• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 50
  • 23
  • 18
  • 10
  • 6
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 332
  • 332
  • 97
  • 81
  • 79
  • 68
  • 66
  • 61
  • 53
  • 51
  • 45
  • 43
  • 41
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Regulation of murine hepatic <em>Cytochrome P450 2a5</em> expression by transcription factor Nuclear factor (erythroid-derived 2)-like 2

Lämsä, V. (Virpi) 09 October 2012 (has links)
Abstract The hepatic inducible Cytochrome P450s (CYPs) generally prime xenobiotics for elimination. Murine CYP2A5 and human CYP2A6 share similar xenobiotic substrates and some regulatory features. Recently, they were shown to oxidize bilirubin, a byproduct of heme catabolism and a dose-dependent anti- or pro-oxidant, to biliverdin. In this study, the putative role of the redox-sensitive, cytoprotective transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in the regulation of hepatic Cyp2a5 expression and induction under diverse hepatotoxic conditions and altered heme homeostasis was characterized. The coordination of Cyp2a5 and the Nrf2 target gene Heme oxygenase-1 (Hmox1), which determines bilirubin formation from heme, responses to heavy metals and modulators of heme homeostasis, was studied in cultured wildtype and Nrf2(-/-) mouse primary hepatocytes. Nrf2 was essential for the basal hepatic expression of CYP2A5 in the endoplasmic reticulum (ER) and mitochondria, as well as for its induction by cadmium, lead, methyl mercury and phenethyl isothiocyanate. A functional Nrf2 binding antioxidant response element (ARE) about -2.4 kilobases upstream of the Cyp2a5 transcriptional start site was identified. In contrast to Hmox1, a target of BTB and CNC homology 1 (Bach)-mediated repression via AREs, the regulation of Cyp2a5 did not clearly involve Bach1. Excessive heme induced mainly ER-localized CYP2A5 via Nrf2, which was limited by the Nrf2-independent HMOX1 induction. In heme synthesis blockades, CYP2A5 was enhanced via Nrf2 and additional factors, such as the peroxisome proliferator-activated receptor &#947; coactivator-1&#945; (PGC-1&#945;). The typical CYP2A5 inducers phenobarbital, dibutyryl-cyclic adenosine monophosphate (db-cAMP) and PGC-1&#945; enhance heme synthesis; CYP2A5 was induced via Nrf2 in acute but not chronic phenobarbital exposure without a clear connection to heme, while the responses to db-cAMP and PGC-1&#945; were sensitized in the absence of Nrf2. This suggests novel crosstalk between Nrf2 and PGC-1&#945;. In this study, Cyp2a5 was identified as a sensitive indicator of hepatic Nrf2 pathway activation that could be used, e.g. for in vitro screening of drug candidate hepatotoxicity. The similar subcellular localization and coordination of CYP2A5 and HMOX1 expression in altered heme metabolism support the postulated role for CYP2A5 in bilirubin homeostasis. / Tiivistelmä Vierasaineet stimuloivat maksan Sytokromi P450 (CYP)-entsyymejä, mikä yleensä lisää niiden eliminaatiota. Hiiren CYP2A5 ja ihmisen CYP2A6 ovat lähisukua katalyyttisten ja osin säätelyllisten yhteneväisyyksiensä puolesta. Vastikään niiden osoitettiin katalysoivan hemin hajoamistuotteen, bilirubiinin hapettumista biliverdiiniksi, mikä saattaisi säädellä sen annosriippuvaisia vaikutuksia antioksidanttina ja oksidanttina. Työssä tutkittiin solustressiä aistivan, suojaavan transkriptiotekijän Nrf2 osuutta Cyp2a5-geenin aktivaatiossa maksatoksisissa olosuhteissa ja hemimetabolian muutoksissa. Cyp2a5:n ja bilirubiinin tuotosta vastaavan, Nrf2-säädellyn Hemioksigenaasi-1 (Hmox1):n vasteita verrattiin viljellyissä villityypin ja poistogeenisen Nrf2(-/-) hiiren primaarimaksasoluissa. Tulokset osoittavat, että Nrf2 ylläpitää CYP2A5:n ilmentymistä endoplasmisella kalvostolla (ER) ja mitokondrioissa sekä välittää sen stimulaation altisteilla kadmium, lyijy, metyylielohopea ja fenetyyli-isotiosyanaatti. Toimiva Nrf2-vasteinen antioksidanttivaste-elementti (ARE) tunnistettiin n. -2,4 kiloemäsparia Cyp2a5-geenin luennan aloituskohdasta ylävirtaan. BTB ja CNC homologia 1 (Bach1)-tekijä, joka on tärkeä Hmox1-säätelijä ja ARE-välitteinen transkription estäjä, ei selkeästi osallistu Cyp2a5:n säätelyyn. Hemin ylimäärä stimuloi CYP2A5:n määrää ER-kalvostolla, Nrf2-riippumattomasti stimuloituvan HMOX1 rajoittaessa Nrf2-reitin aktivaatiota. Hemisynteesin estyessä Nrf2 aktivoi Cyp2a5-geeniä muiden mekanismien kuten peroksisomiproliferaattori-aktivoituva reseptori gamman koaktivaattori-1&#945; (PGC-1&#945;) kanssa. Fenobarbitaali (PB), dibutyryyli-syklinen adenosiinimonofosfaatti (db-cAMP) ja PGC-1&#945; lisäävät tunnetusti hemisynteesiä. Nrf2 havaittiin Cyp2a5:n aktivaatiolle välttämättömäksi akuutissa mutta ei kroonisessa PB-altistuksessa ilman selkeästi havaittua hemin osuutta. Cyp2a5-geenin db-cAMP- ja PGC-1&#945;-vasteinen stimulaatio voimistui merkittävästi toimivan Nrf2-reitin puuttuessa, mikä osoittaa vuoropuhelua Nrf2 ja PGC-1&#945; välillä. Väitöskirjatyössä Cyp2a5 tunnistettiin herkäksi Nrf2-reitin aktivaation maksamarkkeriksi, jota voitaisiin hyödyntää esim. lääkeainekandidaattien maksatoksisuuden seulonnassa soluviljelyssä. CYP2A5:n ja HMOX1:n solunsisäinen kohdentuminen ja ekspressio koordinoituvat hemimetabolian muutoksissa, mikä tukee teoriaa CYP2A5:n roolista bilirubiinin metaboliassa maksassa.
292

