonic thermal reservoirs, or to a single collective reservoir, besides presenting some results for larger systems, composed of an arbitrary number of spins. / Nesta tese estudamos o comportamento da Discórdia Quântica nos contextos de sistemas quânticos abertos e cadeias de spins. Além disso, investigamos também o processo de termalização de uma cadeia de spins sujeita a interação com o meio-ambiente. Primeiramente, apresentamos uma revisão do conceito de correlação quântica, partindo das ideias iniciais sobre não-localidade e tendo como ponto final a medida de correlações quânticas denominada Discórdia Quântica. Posteriormente, estudamos a dinâmica das correlações quânticas entre dois qubits não-interagentes acoplados a reservatórios térmicos markovianos e não-markovianos. No contexto de cadeias de spins, investigamos o comportamento das correlações quânticas a temperaturas finitas, começando com um sistema formado por dois spins interagentes, descrito pelo modelo XYZ para, em seguida, generalizar este estudo para o caso de cadeias de spins unidimensionais infinitas, descritas pelos modelos XY e XXZ. Neste contexto, investigamos a relação entre as correlações quânticas e as transições de fase quânticas presentes nestes dois modelos. Finalizamos esta tese com um estudo sobre o processo de termalização de dois spins interagentes fracamente acoplados a reservatórios térmicos bosônicos independentes ou um único reservatório coletivo, além de apresentar alguns resultados referentes a sistemas maiores, formados por um número arbitrário de spins.
22

Dissipação, termalização e descoerência via acoplamento caótico / Dissipation, thermalization and decoherence through chaotic coupling

Bonança, Marcus Vinicius Segantini, 1977- 06 August 2006 (has links)
Orientador: Marcus Aloizio Martinez de Aguiar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-06T21:05:02Z (GMT). No. of bitstreams: 1 Bonanca_MarcusViniciusSegantini_D.pdf: 10284922 bytes, checksum: 28ea976c05e0eadcda732211e40afb25 (MD5) Previous issue date: 2006 / Resumo: Neste trabalho, estudamos de que maneira e sob que condições um sistema caótico com apenas dois graus de liberdade produz efeitos irreversíveis como dissipação, termalização e, do ponto de vista quântico, perda de coerência em um sistema simples a ele acoplado. Na formulação clássica do problema, descrevemos analiticamente o comportamento do fluxo de energia em Resposta Linear e apontamos o ingrediente talvez principal que um sistema caótico possui para causar irreversibilidade: correlações que decaem exponencialmente. Mostramos que é possível descrever o equilíbrio assintótico inclusive com uma temperatura, o que é não-intuitivo em se tratando de sistemas pequenos. Esse último resultado completa o paralelo entre o movimento Browniano usual e o modelo proposto. Formulamos o problema do ponto de vista quântico via o formalismo de Funcionais de Influência. Mostramos que este formalismo é mesmo adequado pois a influência do sistema caótico é descrita pelas contrapartidas quânticas das mesmas funções que encontramos na Resposta Linear clássica. Calculamos semiclassicamente essas funções e mostramos que os termos em mais baixa ordem da aproximação semiclássica evoluem conforme a dinâmica clássica caótica. As escalas de tempo da análise clássica se mostram fundamentais para a resolução dos cálculos assim como a análise semiclássica das funções de correlação. Mostramos que efeitos de dissipação e perda de coerência, no contexto quântico, são possíveis devido ao caráter caótico do sistema / Abstract: We study here how and under which conditions a chaotic system with only two degrees of freedom can produce irreversible phenomena such as dissipation, thermalization and, from the quantum point of view, decoherence in a simple system coupled to it. In the classical formulation of the problem, we describe analytically the behavior of the energy ux in Linear Response regime and we point the main ingredient for a chaotic system to produce irreversible effects: correlations with exponential decay. We show that it is possible to describe the asymptotic equilibrium even with a temperature, which seems to be a counter intuitive result for systems with few degrees of freedom. We formulate the problem from the quantum point of view using In uence Functionals approach. We show the formalism is very adequate since the chaotic system in uence is described by quantum analogues of the same functions we obtain in the Linear Response approach to the classical problem. We calculate those functions semiclassically and we show the lowest order terms of the semiclassical approximation evolve as given by classical chaotic dynamics. The time scales of the classical analysis are shown to be very important for the resolution of the quantum problem as well as the semiclassical analysis of the correlation functions. We show that dissipative and decoherence effects, in the quantum regime, are possible due to the chaotic dynamics of the system / Doutorado / Física Estatistica e Termodinamica / Doutor em Ciências
23

