101 |
Detecção de situações anormais em caldeiras de recuperação química. / Detection of abnormal situations in chemical recovery boilers.Gustavo Matheus de Almeida 12 September 2006 (has links)
O desafio para a área de monitoramento de processos, em indústrias químicas, ainda é a etapa de detecção, com a necessidade de desenvolvimento de sistemas confiáveis. Pode-se resumir que um sistema é confiável, ao ser capaz de detectar as situações anormais, de modo precoce, e, ao mesmo tempo, de minimizar a geração de alarmes falsos. Ao se ter um sistema confiável, pode-se empregá-lo para auxiliar o operador, de fábricas, no processo de tomada de decisões. O objetivo deste estudo é apresentar uma metodologia, baseada na técnica, modelo oculto de Markov (HMM, acrônimo de ?Hidden Markov Model?), para se detectar situações anormais em caldeiras de recuperação química. As aplicações de maior sucesso de HMM são na área de reconhecimento de fala. Pode-se citar como aspectos positivos: o raciocínio probabilístico, a modelagem explícita, e a identificação a partir de dados históricos. Fez-se duas aplicações. O primeiro estudo de caso é no ?benchmark? de um sistema de evaporação múltiplo efeito de uma fábrica de produção de açúcar. Identificou-se um HMM, característico de operação normal, para se detectar cinco situações anormais no atuador responsável por regular o fluxo de xarope de açúcar para o primeiro evaporador. A detecção, para as três situações abruptas, é imediata, uma vez que o HMM foi capaz de detectar alterações, abruptas, no sinal da variável monitorada. Em relação às duas situações incipientes, foi possível detectá-las ainda em estágio inicial; ao ser o valor de f (vetor responsável por representar a intensidade de um evento anormal, com o tempo), no instante da detecção, próximo a zero, igual a 2,8% e 2,1%, respectivamente. O segundo estudo de caso é em uma caldeira de recuperação química, de uma fábrica de produção de celulose, no Brasil. O objetivo é monitorar o acúmulo de depósitos de cinzas sobre os equipamentos da sessão de transferência de calor convectivo, através de medições de perda de carga. Este é um dos principais desafios para se aumentar a eficiência operacional deste equipamento. Após a identificação de um HMM característico de perda de carga alta, pôde-se verificar a sua capacidade de informar o estado atual e, por consequência, a tendência do sistema, de modo similar à um preditor. Pôde-se demonstrar também a utilidade de se definir limites de controle, com o objetivo de se ter a informação sobre a distância entre o estado atual e os níveis de alarme de perda de carga. / The greatest challenge faced by the area of process monitoring in chemical industries still resides in the fault detection task, which aims at developing reliable systems. One may say that a system is reliable if it is able to perform early fault detection and, at the same time, to reduce the generation of false alarms. Once there is a reliable system available, it can be employed to help operators, in factories, in the decisionmaking process. The aim of this study is presenting a methodology, based on the Hidden Markov Model (HMM) technique, suggesting its use in the detection of abnormal situations in chemical recovery boilers. The most successful applications of HMM are in the area of speech recognition. Some of its advantages are: probabilistic reasoning, explicit modeling and the identification based on process history data. This study discusses two applications. The first one is on a benchmark of a multiple evaporation system in a sugar factory. A HMM representative of the normal operation was identified, in order to detect five abnormal situations at the actuator responsible for controlling the syrup flow to the first evaporator. The detection result for the three abrupt situations was immediate, since the HMM was capable of detecting the statistical changes on the signal of the monitored variable as soon as they occurred. Regarding to the two incipient situations, the detection was done at an early stage. For both events, the value of vector f (responsible for representing the strength of an abnormal event over time), at the time it occurred, was near zero, equal to 2.8 and 2.1%, respectively. The second case study deals with the application of HMM in a chemical recovery boiler, belonging to a cellulose mill, in Brazil. The aim is monitoring the accumulation of ash deposits over the equipments of the convective heat transfer section, through pressure drop measures. This is one of the main challenges to be overcome nowadays, bearing in mind the interest that exists in increasing the operational efficiency of this equipment. Initially, a HMM for high values of pressure drop was identified. With this model, it was possible to check its capacity to inform the current state, and consequently, the tendency of the system (similarly as a predictor). It was also possible to show the utility of defining control limits, in order to inform the operator the relative distance between the current state of the system and the alarm levels of pressure drop.