Pou5f1 Post-translational Modifications Modulate Gene Expression and Cell Fate

Campbell, Pearl January 2012 (has links)
Embryonic stem cells (ESCs) are characterized by their unlimited capacity for self-renewal and the ability to contribute to every lineage of the developing embryo. The promoters of developmentally regulated loci within these cells are marked by coincident epigenetic modifications of gene activation and repression, termed bivalent domains. Trithorax group (TrxG) and Polycomb Group (PcG) proteins respectively place these epigenetic marks on chromatin and extensively colocalize with Oct4 in ESCs. Although it appears that these cells are poised and ready for differentiation, the switch that permits this transition is critically held in check. The derepression of bivalent domains upon knockdown of Oct4 or PcG underscores their respective roles in maintaining the pluripotent state through epigenetic regulation of chromatin structure. The mechanisms that facilitate the recruitment and retention of Oct4, TrxG, and PcG proteins at developmentally regulated loci to maintain the pluripotent state, however, remain unknown. Oct4 may function as either a transcriptional activator or repressor. Prevailing thought holds that both of these activities are required to maintain the pluripotent state through activation of genes implicated in pluripotency and cell-cycle control with concomitant repression of genes required for differentiation and lineage-specific differentiation. More recent evidence however, suggests that the activator function of Oct4 may play a more critical role in maintaining the pluripotent state (Hammachi et al., 2012). The purpose of the studies described in this dissertation was to clarify the underlying mechanisms by which Oct4 functions in transcriptional activation and repression. By so doing, we wished to contextualize its role in pluripotent cells, and to provide insight into how changes in Oct4 function might account for its ability to facilitate cell fate transitions. As a result of our studies we find that Oct4 function is dependent upon post-translational modifications (PTMs). We find through a combination of experimental approaches, including genome-wide microarray analysis, bioinformatics, chromatin immunoprecipitation, functional molecular, and biochemical analyses, that in the pluripotent state Oct4, Akt, and Hmgb2 participate in a regulatory feedback loop. Akt-mediated phosphorylation of Oct4 facilitates interaction with PcG recruiter Hmgb2. Consequently, Hmgb2 functions as a context dependent modulator of Akt and Oct4 function, promoting transcriptional poise at Oct4 bound loci. Sumoylation of Oct4 is then required to maintain Hmgb2 enrichment at repressed loci and to transmit the H3K27me3 mark in daughter progeny. The expression of Oct4 phosphorylation mutants however, leads to Akt inactivation and initiates the DNA Damage Checkpoint response. Our results suggest that this may subsequently facilitate chromatin reorganization and cell fate transitions. In summary, our results suggest that controlled modulation of Oct4, Akt, and Hmgb2 function is required to maintain pluripotency and for the faithful induction of transcriptional programs required for lineage specific differentiation.
293

