• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 2
  • Tagged with
  • 28
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Geological Evolution of the Supracrustal Palaeoproterozoic Hamrånge Group: A Svecofennian Case Study

Ogenhall, Erik January 2010 (has links)
The work presented in this thesis utilizes several geological methods to investigate the origin and evolution of the supracrustal rocks in the Palaeoproterozoic Hamrånge Group (HG) in the south-central Swedish Svecofennian. The first paper is based on whole-rock geochemistry to show the plate tectonic setting of volcanic rocks within the HG. This indicates that the environment was probably an oceanic volcanic arc. Geochronology, used in paper two, shows that the volcanism was active at 1888±6 Ma and that the sediments forming the stratigraphically overlying quartzite were deposited after 1855±10 Ma, with provenance ages overlapping both the volcanic rocks and the 1.86-1.84 Ga continental margin Ljusdal granitoids. In the third paper, thermobarometry was applied to samples from the HG, the migmatitic Ockelbo sub-domain to the south, and the 1.81 Ga Hagsta Gneiss Zone (HGZ) that separate these two units. The results show distinct differences in the metamorphic conditions that have affected the HG and the Ockelbo sub-domain, supporting previous interpretations that the HGZ is an important crustal structure, possibly a terrane or domain boundary. Paper four deals with the structural geology of the Hamrånge area. The study shows that the volcanic rocks and the underlying mica schist have been subjected to three deformation episodes (D1-D3), while the uppermost quartzite was most likely only affected by D2 and D3. While structures related to D1 are rarely seen, D2 resulted in a penetrative foliation, strong lineations and NW-vergent folding and thrusting. D3 is a result of a N-S compression that formed regional E-W folds and steep, ca. NW-SE shear zones, e.g. the HGZ. The results presented in this thesis, integrated with previously published data, outline a model for the geological evolution of the Hamrånge area: At 1.89 Ga a volcanic arc formed that subsequently collided with a continental margin resulting in the first deformation episode, D1, and probably a metamorphic event. This was possibly followed by an extensional period, after 1855±10 Ma, forming a basin that accumulated sediments later to form the quartzite stratigraphically on top of the volcanic rocks. The second deformation episode, D2, formed a fold-thrust belt when the supracrustal HG was thrusted to the NW, on top of the 1.86-1-84 Ga Ljusdal Domain. Flattening and a second metamorphic period followed this thickening of the crust. The last ductile deformation, D3, caused by regional tectonic forces, resulted in F3-folds that matured into ca. 1.8 Ga large-scale, steep shear zones transecting the Fennoscandian Shield.
12

Investigating Magma Plumbing Beneath Anak Krakatau Volcano, Indonesia : Evidence for Multiple Magma Storage Regions

Dahrén, Börje January 2010 (has links)
Improving our understanding of magma plumbing and storage remains one of the majorchallenges for petrologists and volcanologists today. This is especially true for explosivevolcanoes, where constraints on magma plumbing are essential for predicting dynamicchanges in future activity and thus for hazard mitigation. This study aims to investigate themagma plumbing system at Anak Krakatau; the post-collapse cone situated on the rim of the1883 Krakatau caldera. Since 1927, Anak Krakatau has been highly active, growing at a rateof ~8 cm/week. The methods employed are a.) clinopyroxene-melt thermo-barometry (Putirkaet al., 2003; Putirka, 2008), b.) plagioclase-melt thermo-barometry (Putirka, 2005), c.)clinopyroxene composition barometry (Nimis & and Ulmer, 1998; Nimis, 1999; Putirka,2008) and d.) olivine-melt thermometry (Putirka et al., 2007). Previously, both seismic(Harjono et al., 1989) and petrological studies (Camus et al., 1987; Mandeville et al., 1996a;Gardner et al., in review, J. Petrol.) have addressed the magma plumbing beneath AnakKrakatau. Interestingly, petrological studies indicate shallow magma storage in the region of2-8 km, while the seismic evidence points towards a mid-crustal and a deep storage, at 9 and22 km respectively.This study shows that clinopyroxene presently crystallizes in a mid-crustal storage region(8-12 km), a previously identified depth level for magma storage, using seismic methods(Harjono et al., 1989). Plagioclases, in turn, form at shallower depths (4-6 km), in concertwith previous petrological studies (Camus et al., 1987; Mandeville et al., 1996a; Gardner etal., in review, J. Petrol.). Pre-1981 clinopyroxenes record deeper levels of storage (8-22 km),indicating that there may have been an overall shallowing of the plumbing system over thelast ~40 years. The magma storage regions detected coincide with major lithologicalboundaries in the crust, implying that magma ascent and storage at Anak Krakatau is probablycontrolled by crustal discontinuities and/or density contrasts. Therefore, this study shows thatpetrology has the sensitivity to detect magma bodies in the crust where seismic surveys faildue to limited resolution. Combined geophysical and petrological surveys offer an increasedpotential for the thorough characterization of magma plumbing at active volcanic complexes.
13