|
102 |
運用文字探勘技術分析金融科技之發展與趨勢 / Applying text mining techniques to the development and trends of fintech's patent郝紹君, Hao, Shao Chun Unknown Date (has links)
現今科技日新月異,不斷突破創新,產業環境變動的步調也越來越快,新竄出之金融科技(Finance Technology)的應用,使得許多企業越加注重技術方面的研發創新,尤其,善加運用專利資訊能有效節省研發經費與時間。因此如何有效運用專利是企業維持競爭優勢不可或缺的一環。
有鑑於此,本研究搜集近年各國專利資料庫之專利資料,將資料分為三個時期,並區分申請中與已申請之專利資料,透過文字探勘技術與機會探索分析出金融科技之發展與趨勢,了解各時期詞彙間之關聯性與差異,再搭配視覺化工具KeyGraph,以描繪出金融科技領域之相關詞彙關聯趨勢圖,挖掘未來潛在趨勢。
本研究之結果了解金融科技在各時期的趨勢發展變化與尋求脈絡,以及過去各時期之專利佈局,因而從結果中發現金融科技之發展方向主體為支付領域,許多支付科技接連出現在三個時期中。然而近幾年,其他金融領域如投資、融資、保險、資料分析等也漸漸浮出,從本研究之第三個時期的高頻字詞高達34個可看出,可見金融科技之專利發展佈局已快速從支付領域拓展至其他金融領域。本研究所挖掘出之潛在趨勢顯示了未來金融科技領域中將會有五大重點發展領域,分別為服務整合領域之雲端科技、支付領域之生物辨識與穿戴支付與加密貨幣、資料分析領域之機器學習與人工智慧、信息收集與處理領域之遠程信息處理科技、以及理財投資領域之理財機器人。
期望本研究結果能幫助企業,在面臨新科技不斷衝擊產業,而產業不斷尋求創新發展之下,能夠快速檢閱目前市場趨勢,藉此釐清並改善自身之發展策略,以因應外部環境之變動,提供企業作為金融科技發展之策略參考,也能有助於企業釐清與制定金融科技之投資方向,以擁有持續的競爭優勢。 / Nowadays, with the rapid advancement of information technologies, the changes of business environment and the way to deal with the changes are becoming faster and faster. The development and adoption of new financial technologies has made many enterprises pay more attention to the research and development (R&D) initiatives. Besides, making good use of patent information can effectively save the budget and time of R&D, so how to effectively use patent information is an indispensable part for enterprises to maintain their competitive advantages.
This study collected the patent data from the national patent database, and divided the data into three periods, and distinguished the data between the applying and the applied patents. Through the text mining techniques and chance discovery, this study explored the development and trends of financial technology and also aimed to understand the relevance and differences between the major terms in each period. Then, with the visual tool, KeyGraph, this study illustrated the associations between related terms, and proposed the potential future trends based on the graphs.
The results of this study help monitor the changes of the trends and financial technology’s development in the three periods, and understand the patent portfolios in each period. This study has found that the main direction of financial technology’s development is the payment field. Many technologies related to payment have successively appeared in the three periods. However, in recent years, other financial areas such as investment, financing, insurance, data analysis and other areas are gradually emerging, since we found 34 high-frequency terms in the third period. This also shows that the development of financial technology’s patent portfolios has expanded from payment to other financial areas. The potential trends of financial technology’s development in this study are five areas, namely, technologies of cloud, biometric and wearable payment and cryptocurrency, machine learning and artificial intelligence, telematics technology, and robo-advisors.