Functional Genetic Analysis Reveals Intricate Roles of Conserved X-box Elements in Yeast Transcriptional Regulation

Voll, Sarah January 2013 (has links)
Understanding the functional impact of physical interactions between proteins and DNA on gene expression is important for developing approaches to correct disease-associated gene dysregulation. I conducted a systematic, functional genetic analysis of protein-DNA interactions in the promoter region of the yeast ribonucleotide reductase subunit gene RNR3. I measured the transcriptional impact of systematically perturbing the major transcriptional regulator, Crt1, and three X-box sites on the DNA known to physically bind Crt1. This analysis revealed interactions between two of the three X-boxes in the presence of Crt1, and unexpectedly, a significant functional role of the X-boxes in the absence of Crt1. Further analysis revealed Crt1- independent regulators of RNR3 that were impacted by X-box perturbation. Taken together, these results support the notion that higher-order X-box-mediated interactions are important for RNR3 transcription, and that the X-boxes have unexpected roles in the regulation of RNR3 transcription that extend beyond their interaction with Crt1.
294

Étude fonctionnelle de deux facteurs de transcription intervenant dans la régulation du développement du grain de maïs : ZmZOU impliqué dans la communication embryon-albumen et ZmAFL4 impliqué dans l'accumulation de réserves / Transcriptional study of two transcription factors involved in maize kernel development : ZmZOU involved in embryo-endosperm communication and ZmAFL4 involved in reserves accumulation