TECTONOMETAMORPHIC EVOLUTION OF THE KIOSK DOMAIN, CENTRAL GNEISS BELT, GRENVILLE PROVINCE, ONTARIO: CONSTRAINTS FROM GEOCHRONOLOGY AND THERMOBAROMETRY

Foster, John Gordon Joseph 20 July 2012 (has links)
The Kiosk domain in the Central Gneiss Belt, southwestern Grenville Province, Ontario comprises ca.1655 Ma orthogneisses and volumetrically minor ca. 1480-1460 Ma parag- neisses that were affected by granulite-facies metamorphism between ca. 1480 and ca. 1000 Ma. The objectives of this study are: (i) to determine the protolith ages from the Kiosk domain and the underlying southern Bonfield Batholith; (ii) to determine the tim- ing of major tectonic episodes; (iii) to determine the pressure-temperature conditions of peak metamorphism; and (iv) to use these data to constrain the position of the Allochthon Boundary Thrust in the southwestern Grenville Province.
14

Conditions of diamond formation and preservation from on- and off-craton settings

Hunt, Lucy Unknown Date
No description available.
15

Characterising volcanic magma plumbing systems : A tool to improve eruption forecasting at hazardous volcanoes

Budd, David A. January 2015 (has links)
This thesis attempts to develop our understanding of volcanic magma plumbing systems and the magmatic processes that operate within them, such as fractional crystallisation, crustal partial melting, assimilation, and magma mixing. I utilise petrology, rock and mineral geochemistry, and isotope systematics to seek to improve our ability to forecast the eruptive frequency and style of active volcanoes, an aspect often lacking in current volcano monitoring efforts. In particular, magma reservoir dynamics are investigated from a mineral scale at Katla volcano in Iceland, to a sub-mineral scale at Merapi, Kelud, and Toba volcanoes in Indonesia. The magma plumbing architecture of Katla volcano on Iceland is explored in the first part of this thesis. Crystalline components within tephra and volcanic rock preserve a record of the physical and chemical evolution of a magma, and are analysed through oxygen isotopic and thermobarometric techniques to temporally constrain changes in reservoir depth and decode the petrogenesis of the lavas. We find both prolonged upper crustal magma storage and shallow level assimilation to be occurring at Katla. The results generated from combining these analytical strands reveal the potential for unpredictable explosive volcanism at this lively Icelandic volcano. The second part of this thesis examines the magma plumbing systems of Merapi, Kelud and Toba volcanoes of the Sunda arc in Indonesia at higher temporal and petrological resolution than possible for Katla (e.g., due to the crystal poor character of the rocks). For this part of the thesis, minerals were analysed in-situ to take advantage of sub-crystal scale isotopic variations in order to investigate processes of shallow-level assimilation in the build-up to particular eruptions. We find that intra-crystal analyses reveal an otherwise hidden differentiation history at these volcanoes, and establish a better understanding as to how they may have rapidly achieved a critical explosive state. The outcomes of this thesis therefore deepen our knowledge of evolutionary trends in magma plumbing system dynamics, and highlight the importance of understanding the geochemical processes that can prime a volcano for eruption. Lastly, I emphasise the vital contribution petrology can make in current volcano monitoring efforts.
16

Relationship Between Hekla’s Magmatic System and Its Eruptive Behavior / Relationen mellan Heklas magmasystem och dess utbrottsrelaterande beteende