It is expected that this study can serve as a reference for the development of financial technology, and help enterprises be able to quickly review their current market trends, clarify and improve their own R&D strategies to respond to the changes in the external environment. Also, it is hoped that the results can help enterprises clarify and develop their own investment directions to maintain competitive advantages.
|
103 |
IMPACT OF CLIMATE CHANGE ON EXTREME HYDROLOGICAL EVENTS IN THE KENTUCKY RIVER BASINChattopadhyay, Somsubhra 01 January 2017 (has links)
Anthropogenic activities including urbanization, rapid industrialization, deforestation and burning of fossil fuels are broadly agreed on as primary causes for ongoing climate change. Scientists agree that climate change over the next century will continue to impact water resources with serious implications including storm surge flooding and a sea level rise projected for North America. To date, the majority of climate change studies conducted across the globe have been for large-sized watersheds; more attention is required to assess the impact of climate change on smaller watersheds, which can help to better frame sustainable water management strategies.
In the first of three studies described in this dissertation, trends in annual precipitation and air-temperature across the Commonwealth of Kentucky were evaluated using the non-parametric Mann-Kendall test considering meteorological time series data from 84 weather stations. Results indicated that while annual precipitation and mean annual temperature have been stable for most of Kentucky over the period 1950-2010, there is evidence of increases (averages of 4.1 mm/year increase in annual precipitation and 0.01 °C/year in mean annual temperature) along the borders of the Kentucky. Considered in its totality, available information indicates that climate change will occur – indeed, it is occurring – and while much of the state might not clearly indicate it at present, Kentucky will almost certainly not be exempt from its effects. Spatial analysis of the trend results indicated that eastern part of the state, which is characterized by relatively high elevations, has been experiencing decreasing trends in precipitation.
In the second study, trends and variability of seven extreme precipitation indices (total precipitation on wet days, PRCPTOT; maximum length of dry and wet periods, CDD and CWD, respectively; number of days with precipitation depth ≥20 mm, R20mm; maximum five-day precipitation depth, RX5day; simple daily precipitation intensity, SDII; and standardized precipitation index, SPI were analyzed for the Kentucky River Basin for both baseline period of 1986-2015 and the late-century time frame of 2070-2099. For the baseline period, the majority of the indices demonstrated increasing trends; however, statistically significant trends were found for only ~11% of station-index combinations of the 16 weather stations considered. Projected magnitudes for PRCPTOT, CDD, CWD, RX5day and SPI, indices associated with the macroweather regime, demonstrated general consistency with trends previously identified and indicated modest increases in PRCPTOT and CWD, slight decreases in CDD, mixed results for RX5day, and increased non-drought years in the late century relative to the baseline period. The study’s findings indicate that future conditions might be characterized by more rainy days but fewer large rainfall events; this might lead to a scenario of increased average annual rainfall but, at the same time, increased water scarcity during times of maximum demand.
In the third and final study, the potential impact of climate change on hydrologic processes and droughts over the Kentucky River basin was studied using the watershed model Soil and Water Assessment Tool (SWAT). The SWAT model was successfully calibrated and validated and then forced with forecasted precipitation and temperature outputs from a suite of CMIP5 global climate model (GCMs) corresponding to two different representative concentration pathways (RCP 4.5 and 8.5) for two time periods: 2036-2065 and 2070-2099, referred to as mid-century and late-century, respectively. Climate projections indicate that there will be modest increases in average annual precipitation and temperature in the future compared to the baseline (1976-2005) period. Monthly variations of water yield and surface runoff demonstrated an increasing trend in spring and autumn, while winter months are projected as having decreasing trends. In general, maximum drought length is expected to increase, while drought intensity might decrease under future climatic conditions. Hydrological droughts (reflective of water availability), however, are predicted to be less intense but more persistent than meteorological droughts (which are more reflective of only meteorological variables). Results of this study could be helpful for preparing any climate change adaptation plan to ensure sustainable water resources in the Kentucky River Basin.