Auto-organisation d’ondes optiques incohérentes : Condensation, thermalisation et repolarisation / Self-organization of incoherent optical waves : Condensation, thermalization and repolarization

Fusaro, Adrien 01 October 2019 (has links)
Le sujet de cette thèse porte sur les phénomènes d’auto-organisations d’ondes optiques non-linéaires. Ce travail principalement théorique et numérique repose sur différents formalismes de turbulenced’ondes, les singularités Hamiltoniennes et diverses expériences.Une première partie de la thèse porte sur les processus irréversibles de thermalisation et de conden-sation d’ondes. Le phénomène de condensation se caractérise par la formation d’une structure cohérenteà grande échelle (condensat) qui reste immergée dans une mer de fluctuations aux petites échelles (parti-cules non condensées). En dépit des longueurs de propagation rédhibitoires pour atteindre l’état d’équilibrecondensé, nous avons mis en évidence expérimentalement et théoriquement un phénomène de pré-condensation qui a lieu loin de l’équilibre etqui joue un rôle précurseur pour l’état d’équilibre asymptotique. Par ailleurs, sur la base d’observations ex-périmentales récentes du phénomène de nettoyage de faisceau dans une fibre optique multimode, nousavons développé une approche cinétique de turbulence d’ondes prenant en compte le désordre structu-rel du matériau. La théorie révèle que le désordre entraîne une accélération significative du processus decondensation permettant d’expliquer l’effet de nettoyage de faisceau. Les expériences effectuées reportentl’observation d’une transition de la distribution thermique vers la condensation, avec une fraction macro-scopique de puissance condensée dans le mode fondamental. Nous avons aussi étudié l’impact d’une ré-ponse fortement non-locale (ou non-instantanée) sur la propagation d’un speckle, ce qui a permis d’iden-tifier un mécanisme d’émergence spontanée de cohérence de phase à longue portée.Une seconde partie des travaux est centrée sur le phénomène d’attraction de polarisation lors de l’in-jection d’ondes incohérentes aux deux extrémités d’une fibre optique. La dynamique spatio-temporelle desondes partiellement polarisées contra-propagatives relaxe vers un état stationnaire où se produit un phé-nomène d’auto-polarisation survenant au point milieu de la fibre. Ce phénomène est lié à la présence desingularités dans le système Hamiltonien associé à l’état stationnaire. / The subject of this thesis concerns the study of phenomena of self-organization of incoherentoptical waves. This work is essentially theoretical and numerical and relies on different formalisms of waveturbulence theory, the Hamiltonian singularities, and different experiments.The first part of the thesis deals with the irreversible processes of thermalization and condensation ofincoherent waves. The phenomenon of condensation is characterized by the formation of a large scale co-herent structure (condensate) that remains immersed in a sea of small scale fluctuations (uncondensedparticules). In spite of the large propagation lengths required to reach the condensed equilibrium state, wehave identified theoretically and experimentally in atomic vapors a phenomenon of pre-condensation thatoccurs far from thermal equilibrium and that plays the role of a precursor for the asymptotic equilibriumstate. On the other hand, on the basis of recent experimental observations of the effect of beam self-cleaningin multimode optical fibers, we have developed a kinetic wave turbulence approach that accounts for theimpact of a structural disorder of the material. The theory reveals that disorder leads to a significant ac-celeration of the condensation process, which can explain the beam self-cleaning effect. Our experimentsreport the observation of the transition from the thermal distribution toward condensation with a macro-scopic fraction of condensed power into the fundamental mode. We have studied the impact of a highlynonlocal (or non-instantaneous) response on the nonlinear propagation of a speckle beam, which allowedus to identify a mechanism of spontaneous emergence of long-range phase coherence.The second part of the manuscript is based on a phenomenon of polarization attraction when two in-coherent waves are injected at both ends of an optical fiber. The spatio-temporal dynamics of the counter-propagating partially polarized waves relax toward a quasi-stationary state characterized by a phenomenonof self-polarization that occurs just in the middle point of the optical fiber. This effect is related to the pre-sence of singularities in the Hamiltonian system associated to the stationary state.
24

