• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Additive Manufacturing Applications for Suspension Systems : Part selection, concept development, and design

Waagaard, Morgan, Persson, Johan January 2020 (has links)
This project was conducted as a case study at Öhlins Racing AB, a manufacturer of suspension systems for automotive applications. Öhlins usually manufacture their components by traditional methods such as forging, casting, and machining. The project aimed to investigate how applicable Additive Manufacturing (AM) is to manufacture products for suspension systems to add value to suspension system components. For this, a proof of concept was designed and manufactured. The thesis was conducted at Öhlins in Upplands Väsby via the consultant firm Combitech.  A product catalog was searched, screened, and one part was selected. The selected part was used as a benchmark when a new part was designed for AM, using methods including Topology Optimization (TO) and Design for Additive Manufacturing (DfAM). Product requirements for the chosen part were to reduce weight, add functions, or add value in other ways.  Methods used throughout the project were based on traditional product development and DfAM, and consisted of three steps: Product Screening, Concept Development, and Part Design. The re-designed part is ready to be manufactured in titanium by L-PBF at Amexci in Karlskoga.  The thesis result shows that at least one of Öhlin's components in their product portfolio is suitable to be chosen, re-designed, and manufactured by AM. It is also shown that value can be added to the product by increased performance, in this case mainly by weight reduction. The finished product is a fork bottom, designed with hollow structures, and is ready to print by L-PBF in a titanium alloy.

Page generated in 0.0804 seconds