Grimault, Aurélie 28 November 2014 (has links)
Le grain de maïs est composé de 3 compartiments : l’embryon et l’albumen issus de la double fécondation et l’enveloppe d’origine maternelle. Le développement du grain et l’accumulation de réserves demande l’établissement d’une communication étroite entre l’embryon et l’albumen pour coordonner leur développement respectif. Si, des régulateurs majeurs impliqués dans le développement de la graine d’Arabidopsis ont été décrits, ces connaissances restent parcellaires chez les céréales. Les objectifs de ma thèse consistaient d’une part à étudier le contrôle de la communication entre l’embryon et l’albumen et d’autre part la régulation du remplissage du grain de maïs. Par l’analyse de lignées transgéniques sous exprimant ZmZHOUPI (ZmZOU-RNAi), nous avons établi que ce facteur de transcription à domaine bHLH, bien que s’exprimant exclusivement dans l’albumen, affecte significativement le développement de l’embryon (taille de l’embryon, persistance du suspenseur). L’analyse de données RNAseq (grains sauvages versus grains ZmZOU-RNAi) a permis d’identifier des gènes cibles potentiels de ZmZOU. De plus, nous avons montré que 3 facteurs de transcription de type bHLH homologues d’INDUCER OF CBP EXPRESSION (ICE) forment un partenariat avec ZmZOU.D’autre part, nous avons étudié les homologues d'ABA INSENSITIVE3, FUSCA3 et LEAFY COTYLEDON2 (AFL) qui forment un réseau de facteurs de transcription, à domaine B3, régulant l’accumulation d’huile et de protéines de réserves dans l’embryon d’Arabidopsis. Grâce à des analyses phylogénétiques et d’expression, nous avons établi que chez le maïs le réseau AFL, constitué de 5 membres (ZmAFLs), est partiellement conservé. Par dosages et analyse d’expression, nous avons montré que ZmAFL4, en particulier, est impliqué dans le contrôle de la biosynthèse de l’amidon dans l’albumen. / Maize kernel is composed of three major compartments: an embryo and an endosperm both produced by double fertilization and the maternally derived seed coat. Seed development and reserves accumulation demands coordination and thus communication between embryo and endosperm allowing specific growth of each compartment. While major regulators involved in seed development have been already described in Arabidopsis, knowledge in cereals remains limited. My thesis purposes were to study on one hand the control of communication between embryo and endosperm and on the other hand regulation of maize kernel filling.By analysis of transgenic lines knock down ZmZHOUPI (ZmZou-RNAi), we showed that this bHLH domain transcription factor, exclusively expressed in endosperm, affect significantly embryo development, size of embryo proper and suspensor persistence. RNAseq data analyses let find putative direct targets of ZmZOU. Additionally, we identified ZmZOU partners, 3 bHLH domain transcription factor homologs of INDUCER OF CBP EXPRESSION (ICE).Furthermore, we studied homologs of three B3 domain transcription factors named ABA INSENSITIVE3, FUSCA3 et LEAFY COTYLEDON2 (AFL) which form a regulatory network governing oil and seed storage proteins accumulation in Arabidopsis embryo. By phylogenetic and expression analysis, we established that 5 genes (ZmAFLs) constitute in maize a partially conserved AFL network. Through dosage and expression analysis, we established that particularly ZmAFL4 is involved in starch biosynthesis regulation.
295

Le système multiprotéique ORP spécifique de l'anaérobiose : mécanisme de régulation et fonction chez Desulfovibrio vulgaris Hildenborough / The multiprotein ORP system specific of anaerobiosis : regulation mechanism and function in Desulfovibrio vulgaris Hildenborough

Fievet, Anouchka 11 December 2014 (has links)
Environ 30% des CDS prédits d'un génome code pour des protéines de fonction inconnue ou hypothétiques. La compréhension du rôle de ces protéines est donc l'un des grands challenges de la communauté scientifique.L'objectif principal de cette thèse est de comprendre la fonction de six protéines de fonction inconnue spécifiques de l'anaérobiose formant un complexe, appelé complexe ORP chez Desulfovibrio vulgaris Hildenborough (DvH). Ce système est répandu dans de nombreuses espèces anaérobies, et certaines de ses protéines possèdent des homologies significatives avec des protéines impliquées dans la division cellulaire.Des outils de microscopie dédiés à l'anaérobiose ont été développés au cours de cette thèse et ont permis, pour la première fois, l'observation du cycle cellulaire de DvH. L'étude de l'effet de l'oxygène à l'échelle de la cellule unique a montré une inhibition réversible de la division cellulaire en présence d'oxygène révélant une nouvelle stratégie impliquée dans l'aérotolérance de DvH.Chez DvH, le complexe ORP est codé par des gènes organisés en deux opérons divergents, orp1 et orp2, dont la transcription est gouvernée par l'ARN polymérase sigma54, le facteur de transcription IHF et l'activateur de transcription DVU2106.La diminution de la quantité de complexe ORP conduit à une hétérogénéité de la taille des cellules en accord avec un rôle potentiel du complexe dans le contrôle de la division cellulaire. Alors que l'absence de certaines protéines ORP n'affecte pas de manière significative la division de la bactérie en anaérobiose, la protéine DVU2109 présente une localisation dynamique au cours du cycle cellulaire et semble être essentielle chez DvH. / Up to now, approximately 30% of the predicted CDS in genomes encode for hypothetical or unknown function proteins. Understanding the role and the function of these proteins is now a major challenge for the scientific community.The main objective of this thesis is to determine the function of six proteins of unknown function specific of anaerobiosis and able to forming a multiprotein complex in Desulfovibrio vulgaris Hildenborough (DvH), named the ORP complex. This system is widely found in many anaerobic microorganisms, and some proteins of this system have significant homologies with proteins involved in cell division.Tools for microscopy in anaerobiosis have been developed during this thesis and have allowed observation, for the first time, of a complete DvH cell cycle. The study of oxygen effect on DvH at a single cell level has showed a reversible inhibition of cell division during oxygen exposure revealing a new strategy involved in DvH aerotolerance.In DvH, the ORP complex is encoding by genes organized in two divergent operons, orp1 and orp2, whose transcription is governed by sigma 54 RNA polymerase, the transcription factor IHF and the transcriptional regulator DVU2106. The decreased in the amount of ORP complex leads to heterogeneity of the cell size in accordance with a potential role of this complex in the spatio-temporal control of DvH cell division. While the absence of the majority of ORP proteins doesn't significantly affect DvH division in anaerobic conditions, the protein DVU2109 has a dynamic location during cell cycle and appears to be essential in the cell.
296