Andin, Eric January 2017 (has links)
The southern part of Iceland incorporates two parallel volcanic zones, the Eastern Volcanic Zone and the Western Volcanic Zone. These two branches are connected by an E-W transform. Hekla is located close to intersection between the two plate boundaries. Hekla is one of Iceland's most active and explosive volcanoes. Unique to Hekla is that it is one of the few volcanoes on Iceland that produces explosive silica rich magma. Hekla gives no clear warning of its eruptions and sends out seismic signals with very short notice. It is therefore of interest to try to understand Hekla's magma system and magmatic processes in order to gain an increased knowledge of its volcanic processes. The study is based on calculating crystallization conditions for the minerals plagioclase, clinopyroxene and orthoproxene. Calculations is based on the assumption that minerals, which are in equilibrium with the associated melt are directly associated with the thermodynamics of crystallization. The result of the study shows that Hekla's magma chamber is located at a depth of 8-12 km. The samples from Hekla are poor in minerals, which can be explained by separation due to fractional crystallization that forms a crystal mush. Fast ascending primitive magma along with degassing will eventually lead to an eruption. The absence of crystal zoning indicates a limited chance of magma mixing or crustal contamination. Oxides related to the eruption tend to comprise a low titanium content, which is related with an increased pressure condition. Geospeedometry suggested that recharge occurred up to 10 days before eruption. Erupted oxides shows up to 30 years residence which suggest long-term crystal mush. / Hekla är en av Islands mest aktiva och explosiva vulkan. Dess vulkaniska beteende grundar sig i det underliggande magma systemet samt kompositionen av magman. Unikt för Hekla är att det är en av få vulkaner på Island som producerar explosiv kiselrik magma. Hekla sänder dessutom inte ut tydliga varnings signaler innan utbrott. Det är därför av intresse att försöka förstå Heklas magma system och magmatiska processer för att kunna få en ökad uppfattning om dess vulkaniska processer.Undersökningen grundar sig i att beräkna kristalliseringsförhållanden för mineralerna plagioklas, klinopyroxen samt ortopyroxen. Resultatet av studien påvisar att Heklas magmaförvar är belägget på ett djup av 8-12 km. Proverna från Hekla har varit fattiga i mineraler vilket kan förklaras genom att mineraler har separerats från magman genom kristallisering. Magmas komposition kommer därför att ändras i och med att mineraler som kristalliserats tar bort element från den. Mineralkristallerna bildar sedan en egen zon som innefattar en liten del magma. Utbrotten triggas sedan när varm mafisk magma från ett större djup infiltrerar den grunda magma kammaren samt frisläppandet av gaser som sker vid kristallisering av mineraler.Beräkningar av tiden det tar för oxider att svalna tyder på att ny magma har infiltrerat magma kammaren upp till 10 dagar innan utbrottet. Den nya magman hinner inte blanda sig med den mer utvecklade magman. Detta event skulle leda till att kluster av mineral skulle följa med i utbrottssekvensen. Ett antal oxider visar även på att det börjat svalna upp till 30 år sedan, vilket kan förklaras av en zon bestående av kristaller.
17

Closure of the Neotethys Ocean in Anatolia : structural, petrologic and geochronologic insights from low-grade high-pressure metasediments, Afyon Zone