|
104 |
Semantic Topic Modeling and Trend AnalysisMann, Jasleen Kaur January 2021 (has links)
This thesis focuses on finding an end-to-end unsupervised solution to solve a two-step problem of extracting semantically meaningful topics and trend analysis of these topics from a large temporal text corpus. To achieve this, the focus is on using the latest develop- ments in Natural Language Processing (NLP) related to pre-trained language models like Google’s Bidirectional Encoder Representations for Transformers (BERT) and other BERT based models. These transformer-based pre-trained language models provide word and sentence embeddings based on the context of the words. The results are then compared with traditional machine learning techniques for topic modeling. This is done to evalu- ate if the quality of topic models has improved and how dependent the techniques are on manually defined model hyperparameters and data preprocessing. These topic models provide a good mechanism for summarizing and organizing a large text corpus and give an overview of how the topics evolve with time. In the context of research publications or scientific journals, such analysis of the corpus can give an overview of research/scientific interest areas and how these interests have evolved over the years. The dataset used for this thesis is research articles and papers from a journal, namely ’Journal of Cleaner Productions’. This journal has more than 24000 research articles at the time of working on this project. We started with implementing Latent Dirichlet Allocation (LDA) topic modeling. In the next step, we implemented LDA along with document clus- tering to get topics within these clusters. This gave us an idea of the dataset and also gave us a benchmark. After having some base results, we explored transformer-based contextual word and sentence embeddings to evaluate if this leads to more meaningful, contextual, and semantic topics. For document clustering, we have used K-means clustering. In this thesis, we also discuss methods to optimally visualize the topics and the trend changes of these topics over the years. Finally, we conclude with a method for leveraging contextual embeddings using BERT and Sentence-BERT to solve this problem and achieve semantically meaningful topics. We also discuss the results from traditional machine learning techniques and their limitations.
|
105 |
Trends Analysis and a Yearly Comparison of Point Sources of Atmospheric Mercury Using HYSPLIT Back Trajectories Focused in Athens, OhioThomason, Krista A. 23 September 2019 (has links)
No description available.
|
106 |
Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasetsOsunmadewa, Babatunde Adeniyi, Gebrehiwot, Worku Zewdie, Csaplovics, Elmar, Adeofun, Olabinjo Clement 12 June 2018 (has links)
Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA) approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS) and end of season (EOS) was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0) and a significant decrease in other greenness trend maps (amplitude 1 and phase 1) was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0) was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1) was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities.
|
107 |
Linear and segmented linear trend detection for vegetation cover using GIMMS normalized difference vegetation index data in semiarid regions of NigeriaOsunmadewa, Babatunde A., Wessollek, Christine, Karrasch, Pierre 06 September 2019 (has links)
Quantitative analysis of trends in vegetation cover, especially in Kogi state, Nigeria, where agriculture plays a major role in the region’s economy, is very important for detecting long-term changes in the phenological behavior of vegetation over time. This study employs the use of normalized difference vegetation index (NDVI) [global inventory modeling and mapping studies 3g (GIMMS)] data from 1983 to 2011 with detailed methodological and statistical approach for analyzing trends within the NDVI time series for four selected locations in Kogi state. Based on the results of a comprehensive study of seasonalities in the time series, the original signals are decomposed. Different linear regression models are applied and compared. In order to detect structural changes over time a detailed breakpoint analysis is performed. The quality of linear modeling is evaluated by means of statistical analyses of the residuals. Standard deviations of the regressions are between 0.015 and 0.021 with R2 of 0.22–0.64. Segmented linear regression modeling is performed for improvement and a decreasing standard deviation of 33%–40% (0.01–0.013) and R2 up to 0.82 are obtained. The approach used in this study demonstrates the added value of long-term time series analyses of vegetation cover for the assessment of agricultural and rural development in the Guinea savannah region of Kogi state, Nigeria.
|
108 |
Análisis de la incidencia de factores causales en la evolución de la siniestralidad laboral en EspañaGallego Blasco, Vicente Salvador 05 July 2021 (has links)
[ES] La Ley de Prevención de Riesgos Laborales de 8 de noviembre de 1995 (LPRL), en vigor desde el 10 de febrero de 1996, establece en su artículo 5: "tendrá por objeto la promoción de la mejora de las condiciones de trabajo dirigida a elevar el nivel de protección de la seguridad y la salud de los trabajadores en el trabajo."
En esta Tesis se ha investigado la evolución de los índices de siniestralidad laboral y su relación con la evolución de diferentes variables explicativas relacionadas con el desarrollo normativo, el mercado de trabajo, la estructura productiva, las condiciones de empleo y las condiciones individuales, entre otras, para el caso de España y en el periodo 1995-2017, que abarca desde la promulgación de la LPRL hasta fechas recientes donde se disponía de los datos históricos necesarios. La investigación se ha centrado en los índices de salud más relevantes según su significado en términos de riesgo y/o sus componentes.