Combining CRISPR-Cas9 and Proximity Labeling to Illuminate Chromatin Composition, Organization, and Regulation

Gao, Xin D. 22 November 2019 (has links)
A bacterial and archaeal adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas), has recently been engineered for genome editing. This RNA-guided platform has simplified genetic manipulation and holds promise for therapeutic applications. However, off-target editing has been one of the major concerns of the commonly used Streptococcus pyogenes Cas9 (SpyCas9). Despite extensive enzyme engineering to reduce off-target editing of SpyCas9, we have turned to nature and uncovered a Cas9 ortholog from Neisseria meningitidis (Nme) with high fidelity. In the first part of my thesis, we have systematically characterized Nme1Cas9 for engineering mammalian genomes and demonstrated its high specificity by genome-wide off-targeting detection methods in vitro and in cellulo, and thus provided a new platform for accurate genome editing. Due to its flexibility, CRISPR is becoming a versatile tool not only for genome editing, but also for chromatin manipulation. These alternative applications are possible because of the programmable targeting capacity of catalytically dead Cas9 (dCas9). In the second part of my thesis, we have combined dCas9 with the engineered plant enzyme ascorbate peroxidase (APEX2) to develop a proteomic method called dCas9-APEX2 biotinylation at genomic elements by restricted spatial tagging (C-BERST). Relying on the spatially restricted, fast biotin labeling of proteins near defined genomic loci, C-BERST enables the high-throughput identification of known telomere- and centromere- associated proteomes and novel factors. Furthermore, we have extended C-BERST to map the c-fos promoter and gained new insights regarding the dynamic transcriptional regulation process. Taken together, C-BERST can advance our understanding of chromatin regulators and their roles in nuclear and chromosome biology.
297

CtBPs and IRF3 at the Intersection of Transcriptional Regulation by Macromolecular Complexes

Jecrois, Anne M. 13 May 2021 (has links)
Transcriptional deregulation has emerged as one of the leading causes in various human diseases. More than fifty percent of cancers arise due to frequent mutations in genes regulating transcription. Higher-order assembly via protein-protein interactions is one common mechanism of transcriptional regulation. Despite their critical role in regulating gene transcription and therapeutic relevance, detailed mechanistic understanding of these assemblies remains scarce. The primary focus of this thesis is to uncover important structural principles underlying the assembly and stability of multi-domain protein assemblies by characterizing components of the IFNβ enhanceosome and the CtBP-mediated repression complex. Using a combination of biochemical and structural analyses, I showed that the transcriptional activator C-terminal binding protein 2 (CtBP2) is a tetramer by solving the 3.6Å cryoEM structure of CtBP2. I highlighted the types of interactions that stabilize the homo-tetramer and showed the relevance of the tetramer in CtBP2 transcriptional activity. Second, I used an integrative approach to investigate the structural features leading to activation of interferon regulator factor 3 (IRF3) and its interaction with DNA. Although this work mostly focused on components of the CtBP2-mediated complex and IFNβ enhanceosome, the principles described here can be applied to other complexes. Therefore, these studies provide an overall understanding on how other macromolecular complexes regulate gene transcription. Furthermore, our structural-based analyses will provide a basis for designing drugs that can regulate gene transcription in cancer and immunological disorders.
298