Pourteau, Amaury January 2011 (has links)
The complete consumption of the oceanic domain of a tectonic plate by subduction into the upper mantle results in continent subduction, although continental crust is typically of lower density than the upper mantle. Thus, the sites of former oceanic domains (named suture zones) are generally decorated with stratigraphic sequences deposited along continental passive margins that were metamorphosed under low-grade, high-pressure conditions, i.e., low temperature/depth ratios (< 15°C/km) with respect to geothermal gradients in tectonically stable regions. Throughout the Mesozoic and Cenozoic (i.e., since ca. 250 Ma), the Mediterranean realm was shaped by the closure of the Tethyan Ocean, which likely consisted in numerous oceanic domains and microcontinents. However, the exact number and position of Tethyan oceans and continents (i.e., the Tethyan palaeogeography) remains debated. This is particularly the case of Western and Central Anatolia, where a continental fragment was accreted to the southern composite margin of the Eurasia sometime between the Late Cretaceous and the early Cenozoic. The most frontal part of this microcontinent experienced subduction-related metamorphism around 85-80 Ma, and collision-related metamorphism affected more external parts around 35 Ma. This unsually-long period between subduction- and collision-related metamorphisms (ca. 50 Ma) in units ascribed to the same continental edge constitutes a crucial issue to address in order to unravel how Anatolia was assembled. The Afyon Zone is a tectono-sedimentary unit exposed south and structurally below the front high-pressure belt. It is composed of a Mesozoic sedimentary sequence deposited on top of a Precambrian to Palaeozoic continental substratum, which can be traced from Northwestern to southern Central Anatolia, along a possible Tethyan suture. Whereas the Afyon Zone was defined as a low-pressure metamorphic unit, high-pressure minerals (mainly Fe-Mg-carpholite in metasediments) were recently reported from its central part. These findings shattered previous conceptions on the tectono-metamorphic evolution of the Afyon Zone in particular, and of the entire region in general, and shed light on the necessity to revise the regional extent of subduction-related metamorphism by re-inspecting the petrology of poorly-studied metasediments. In this purpose, I re-evaluated the metamorphic evolution of the entire Afyon Zone starting from field observations. Low-grade, high-pressure mineral assemblages (Fe-Mg-carpholite and glaucophane) are reported throughout the unit. Well-preserved carpholite-chloritoid assemblages are useful to improve our understanding of mineral relations and transitions in the FeO-MgO-Al2O3-SiO2-H2O system during rocks’ travel down to depth (prograde metamorphism). Inspection of petrographic textures, minute variations in mineral composition and Mg-Fe distribution among carpholite-chloritoid assemblages documents multistage mineral growth, accompanied by a progressive enrichment in Mg, and strong element partitioning. Using an updated database of mineral thermodynamic properties, I modelled the pressure and temperature conditions that are consistent with textural and chemical observations. Carpholite-bearing assemblages in the Afyon Zone account for a temperature increase from 280 to 380°C between 0.9 and 1.1 GPa (equivalent to a depth of 30-35 km). In order to further constrain regional geodynamics, first radiometric ages were determined in close association with pressure-temperature estimates for the Afyon Zone, as well as two other tectono-sedimentary units from the same continental passive margin (the Ören and Kurudere-Nebiler Units from SW Anatolia). For age determination, I employed 40Ar-39Ar geochronology on white mica in carpholite-bearing rocks. For thermobarometry, a multi-equilibrium approach was used based on quartz-chlorite-mica and quartz-chlorite-chloritoid associations formed at the expense of carpholite-bearing assemblages, i.e., during the exhumation from the subduction zone. This combination allows deciphering the significance of the calculated radiometric ages in terms of metamorphic conditions. Results show that the Afyon Zone and the Ören Unit represent a latest Cretaceous high-pressure metamorphic belt, and the Kurudere-Nebiler Unit was affected by subduction-related metamorphism around 45 Ma and cooled down after collision-related metamorphism around 26 Ma. The results provided in the present thesis and from the literature allow better understanding continental amalgamation in Western Anatolia. It is shown that at least two distinct oceanic branches, whereas only one was previously considered, have closed during continuous north-dipping subduction between 92 and 45 Ma. Between 85-80 and 70-65 Ma, a narrow continental domain (including the Afyon Zone) was buried into a subduction zone within the northern oceanic strand. Parts of the subducted continent crust were exhumed while the upper oceanic plate was transported southwards. Subduction of underlying lithosphere persisted, leading to the closure of the southern oceanic branch and to subduct the front of a second continental domain (including the Kurudere-Nebiler Unit). This followed by a continental collisional stage characterized by the cease of subduction, crustal thicknening and the detachment of the subducting oceanic slab from the accreted continent lithosphere. The present study supports that in the late Mesozoic the East Mediterranean realm had a complex tectonic configuration similar to present Southeast Asia or the Caribbean, with multiple, coexisting oceanic basins, microcontinents and subduction zones. / Kontinentale Subduktion resultiert aus dem Abtauchen des ozenanischen Gebiets einer tektonischen Platte in den Oberen Erdmantel. Dies geschieht obwohl die kontinentale Erdkruste normalerweise eine geringere Dichte besitzt als der Obere Erdmantel. Die Lage ehemaliger ozeanischer Gebiete (auch als Suturzonen bezeichnet) ist dementsprechend durch stratigraphische, sedimentäre Gesteinsabfolgen gekennzeichnet, die entlang des passiven Kontinentalrandes abgelagert wurden. Anschließend wurden diese Gesteine unter niedrigen Temperaturen und hohem Druck