Thermalization and Out-of-Equilibrium Dynamics in Open Quantum Many-Body Systems

Buchhold, Michael 23 September 2015 (has links)
Thermalization, the evolution of an interacting many-body system towards a thermal Gibbs ensemble after initialization in an arbitrary non-equilibrium state, is currently a phenomenon of great interest, both in theory and experiment. As the time evolution of a quantum system is unitary, the proposed mechanism of thermalization in quantum many-body systems corresponds to the so-called eigenstate thermalization hypothesis (ETH) and the typicality of eigenstates. Although this formally solves the contradiction of thermalizing but unitary dynamics in a closed quantum many-body system, it does neither make any statement on the dynamical process of thermalization itself nor in which way the coupling of the system to an environment can hinder or modify the relaxation dynamics. In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics. As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the presence of drive and dissipation, introduced by coupling the intra-cavity radiation field to the photon vacuum outside the cavity via lossy mirrors, the quantum glass state is modified in a universal manner. For frequencies below the photon loss rate, the dissipation takes over and the system shows the universal behavior of a dissipative spin glass, with a characteristic spectral density $\\mathcal{A}(\\omega)\\sim\\sqrt{\\omega}$. On the other hand, for frequencies above the loss rate, the system retains the universal behavior of a zero temperature, quantum spin glass. Remarkably, at the glass transition, the two subsystems of spins and photons thermalize to a joint effective temperature, even in the presence of photon loss. This thermalization is a consequence of the strong spin-photon interactions, which favor detailed balance in the system and detain photons from escaping the cavity. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state. As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description, which, due to its large degree of universality, is of intense theoretical and experimental interest. A set of recent experiments in research groups in Vienna, Innsbruck and Munich have probed the non-equilibrium time-evolution of one-dimensional quantum fluids for different experimental realizations and are pushing into a time regime, where thermalization is expected. From a theoretical point of view, one-dimensional quantum fluids are particular interesting, as Luttinger Liquids are integrable and therefore, due to an infinite number of constants of motion, do not thermalize. The leading order correction to the quadratic theory is irrelevant in the sense of the renormalization group and does therefore not modify static correlation functions, however, it breaks integrability and will therefore, even if irrelevant, induce a completely different non-equilibrium dynamics as the quadratic Luttinger theory alone. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermi\'s golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate $\\sigma^R=\\mbox\\Sigma^R$, determined by the self-energy at equilibrium. However, for long times $\\tau$, it also reveals the presence of dynamical slow modes, which are the consequence of exactly energy conserving dynamics and lead to an algebraic decay $\\sim\\tau^$ with $\\eta_D=0.58$. The presence of these dynamical slow modes is not contained in the equilibrium Matsubara formalism, while they emerge naturally in the non-equilibrium formalism developed in this thesis. In order to initialize a one-dimensional quantum fluid out of equilibrium, we consider an interaction quench in a model of interacting, dispersive fermions in Chap.~\\ref. In this scenario, the fermionic interaction is suddenly changed at time $t=0$, such that for $t>0$ the system is not in an eigenstate and therefore undergoes a non-trivial time evolution. For the quadratic theory, the stationary state in the limit $t\\rightarrow\\infty$ is a non-thermal, or prethermal, state, described by a generalized Gibbs ensemble (GGE). The GGE takes into account for the conservation of all integrals of motion, formed by the eigenmodes of the Hamiltonian. On the other hand, in the presence of non-linearities, the final state for $t\\rightarrow\\infty$ is a thermal state with a finite temperature $T>0$. . The spatio-temporal, dynamical thermalization process can be decomposed into three regimes: A prequench regime on the largest distances, which is determined by the initial state, a prethermal plateau