Role of post-transcriptional regulation in human liver

Chaturvedi, Praneet 11 February 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / My thesis comprises of two individual projects which revolve around the importance of post-transcriptional regulation in liver. My first project is studying the integrated miRNA – mRNA network in NAFLD. For fulfillment of the study we conducted a genome-wide study to identify microRNAs (miRs) as well as the miR-mRNA regulatory network associated with hepatic fat and NAFLD. Hepatic fat content (HFC), miR and mRNA expression were assessed in 73 human liver samples. Liver histology of 49 samples was further characterized into normal (n=33) and NAFLD (n=16). Liver miRNome and transcriptome were significantly associated with HFC and utilized to (a) build miR-mRNA association networks in NAFLD and normal livers separately based on the potential miR-mRNA targeting and (b) conduct pathway enrichment analyses. We identified 62 miRs significantly correlated with HFC (p < 0.05 with q < 0.15), with miR-518b and miR-19b being most positively and negatively correlated with HFC, respectively (p < 0.008 for both). Integrated network analysis showed that six miRs (miRs-30b*, 612, 17*, 129-5p, 204 and 20a) controlled ~ 70% of 151 HFC-associated mRNAs (p < 0.001 with q < 0.005). Pathway analyses of these HFC-associated mRNA revealed their key effect (p<0.05) in inflammation pathways and lipid metabolism. Further, significant (p<2.47e-4, Wilcoxon test) reduction in degree of negative associations for HFC-associated miRs with HFC-associated mRNAs was observed in NAFLD as compared to normal livers, strongly suggesting highly dysfunctional miR-mRNA post-transcriptional regulatory network in NAFLD. Our study makes several novel observations which provide clues to better understand the pathogenesis and potential treatment targets of NAFLD. My second project is based on uncovering important players of post-transcriptional regulation (RBPs) and how they are associated with age and gender during healthy liver development. For this study, we performed an association analysis focusing on the expression changes of 1344 RNA Binding proteins (RBPs) as a function of age and gender in human liver. We identify 88 and 45 RBPs to be significantly associated with age and gender respectively. Experimental verification of several of the predicted associations in the mouse model confirmed our findings. Our results suggest that a small fraction of the gender-associated RBPs (~40%) are likely to be up-regulated in males. Altogether, these observations show that several of these RBPs are important developmentally conserved regulators. Further analysis of the protein interaction network of RBPs associated with age and gender based on the centrality measures like degree, betweenness and closeness revealed that several of these RBPs might be prominent players in liver development and impart gender specific alterations in gene expression via the formation of protein complexes. Indeed, both age and gender-associated RBPs in liver were found to show significantly higher clustering coefficients and network centrality measures compared to non-associated RBPs. The compendium of RBPs and this study will help us gain insight into the role of post-transcriptional regulatory molecules in aging and gender specific expression of genes.
299

Transcriptional regulation of ATF4 is critical for controlling the Integrated Stress Response during eIF2 phosphorylation