umgewandelt, auch niedrig-gradige Hochdruckmetamorphose genannt. Während der gesamten Zeitspanne des Mesozoikums und Känozoikums (seit etwa 250 Millionen Jahren bis heute) wurde der mediterrane Raum durch die kontinuierliche Schließung des Tethyschen Ozeans (dem heutigen Mittelmeer) geprägt, der vermutlich in zahlreichen kleineren Ozeanen und Mikrokontinenten aufgeteilt war. Dennoch bleiben die genaue Anzahl und Lage der tethyschen Ozeane und Kontinente (die Paläogeographie der Tethys) bis heute umstritten. Das ist insbesondere der Fall in West- und Zentral-Anatolien, wo im Zeitraum zwischen der Oberen Kreide (vor 98 bis 65 Mio. J.) und dem unteren Känozoikum (vor 65 bis 40 Mio. J.) ein kontinentales Fragment am südlichen Kontinentalrand der Eurasischen Platte angelagert wurde (auch als Akkretion bezeichnet). Der vorderste Bereich von diesem Fragment erfuhr vor etwa 85-80 Millionen Jahren eine metamorphe Umwandlung, die mit den Prozessen der fortschreitenden Subduktion assoziiert werden können. Hingegen wurden die hinteren Bereiche erst später vor ca. 40-30 Mio. J. durch die Kollison der zwei Platten metamorph überprägt. Die ungewöhnlich lange Zeitspanne von etwa 40-50 Mio. J. zwischen den metamorphen Prozessen der Subduktion und der Kollision, stellt eine entscheidende Frage zum Verständnis der Entstehung von Anatolien dar. Die Afyon Zone repräsentiert hierbei eine tektonisch-beanspruchte sedimentäre Gesteinseinheit, die in einer strukturell tieferen Position bezüglich des frontalen metamorphen Hochdruckgürtels liegt und südlich von ihm anzutreffen ist. Die Afyon Zone besteht aus mesozoischen sedimentären Einheiten (250 bis 65 Mio. J. alt), die auf präkambrischem (älter als 545 Mio. J.) bis paläozoischem Untergrund (bis vor 250 Mio J.) abgelagert wurden, und vom nordwestlichen bis zentralen Anatolien, entlang der vermutlichen Tethys-Suturzone, verfolgt werden können. Obwohl die Afyon-Zone als eine niedrig-temperierte metamorphe Gesteinseinheit bezeichnet wird, wurde in letzter Zeit von Vorkommen von Hochdruckmineralen (v.a. Eisen(Fe)-Magnesium(Mg)-Karpholith in metamorphen Sedimenten) im zentralen Bereich berichtet. Diese neuen Erkenntnisse stellen die bisherigen Interpretationen zur tektonisch-metamorphen Entstehung der gesamten Region in Frage, insbesondere der der Afyon-Zone. Deshalb war eine erneute gründliche Überarbeitung und Untersuchung der wenig studierten metamorph-überprägten Sedimentgesteine in diesem Gebiet notwendig. Deshalb, überarbeitete ich die metamorphe Entwicklung der gesamten Afyon Zone, beginnend mit intensiver Geländearbeit und -beobachtungen. Mineralvergesellschaftungen aus Karpholith und Glaukophan, die unter niedrigen Temperaturen und hohem Druck entstanden sind, wurden in der gesamten Gesteinseinheit gefunden. Guterhaltene Mineralvergesellschaftungen aus Karpholith und Chloritoid sind nützlich für das Verständnis unter welchen Temperatur- und Druck-Bedingungen die Gesteine in die Tiefe gelangen (prograde Metamorphose). Durch die Untersuchungen von Gesteinsgefügen und der Eisen-Magnesium-Verteilung zwischen den Mineralien Karpholith und Chloritoid lassen sich Aussagen zu der Bildungstemperatur und dem Druck dieser Minerale machen. Dafür benutzte ich eine verbesserte Datenbank mit Mineraleigenschaften, die mir die Modellierung von Temperatur und Druck erlaubte und im Einklang mit den chemischen und mikroskopischen Beobachtungen steht. Es ergab sich, dass die Karpholith-haltigen Gesteine in der Afyon-Zone einen Temperaturanstieg von 280 zu 380°C (bei einer Tiefe von 30-35 km) erfahren haben. Um noch bessere Aussagen über die Entstehung zu treffen, wurden auch radiometrische Datierungen an Proben aus der Afyon-Zone, sowie an zwei weiteren Sedimentgesteinseinheiten (Ören- und Kurudere-Nebiler-Einheit aus SW Anatolien) gemacht. Für die Altersbestimmung benutzte ich die weitverbreitete 40Ar-39Ar Datierungsmethode an Hellglimmer-Mineralien in den Karpholith-haltigen Gesteinen. Temperatur und Druck können auch bestimmt werden, wenn man den Übergang von einer Mineralvergesellschaftung zu einer anderen Vergesellschaftung beobachtet. Dies gilt zum Beispiel für den Übergang von einer Karpholith-haltigen Zusammensetzung zu einer Quartz-Chlorit-Glimmer und Quartz-Chlorit-Chloritoid Mineralvergesellschaftung wenn tief subduzierte Gesteine wieder nach oben gelangen (Exhumation). Damit lassen sich die radiometrischen Alter den metamorphen Prozessen zu bestimmten Temperaturen und Drücken zuordnen. Mit diesen Erkenntnissen lassen sich die Afyon-Zone und die Ören-Einheit einem Hochdruck-Gebirgsgürtel in der späten Kreidezeit zuordnen, während die Kurudere-Nebiler Einheit durch die mit der Subduktion in Verbindung stehende Metamorphose vor ca. 45 Mio. J. beeinflusst wurde. Später wurde diese Einheit durch die Metamorphose, resultierend aus der Kollision vor 26 Mio. J., abgekühlt. Die Ergebnisse dieser und anderer Arbeiten erlauben es die Anlagerung von Kontinenten in West-Anatolien besser zu verstehen. Es wird gezeigt, dass mindestens zwei (im Gegensatz zu vorher einem) voneinander unabhängige Ozeanarme während der Subduktion von 92 bis 45 Millionen Jahren geschlossen wurden. Zwischen 85-80 und 70-65 Millionen Jahren, wurde ein schmales kontinentales Gebiet (welches die Afyon-Zone beinhaltet) in die Subduktionszone hineingzogen. Teile der subduzierten kontientalen Kruste kamen wieder an die Oberfläche (Exhumation), während die obere ozeanische Platte südwärts transportiert wurde. Die anhaltende Subduktion im oberen Bereich des Erdmantels (Lithosphäre) führte zu der Schließung des südlichen Ozeanarms und zu der Subduktion des zweiten kontinentalen Gebietes (welches die Kurudere-Nebiler-Einheit beinhaltete). Darauf folgte die kontinentale Kollisionsphase unter dem Ausklingen der Prozesse der Subduktion, der Krustenverdickung und der Abtrennung der subduzierten ozeanischen Platte von der akkretionierten kontientalen Lithosphäre (auch als Delamination bezeichnet). Die hier präsentierte Arbeit unterstüzt die Annahme das während der Oberen Kreidezeit das Ost-Mediterrane Gebiet tektonsich komplex angeordnet war, vergleichbar mit dem heutigen Südost-Asien oder der Karibik, mit ihren vielen gleichzeitig existierenden ozeanischen Becken, Mikrokontinenten und Subduktionszonen.
18