for intermediate distances, which is determined by the metastable fixed point of the quadratic theory and a thermal region on the shortest distances. The latter spreads sub-ballistically $\\sim t^$ in space with $0<\\alpha<1$ depending on the quench. Until complete thermalization (i.e. for times $t<\\infty$), the thermal region contains more energy than the prethermal and prequench region, which is expressed in a larger temperature $T_{t}>T_$, decreasing towards its final value $T_$. As the system has achieved local detailed balance in the thermalized region, energy transport to the non-thermal region can only be performed by the macroscopic dynamical slow modes and the decay of the temperature $T_{t}-T_\\sim t^$ again witnesses the presence of these slow modes. The very slow spreading of thermalization is consistent with recent experiments performed in Vienna, which observe a metastable, prethermal state after a quench and only observe the onset of thermalization on much larger time scales. As an immediate indication of thermalization, we determine the time evolution of the fermionic momentum distribution after a quench from non-interacting to interacting fermions. For this quench scenario, the step in the Fermi distribution at the Fermi momentum $k\\sub$ decays to zero algebraically in the absence of a non-linearity but as a stretched exponential (the exponent being proportional to the non-linearity) in the presence of a finite non-linearity. This can serve as a proof for the presence or absence of the non-linearity even on time-scales for which thermalization can not yet be observed. Finally, we consider a bosonic quantum fluid, which is driven away from equilibrium by permanent heating. The origin of the heating is atomic spontaneous emission of laser photons, which are used to create a coherent lattice potential in optical lattice experiments. This process preserves the system\'s $U(1)$-invariance, i.e. conserves the global particle number, and the corresponding long-wavelength description is a heated, interacting Luttinger Liquid, for which phonon modes are continuously populated with a momentum dependent rate $\\partial_tn_q\\sim\\gamma |q|$. In the dynamics, we identify a quasi-thermal regime for large momenta, featuring an increasing time-dependent effective temperature. In this regime, due to fast phonon-phonon scattering, detailed balance has been achieved and is expressed by a time-local, increasing temperature. The thermal region emerges locally and spreads in space sub-ballistically according to $x_t\\sim t^{4/5}$. For larger distances, the system is described by an non-equilibrium phonon distribution $n_q\\sim |q|$, which leads to a new, non-equilibrium behavior of large distance observables. For instance, the phonon decay rate scales universally as $\\gamma_q\\sim |q|^{5/3}$, with a new non-equilibrium exponent $\\eta=5/3$, which differs from equilibrium. This new, universal behavior is guaranteed by the $U(1)$ invariant dynamics of the system and is insensitive to further subleading perturbations. The non-equilibrium long-distance behavior can be determined experimentally by measuring the static and dynamic structure factor, both of which clearly indicate the exponents for phonon decay, $\\eta=5/3$ and for the spreading of thermalization $\\eta_T=4/5$. Remarkably, even in the presence of this strong external drive, the interactions and their aim to achieve detailed balance are strong enough to establish a locally emerging and spatially spreading thermal region. The physical setups in this thesis do not only reveal interesting and new dynamical features in the out-of-equilibrium time evolution of interacting systems, but they also strongly underline the high degree of universality of thermalization for the classes of models studied here. May it be a system of coupled spins and photons, where the photons are pulled away from a thermal state by Markovian photon decay caused by a leaky cavity, a one-dimensional fermionic quantum fluid, which has been initialized in an out-of-equilibrium state by a quantum quench or a one-dimensional bosonic quantum fluid, which is driven away from equilibrium by continuous, external heating, all of these systems at the end establish a local thermal equilibrium, which spreads in space and leads to global thermalization for $t\\rightarrow\\infty$. This underpins the importance of thermalizing collisions and endorses the standard approach of equilibrium statistical mechanics, describing a physical system in its steady state by a thermal Gibbs ensemble.
25