El objetivo de la investigación ha sido el encontrar evidencias sobre relaciones causa-efecto entre índices y variables, a partir de las cuales extraer lecciones que facilitarán una mejor planificación de la acción preventiva. Para ello, se han propuesto varios modelos explicativos utilizando diferentes herramientas estadísticas, que han permitido formular de manera explícita y analizar la relación entre la evolución de los indicadores de salud ocupacional y la evolución de las principales variables explicativas.
En términos generales puede concluirse que la implantación de dicha ley y normativa que la acompaña ha tenido un impacto positivo en las condiciones de trabajo y en consecuencia sobre el nivel de seguridad y salud de los trabajadores desde entonces y hasta la fecha. Sin embargo, se observan diferentes comportamientos cíclicos en la evolución de los indicadores, tales como los índices de incidencia, frecuencia y gravedad, que pone de manifiesto su dependencia de la naturaleza y comportamiento cíclico de algunas de las variables explicativas más importantes relacionadas con ciclos económicos, mercado de trabajo, estructura productiva, etc. Además, se observa como aspectos tales como la pertenencia a grupos de edad jóvenes o expertos, el nivel de estudios, determinadas categorías profesionales, y algunos sectores particulares tienen efectos significativos sobre los valores alcanzados por los índices de siniestralidad. En cambio, otros, como el trabajo a tiempo parcial o la contratación temporal no manifiestan tener tanta repercusión sobre los indicadores. / [CA] Partint de les dades corresponents als accidents ocorreguts en el període 1995-2017, es La Llei de Prevenció de Riscos Laborals de 8 de novembre de 1995 (*LPRL), en vigor des del 10 de febrer de 1996, estableix en el seu article 5: "tindrà per objecte la promoció de la millora de les condicions de treball dirigida a elevar el nivell de protecció de la seguretat i la salut dels treballadors en el treball." En aquesta Tesi s'ha investigat l'evolució dels índexs de sinistralitat laboral i la seua relació amb l'evolució de diferents variables explicatives relacionades amb el desenvolupament normatiu, el mercat de treball, l'estructura productiva, les condicions d'ocupació i les condicions individuals, entre altres, per al cas d'Espanya i en el període 1995-2017, que abasta des de la promulgació de la LPRL fins a dates recents on es disposava de les dades històriques necessàries. La investigació s'ha centrat en els índexs de salut més rellevants segons el seu significat en termes de risc i/o els seus components. L'objectiu de la investigació ha sigut el trobar evidències sobre relacions causa-efecte entre índexs i variables, a partir de les quals extraure lliçons que facilitaran una millor planificació de l'acció preventiva. Per a això, s'han proposat diversos models explicatius utilitzant diferents eines estadístiques, que han permés formular de manera explícita i analitzar la relació entre l'evolució dels indicadors de salut ocupacional i l'evolució de les principals variables explicatives. En termes generals pot concloure's que la implantació d'aquesta llei i normativa que l'acompanya ha tingut un impacte positiu en les condicions de treball i en conseqüència sobre el nivell de seguretat i salut dels treballadors des de llavors i fins hui. No obstant això, s'observen diferents comportaments cíclics en l'evolució dels indicadors, com ara els índexs d'incidència, freqüència i gravetat, que posa de manifest la seua dependència de la naturalesa i comportament cíclic d'algunes de les variables explicatives més importants relacionades amb cicles econòmics, mercat de treball, estructura productiva, etc. A més, s'observa com a aspectes com ara la pertinença a grups d'edat joves o experts, el nivell d'estudis, determinades categories professionals, i alguns sectors particulars tenen efectes significatius sobre els valors aconseguits pels índexs de sinistralitat. En canvi, uns altres, com el treball a temps parcial o la contractació temporal no manifesten tindre tanta repercussió sobre els indicadors. / [EN] The Occupational Risk Prevention Act of November 8, 1995 (ORPA), in force since February 10, 1996, establishes in its article 5: "will have as its objective the promotion of the improvement of working conditions aimed at raise the level of protection of the safety and health of workers at work. "
This thesis has investigated the evolution of the occupational accident rates and their relationship with the evolution of different explanatory variables related to regulatory development, the labor market, the productive structure, employment conditions and individual conditions, among others, in the case of Spain and in the period 1995-2017, which ranges from the enactment of the LPRL to recent dates where the necessary historical data was available. Research has focused on the most relevant health indices according to their meaning in terms of risk and / or their components.