Dey, Souvik 29 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In response to different environmental stresses, phosphorylation of eIF2 (eIF2P) represses global translation coincident with preferential translation of ATF4. ATF4 is a transcriptional activator of the integrated stress response, a program of gene expression involved in metabolism, nutrient uptake, anti-oxidation, and the activation of additional transcription factors, such as CHOP/GADD153, that can induce apoptosis. Although eIF2P elicits translational control in response to many different stress arrangements, there are selected stresses, such as exposure to UV irradiation, that do not increase ATF4 expression despite robust eIF2P. In this study we addressed the underlying mechanism for variable expression of ATF4 in response to eIF2P during different stress conditions and the biological significance of omission of enhanced ATF4 function. We show that in addition to translational control, ATF4 expression is subject to transcriptional regulation. Stress conditions such as endoplasmic reticulum stress induce both transcription and translation of ATF4, which together enhance expression of ATF4 and its target genes in response to eIF2P. By contrast, UV irradiation represses ATF4 transcription, which diminishes ATF4 mRNA available for translation during eIF2∼P. eIF2P enhances cell survival in response to UV irradiation. However, forced expression of ATF4 and its target gene CHOP leads to increased sensitivity to UV irradiation. In this study, we also show that C/EBPβ is a transcriptional repressor of ATF4 during UV stress. C/EBPβ binds to critical elements in the ATF4 promoter resulting in its transcriptional repression. The LIP isoform of C/EBPβ, but not the LAP version is regulated following UV exposure and directly represses ATF4 transcription. Loss of the LIP isoform results in increased ATF4 mRNA levels in response to UV irradiation, and subsequent recovery of ATF4 translation, leading to enhanced expression of its target genes. Together these results illustrate how eIF2P and translational control, combined with transcription factors regulated by alternative signaling pathways, can direct programs of gene expression that are specifically tailored to each environmental stress.
300