Fluctuations de densité dans des gaz de bosons ultafroids quasi-unidimensionnels / Density fluctuations in quasi-one dimensional ultracold bosonic gases

Armijo, Julien 02 May 2011 (has links)
Cette thèse présente la conception et l'implémentation d'une nouvelle génération de puces à atomes, ouvrant de nouvelles perspectives expérimentales dans des micropièges magnétiques très anisotropes. Les propriétés thermiques des puces en nitrure d'aluminium sont étudiées en détail. Le dispositif a été optimisé pour piéger de plus grands nombres d'atomes et améliorer la qualité de l'imagerie, notamment en fabriquant un miroir de planéité sub-λ/10 à la surface de la puce.Nous étudions des gaz quasi-1D grâce à des images in situ de profils fluctuants et des méthodes précises de calibration et d'analyse statistique. Nous mesurons des fluctuations non-gaussiennes, ce qui permet de tester sensiblement la thermodynamique du gaz et donne une mesure de corrélations à trois corps. Nous étudions précisément la transition de quasicondensation et mesurons pour la première fois sa loi d'échelle. En régime 3D, c'est une condensation transverse qui déclenche la quasicondensation longitudinale, tandis qu'en régime 1D, la formation d'un quasicondensat est gouvernée par les interactions répulsives et non par la dégénérescence quantique.Obtenant des températures record pour des gaz 1D, nous observons des fluctuations subpoissoniennes lorsque les corrélations atomiques sont déterminées, au moins localement, par les fluctuations quantiques qui dominent les fluctuations thermiques. Nous discutons également la thermalisation étonnamment rapide mesurée en régime 1D profond qui suggère que des collisions effectives à 3 corps brisent l'intégrabilité du système. / This thesis presents the design and implementation of a new generation of atom chips, that open novel experimental possibilities with very anisotropic magnetic microtraps. The thermal properties of aluminum nitride atom chips are studied in detail. We have optimized the set-up in order to trap more atoms and image the clouds as precisely as possible. In particular we have fabricated a miror of sub-λ/10 planeity on top of the chip surface.We study quasi-1D gases using in situ pictures of the fluctuating density pro_les and precise methods for their calibration and statistical analysis. We measure non-gaussian fluctuations, which provides a sensitive test of the thermodynamics of the system and gives a measure of three-body correlations. We study precisely the quasicondensation transition, measuring its scaling for the first time. In the 3D regime, a transverse condensation triggers the longitudinal quasicondensation. In the 1D regime, on the contrary, the appearance of a quasicondensate is governed by repulsive interactions only, and not by quantum degeneracy.Reaching record temperatures for 1D gases, we observe subpoissonian fluctuations which indicate that atomic correlations are determined at least locally by quantum rather than thermal fluctuations. We also discuss our observation of surprizingly e_fficient thermalization deep in the 1D regime, suggesting that e_ffective 3-body collisions break the integrability of the system.
26

Estudos das Propriedades de Termoluminescência (TL), Ressonância Paramagnética (EPR) e Absorção Ótica (AO) para caracterização do mineral Monticelita / Study of the Properties Thermoluminescence (TL), Electron Paramagnetic Resonance (EPR) and Optical Absorption for characterization of mineral Montecillite

QUINA, ANTONIO de J.A. de 22 December 2016 (has links)
Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2016-12-22T12:40:27Z No. of bitstreams: 0 / Made available in DSpace on 2016-12-22T12:40:27Z (GMT). No. of bitstreams: 0 / Foram estudados as propriedades de absorção ótica, de termoluminescência e de ressonância paramagnética eletrônica do mineral natural de silicato de nome MONTICELITA do grupo Olivina, para caracterização desse mineral, cuja formula química é CaMgSiO4. A absorção ótica mostrou que há três bandas de absorção em 450 nm, 660 nm e 1050 nm. As duas primeiras bandas, a primeira no azul e a segunda no amarelo-vermelho são responsáveis pela cor verde da Monticelita. Essas duas bandas são consequência do elemento cromo contido no mineral absorver fótons do feixe universal no visível de frequências centradas em 450 nm e 660 nm. A banda em 1050 nm é devido ao Fe2+. As curvas de emissão de uma amostra de Monticelita irradiada com raios gama de doses entre 10 e 1000 Gy apresenta três picos em 150 °C , 270 °C e 370 °C . Pelo método da deconvolução e de várias taxas de aquecimento foram obtidos energia E1=1,35 eV e fator de frequência s1=4,98x1011 s-1 para o pico 270 °C e E2=1,70 eV e s2=1,88x1011 s-1 para pico 370 °C . A irradiação com raios gama de doses entre 5 kGy e 50 kGy produziram pico TL de 380 °C com intensidade TL em função da dose linear e crescente. Este resultado e importante para dosimetria da radiação de altas doses. O espectro EPR de uma amostra natural, mostrou um resultado não esperado e interessante. Além dos sinais típicos de interação hiperfina do Mn2+, um sinal avantajado de g =6,34 indica que o ferro formou moléculas de hematita, Fe2O3. Esse sinal desaparece com aquecimento acima de 800 °C de recozimento, dando origem dipolos magnéticos de Fe3+, que dá origem a um sinal típico em g =2. Esta descrição mostra bem a caracterização do mineral Monticelita. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
27

Proposta de novas configurações para o núcleo do reator IEA-R1 do IPEN/CNEN - SP com combustíveis de alta densidade de urânio / Proposal of new core configurations for the IPEN/CNEN-SP IEA-R1 research reactor with high density uranium fuels