Modélisation thermodynamique et Spectroscopies IRTF, RMN des pyroxènes : des xénolites à la rhéologie mantellique / Thermodynamic modelling and FTIR/NMR spectroscopic studies of pyroxenes : from xenoliths to mantle rheology

Begaudeau, Karine 14 September 2011 (has links)
Ces dernières décennies, les xénolites de péridotites provenant des kimberlites et des basaltes ont contribué de manière déterminante à la compréhension de l’état physico-chimique du manteau supérieur de la Terre dont dépend la modélisation directe de déformation telle que le rebond post-glaciaire. Une telle approche requiert a priori la détermination des conditions physiques P, T et σ dont témoignent la chimie minérale et la texture de ces roches. Un protocole original d’inversion thermodynamique de données expérimentales pour des pyroxènes en équilibre mutuel, a d’abord été développé dans le but d’obtenir un géothermobaromètre fiable. D’autre part, l’étude menée par spectroscopie IRTF de pyroxènes montre que ces minéraux nominalement anhydres (NAMs) contiennent en fait de l’eau sous forme dissoute, de 38 à 450 ppm pour les cpx, et de 19 à 184 ppm pour les opx.Par son rôle perturbateur du réseau cristallin, cette eau affecte directement les propriétés physico-chimiques du manteau terrestre (viscosité, diagrammes de phase, conductivité électrique). La dissolution de cette eau est correlée à fO2, P et T, et seulement indirectement à la chimie des minéraux. Des analyses 1H, 27Al et 29Si MAS RMN sur ces phases contenant des teneurs non négligeables en fer, ainsi que sur des mélanges kaolinite+magnétite, permettent, entre autres, d’authentifier les signatures spectrales de ces pyroxènes naturels mais aussi de quantifier les espèces Al en termes de sites d’occupation. La complémentarité de ces outils, appliqués ici avec succès, ouvre de nouvelles perspectives de compréhension et modélisation des processus profonds. / Over the last decades, peridotite xenoliths brought up by kimberlites and basalts have largely and critically contributed to the understanding of the physical and chemical state of the Earth’s upper-mantle, a prerequisite for direct modelling of deep deformations such as those at work in post-glacial rebound. Such an approach first requires quantification of the physical conditions (P, T, σ) in control of mineral chemistry and rock textures. An original protocol for thermodynamic inversion of experimental data on mutually-equilibrated pyroxenes, was first developed to obtain a reliable geothermobarometer. Moreover, FTIR spectroscopic studies of pyroxenes show that these nominally anhydrous minerals (NAMs) actually contain dissolved water, from 38 to 450 ppm for cpx’s and from 19 to 184 ppm for opx’s. According to its disruptive action onto the crystalline network, such water directly affects the physical and chemical properties of the Earth’s mantle (viscosity, phase diagrams, electrical conductivity). Dissolution of this water component is correlated to fO2, P and T, but only indirectly to mineral composition. Last, 1H, 27Al and 29Si MAS NMR analyses on the same pyroxenes (as iron-bearing minerals), as well as on kaolinite+magnetite mixes, have authenticated NMR spectra for natural pyroxenes, but have also yielded constraining data on site occupancies, specially for Al. These complementary tools applied here with some success, open new prospects for the understanding and modelling of deep processes.
19