Defining the functions and mechanisms of mRNA targeting to the mitotic apparatus

Patel, Dhara 07 1900 (has links)
La localisation des ARNm dans différents compartiments subcellulaires est conservée dans un large éventail d'espèces et de divers types cellulaires. Le trafic est médié par l'interaction entre les protéines de liaison à l'ARN (RBP) et l'ARNm. Les RBP reconnaissent les éléments cis-régulateurs de l'ARNm, également appelés éléments de localisation. Ceux-ci sont définis par leur séquence et/ou leurs caractéristiques structurelles résidant dans la molécule d'ARNm. La localisation des ARNm est essentielle pour la résolution subcellulaire et temporelle. De plus, les ARNm se sont avérés enrichis dans de nombreux compartiments cellulaires, notamment les mitochondries, l'appareil mitotique, et le réticulum endoplasmique. En outre, des études ont démontré que les RBP et les ARNm sont associés aux structures de l'appareil mitotique. Cependant, le rôle que joue la localisation de l'ARNm au cours de la mitose reste largement inexploré. Ma thèse de doctorat vise à comprendre comment le trafic d'ARNm est impliqué lors de la mitose. La première partie de cette thèse porte sur l'interaction post-transcriptionnelle qui se produit entre les deux ARNm, cen et ik2. Les gènes qui se chevauchent sont une caractéristique frappante de la plupart des génomes. En fait, il a été constaté que le chevauchement des séquences génomiques module différents aspects de la régulation des gènes tels que l'empreinte génomique, la transcription, l'édition et la traduction de l'ARN. Cependant, la mesure dans laquelle cette organisation influence les événements réglementaires opérant au niveau post-transcriptionnel reste incertaine. En étudiant les gènes cen et ik2 de Drosophila melanogaster, qui sont transcrits de manière convergente avec des régions 3' non traduites qui se chevauchent, nous avons constaté que la liaison physique de ces gènes est un déterminant clé dans la co-localisation de leurs ARNm aux centrosomes cytoplasmiques. Le ciblage du transcrit ik2 dépend de la présence et de l'association physique avec l'ARNm de cen, qui est le principal moteur de la co-localisation centrosomale. En interrogeant les ensembles de données de séquençage de fractionnement, nous constatons que les ARNm codés par des gènes qui se chevauchent en 3' sont plus souvent co-localisés par rapport aux paires de transcrits aléatoires. Ce travail suggère que les interactions post-transcriptionnelles des ARNm avec des séquences complémentaires peuvent dicter leur destin de localisation dans le cytoplasme. La deuxième partie de cette thèse consiste à étudier le rôle que jouent les RBP au cours de la mitose. Auparavant, les RBP se sont avérés être associés au fuseau et aux centrosomes. Cependant, leur rôle fonctionnel au niveau de ces structures reste à étudier. Grâce à un criblage par imagerie avec plus de 300 anticorps, nous avons identifié 30 RBP localisés dans les structures mitotiques des cellules HeLa. Ensuite, pour évaluer les rôles fonctionnels de ces RBP, nous avons utilisé l'interférence ARN (ARNi) pour évaluer si la fidélité du cycle cellulaire était compromise dans les cellules HeLa et les embryons de Drosophila melanogaster. Fait intéressant, nous avons identifié plusieurs candidats RBP pour lesquels le knockdown perturbe la mitose et la localisation de l'ARNm dans les cellules HeLa. De plus, la perte des orthologues a entraîné des défauts de développement chez l'embryon de mouche. Grâce à ce travail, nous avons démontré que les RBP sont impliquées pour assurer une mitose sans erreur. En résumé, les travaux que j'ai menés mettent en lumière l'implication de la régulation post-transcriptionnelle au cours de la mitose. En définissant les fonctions et le mécanisme de localisation des ARNm en mitose, ce travail permettra de définir de nouvelles voies moléculaires impliquées dans la régulation de la mitose. Puisque la division cellulaire non contrôlée peut mener à des maladies tel le cancer, étudier le contrôle du cycle cellulaire sous cet angle « centré sur l'ARN » peut aider à développer de nouvelles approches thérapeutiques pour trouver des solutions aux problèmes de santé. / The localization of mRNAs to different subcellular compartments is conserved in a wide range of species and diverse cell types. Trafficking is mediated by the interaction between RNA binding proteins (RBPs) and mRNA. RBPs recognize mRNA cis regulatory motifs, otherwise known as localization elements. These are defined by their sequence and/or structural features residing within the mRNA molecule. Localization of mRNAs is essential for subcellular and temporal resolution. Furthermore, mRNAs have been found to be enriched in many cellular compartments including the mitochondria, mitotic apparatus, and endoplasmic reticulum. Moreover, studies have demonstrated that RBPs and mRNAs are associated with mitotic apparatus structures. However, the role that mRNA localization plays during mitosis remains largely unexplored. My PhD thesis aims to understand how the trafficking of mRNAs is implicated during mitosis. The first part of this thesis encompasses the post-transcriptional interaction that occurs between the two mRNAs, cen and ik2. Overlapping genes are a striking feature of most genomes. In fact, genomic sequence overlap has been found to modulate different aspects of gene regulation such as genomic imprinting, transcription, RNA editing and translation. However, the extent to which this organization influences regulatory events operating at the post-transcriptional level remains unclear. By studying the cen and ik2 genes of Drosophila melanogaster, which are convergently transcribed with overlapping 3’untranslated regions, we found that the physical linkage of these genes is a key determinant in co-localizing their mRNAs to cytoplasmic centrosomes. Targeting of the ik2 transcript is dependent on the presence and physical association with cen mRNA, which serves as the main driver of centrosomal colocalization. By interrogating global fractionation-sequencing datasets, we find that mRNAs encoded by 3’overlapping genes are more often co-localized as compared to random transcript pairs. This work suggests that post-transcriptional interactions of mRNAs with complementary sequences can dictate their localization fate in the cytoplasm. The second part of this thesis involves investigating the role that RBPs play during mitosis. Previously, RBPs have been found to be associated with the spindle and centrosomes. However, their functional role at these structures was yet to be investigated. Through an imaging screen with >300 antibodies, we identified 30 RBPs localized to mitotic structures in HeLa cells. Then, to assess the functional roles of these RBPs, we used RNA interference (RNAi) to assess whether cell cycle fidelity was compromised in HeLa cells and Drosophila melanogaster embryos. Interestingly, we identified several RBP candidates for which the knockdown disrupted mitosis and mRNA localization in HeLa cells. Furthermore, loss of the orthologs led to developmental defects in the fly embryo. Through this work, we demonstrated that RBPs are involved in ensuring an error-free mitosis. In summary, the work that I have conducted sheds light on the involvement of post-transcriptional regulation during mitosis. By defining the functions and mechanism of mRNA localization in mitosis, this work will help define new molecular pathways involved in mitosis regulation. As uncontrolled cell division can lead to diseases such as cancer, studying cell cycle control from this ‘RNA-centric’ angle may help to develop new therapeutic approaches to find solutions to health problems.

Page generated in 0.2347 seconds