JOÃO, THIAGO G. 10 March 2017 (has links)
Submitted by Mery Piedad Zamudio Igami (mery@ipen.br) on 2017-03-10T16:45:35Z No. of bitstreams: 0 / Made available in DSpace on 2017-03-10T16:45:35Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O presente estudo foi realizado para verificar a possibilidade de redução do núcleo do reator IEA-R1 do IPEN/CNEN-SP. Cálculos neutrônicos foram desenvolvidos para um conjunto de novas configurações para que, a posteriori, a análise termo-hidráulica e de segurança pudessem ser realizadas. As novas configurações analisadas são menores por diversos motivos, como obter uma melhor utilização do combustível, melhor distribuição dos fluxos de nêutrons, dentre outros. Para que se possa atingir tais configurações, a densidade de Urânio no combustível deve ser aumentada. Neste estudo, combustíveis de U3Si2-Al com 4,8gU/cm3 foram testados e novos núcleos para o reator IEA-R1 foram propostos e discutidos. A análise neutrônica não impõe restrições aos núcleos estudados. A análise termohidráulica mostrou que as margens de segurança e os perfis de temperatura ao longo das placas combustíveis não excedem os limites de projeto. Os coeficientes de temperatura obtidos para os novos núcleos, no caso isotérmico, são todos negativos, conforme desejado. A queima mostrou que núcleos supercompactos não apresentam excesso de reatividade suficiente para o funcionamento dos mesmo, ao se utilizar combustíveis com 4,8gU/cm3. Um APR (Acidente de Perda de Refrigerante) foi simulado para os núcleos remanescentes. A ruptura da fronteira do primário se mostrou o acidente mais crítico, devido ao curto tempo para o esvaziamento completo da piscina do reator. As temperaturas atingidas após o descobrimento foram calculadas e não excedem aquelas cujos valores propiciam empolamento nas placas combustíveis (475 °! a 550 °!), uma vez que se obedeça os tempos de esvaziamento seguro da piscina para as novas configurações. / Tese (Doutorado em Tecnologia Nuclear ) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP / FAPESP: 11/17090-7
28

Investigations of transport phenomena and dynamical relaxation in closed quantum systems

Khodja, Abdellah 17 March 2015 (has links)
The first part of the present Phd thesis is devoted to transport investigations in disordered quantum systems. We aim at quantitatively determining transport parameters like conductivity, mean free path, etc., for simple models of spatially disordered and/or percolated quantum systems in the limit of high temperatures and low fillings using linear response theory. We find the transport behavior for some models to be in accord with a Boltzmann equation, i.e., long mean free paths, exponentially decaying currents although there are no band-structures to start from, while this does not apply to other models even though they are also almost completely delocalized. The second part of the present PhD thesis addresses the issue of initial state independence (ISI) in closed quantum system. The relevance of the eigenstate thermalization hypothesis (ETH) for the emergence of ISI equilibration is to some extent addressed. To this end, we investigate the Heisenberg spin-ladder and check the validity of the ETH for the energy difference operator by examining the scaling behavior of the corresponding ETH-fluctuations, which we compute using an innovative numerical method based on typicality related arguments. While, the ETH turns out to hold for the generic non-integrable models and may therefore serve as the key mechanism for ISI for this cases, it does not hold for the integrable Heisenberg-chain. However, close analysis on the dynamic of substantially out-of-equilibrium initial states indicates the occurrence of ISI equillibration in the thermodynamic limit regardless of whether the ETH is violated. Thus, we introduce a new parameter $v$, which we propose as an alternative of the ETH to indicate ISI equillibration in cases, in which the ETH does not strictly apply.
29