Thermobarometric modeling of the Catalina amphibolite unit: implications for tectonic and metasomatic models

Towbin, W. Henry 18 November 2013 (has links)
No description available.
20

Constraining Metamorphic and Tectonic Evolution in Convergent Terranes: How Trace Elements and Mineral Inclusions Shape Mechanical and Reconstructive Models

Ashley, Kyle T. 01 June 2015 (has links)
Conventional thermobarometry in metamorphic systems has been primarily limited to constraining peak temperature (or pressure) along a generalized P-T loop. This is largely attributed to the assumption that mineral assemblages and chemistries achieve a state closest to equilibrium with the maximum thermal (and therefore energetic) input at these peak conditions. However, this traditional approach is limited in providing much information about the evolution of a metamorphic terrane, which is modified by tectonic (kinematic) forces, fluid and component mobility, and heating duration. The ubiquity of quartz in the continental crust has driven much interest in using the phase for thermobarometric purposes. In this dissertation, I discss the application of elastic theory in reconstructing conditions of inclusion encapsulation through inclusion pressure estimation with Raman spectroscopy. In some instances, overpressuring of quartz inclusions in garnet give evidence for high-pressure formation conditions. When analyses are collected from garnet core to rim, pressure paths along garnet growth can be inferred (if temperature can be reasonably estimated). In high-T, low-P terranes, quartz may become dilated if the inclusion adheres to the host. If a quartz inclusion is sufficiently stretched, transformation to a low-density polymorph may occur. Trace element uptake, particularly Ti, have been characterized in quartz and understood to be the result of a temperature- (and to a lesser extent, pressure-) sensitive substitution for Si4+. However, the application of the Ti-in-quartz thermobarometer in quartz mylonites has led to mixed results due to the low-Ti resetting that occurs with dynamic recrystallization. We applied defect energy simulations and took a global assessment of deformed quartz trace element chemistries to infer that sweeping grain boundaries provide short pathways that allows localized re-equilibration with a Ti-undersaturated medium, resulting in Ti removal from the quartz lattice. In addition, thermodynamic pseudosection modeling has provided a method to assess Ti activity as a dynamic parameter – one that evolves as the phase stability changes through prograde and retrograde metamorphic reactions. With this understanding, better growth-composition models can be derived to infer complex pressure-temperature-time-deformation (P-T-t-D) histories of metamorphic rocks. These techniques and results are coupled with conventional thermobarometry techniques to provide a more comprehensive picture of the conditions experienced by a rock through the evolution, from burial to exhumation to the Earth's surface. The thermal evolution is used to provide conceptual thermal-kinematic models to explain tectonic evolution and heat advection in the continental lithosphere in ancient mountain belts. / Ph. D.

Page generated in 0.074 seconds