Photon Statistics in Disordered Lattices

Kondakci, Hasan 01 January 2015 (has links)
Propagation of coherent waves through disordered media, whether optical, acoustic, or radio waves, results in a spatially redistributed random intensity pattern known as speckle -- a statistical phenomenon. The subject of this dissertation is the statistics of monochromatic coherent light traversing disordered photonic lattices and its dependence on the disorder class, the level of disorder and the excitation configuration at the input. Throughout the dissertation, two disorder classes are considered, namely, diagonal and off-diagonal disorders. The latter exhibits disorder-immune chiral symmetry -- the appearance of the eigenmodes in skew-symmetric pairs and the corresponding eigenvalues in opposite signs. When a disordered photonic lattice, an array of evanescently coupled waveguides, is illuminated with an extended coherent optical field, discrete speckle develops. Numerical simulations and analytical modeling reveal that discrete speckle shows a set of surprising features, that are qualitatively indistinguishable in both disorder classes. First, the fingerprint of transverse Anderson localization -- associated with disordered lattices, is exhibited in the narrowing of the spatial coherence function. Second, the transverse coherence length (or speckle grain size) freezes upon propagation. Third, the axial coherence depth is independent of the axial position, thereby resulting in a coherence voxel of fixed volume independently of position. When a single lattice site is coherently excited, I discovered that a thermalization gap emerges for light propagating in disordered lattices endowed with disorder-immune chiral symmetry. In these systems, the span of sub-thermal photon statistics is inaccessible to the input coherent light, which -- once the steady state is reached -- always emerges with super-thermal statistics no matter how small the disorder level. An independent constraint of the input field for the chiral symmetry to be activated and the gap to be observed is formulated. This unique feature enables a new form of photon-statistics interferometry: by exciting two lattice sites with a variable relative phase, as in a traditional two-path interferometer, the excitation-symmetry of the chiral mode pairs is judiciously broken and interferometric control over the photon statistics is exercised, spanning sub-thermal and super-thermal regimes. By considering an ensemble of disorder realizations, this phenomenon is demonstrated experimentally: a deterministic tuning of the intensity fluctuations while the mean intensity remains constant. Finally, I examined the statistics of the emerging light in two different lattice topologies: linear and ring lattices. I showed that the topology dictates the light statistics in the off-diagonal case: for even-sited ring and linear lattices, the electromagnetic field evolves into a single quadrature component, so that the field takes discrete phase values and is non-circular in the complex plane. As a consequence, the statistics become super-thermal. For odd-sited ring lattices, the field becomes random in both quadratures resulting in sub-thermal statistics. However, this effect is suppressed due to the transverse localization of light in lattices with high disorder. In the diagonal case, the lattice topology does not play a role and the transmitted field always acquires random components in both quadratures, hence the phase distribution is uniform in the steady state.
30

Quantitative measurements of temperature using laser-induced thermal grating spectroscopy in reacting and non-reacting flows

Lowe, Steven January 2018 (has links)
This thesis is concerned with the development and application of laser induced thermal grating spectroscopy (LITGS) as a tool for thermometry in reacting and non-reacting flows. LITGS signals, which require resonant excitation of an absorbing species in the measurement region to produce a thermal grating, are acquired for systematic measurements of temperature in high pressure flames using OH and NO as target absorbing species in the burned gas. The signal obtained in LITGS measurements appears in the form of a time-based signal with a characteristic frequency proportional to the value or the sound speed of the local medium. With knowledge of the gas composition, the temperature can be derived from the speed of sound measurement. LITGS thermometry using resonant excitation of OH in the burned gas region of in oxygen enriched CH4/O2/N2 and CH4/air laminar flames was performed at elevated pressure (0.5 MPa) for a range of conditions. Measurements were acquired in oxygen enriched flames to provide an environment in which to demonstrate LITGS thermometry under high temperature conditions (up to 2900 K). The primary parameters that influence the quality of LITGS signal were also investigated. The signal contrast, which acts as a marker for the strength of the frequency oscillations, is shown to increase with an increase in the burnt gas density at the measurement point. LITGS employing resonant excitation of NO is also demonstrated for quantitative measurements of temperature in three environments – a static pressure cell at ambient temperature, a non-reacting heated jet at ambient pressure and a laminar premixed CH4/NH3/air flame operating at 0.5 MPa. Flame temperature measurements were acquired at various locations in the burned gas close to a water-cooled stagnation plate, demonstrating the capability of NO-LITGS thermometry for measuring the spatial distribution of temperature in combustion environments. In addition, the parameters that in influence the local temperature rise due to LITGS were also investigated in continuous vapour flows of acetone/air and toluene/air mixtures at atmospheric conditions. Acetone and toluene are commonly targeted species in previous LITGS measurements due to their favourable absorption characteristics. Results indicate that LITGS has the potential to produce accurate and precise measurements of temperature in non-reacting flows, but that the product of the pump intensity at the probe volume and the absorber concentration must remain relatively low to avoid significant localised heating of the measurement region.

Page generated in 0.1001 seconds