The objective of the research has been to find evidence on cause-effect relationships between indices and variables, from which to extract lessons that will facilitate better planning of preventive action. To this end, several explanatory models have been proposed using different statistical tools, which have made it possible to explicitly formulate and analyze the relationship between the evolution of occupational health indicators and the evolution of the main explanatory variables.
In general terms, it can be concluded that the implementation of said law and accompanying regulations has had a positive impact on working conditions and consequently on the level of health and safety of workers since then and to date. However, different cyclical behaviors are observed in the evolution of the indicators, such as incidence, frequency and severity indices, which highlights their dependence on the nature and cyclical behavior of some of the most important explanatory variables related to economic cycles, labor market, productive structure, etc. Furthermore, aspects such as belonging to young age groups or experts, educational level, certain professional categories, and some particular sectors are observed as having significant effects on the values reached by the accident rates. On the other hand, others, such as part-time work or temporary hiring, do not claim to have such an impact on the indicators. / Gallego Blasco, VS. (2021). Análisis de la incidencia de factores causales en la evolución de la siniestralidad laboral en España [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168774
|
109 |
Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos webYeste Moreno, Víctor Manuel 04 November 2021 (has links)
[EN] The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in an online media and the possible prediction of the selected success variables.
Framed in the field of digital journalism, it responds to the need to analyze the success of web content so that it can help in the decision-making of the editorial team of a digital medium. A line of research focused on the content itself, providing an innovative vision to that of previous research, and a methodology that serves as a basis for future scientific advances.
It is about the contribution of valuable information, either from the statistical analysis of the data or from the possible prediction of the success indicators of greatest interest to the environment. In this way, it could be integrated as a feedback into the content strategy and thus favor its iterative optimization.
The main objective, therefore, is the design of a cybermetric methodology for calculating the success of an online publication, having as specific objectives: to research the concept of success in digital journalism, the social network Twitter, web analytics and web advertising; design the methodology and determine what tools and reports are needed; extract and process data for statistical analysis; perform regressions that allow to obtain prediction equations of the selected success variables; and validate the prediction equations with test data and obtain their precision, serving this as a degree of confidence in the prediction.
The design of the methodology has served to observe a significant over-dispersion in the data, as well as to demonstrate that the success of a web content has a strongly multifactorial nature, which causes a decrease in the variability calculated using the indicators proposed by previous research.
This thesis serves, then, as the basis for a very interesting research framework both at an academic and business level: the prediction of the success of digital content. / [ES] El objetivo de estudio es el diseño de una metodología cibermétrica para medir el éxito de los contenidos publicados en un medio de comunicación online y su posible predicción, de manera que se pueda orientar la optimización de los futuros contenidos publicados por el medio.
Enmarcada en el ámbito del periodismo digital, responde a la necesidad de analizar el éxito de los contenidos web de manera que se pueda ayudar en la toma de decisiones del equipo editorial.
Para ello, se ha realizado un extenso estudio de las publicaciones académicas versadas en las diferentes disciplinas que tienen lugar en esta tesis: la comunicación de contenidos digitales, Twitter, la difusión de las noticias en Twitter, la analítica web, la cibermetría, la analítica en Twitter, el análisis de tendencias en Twitter y la publicidad web.
Con dicho marco, se ha obtenido información valiosa para la optimización futura de los contenidos digitales, ya sea procedente del análisis estadístico de los datos o de la posible predicción de los indicadores de éxito de mayor interés para el medio. De esta manera, se podría integrar de manera retroalimentada en la estrategia de contenidos y favorecer así su optimización iterativamente.
Para ello, se han tenido en cuenta los siguientes objetivos específicos: investigar el concepto de éxito en el periodismo digital, la red social Twitter, la analítica web y la publicidad en la web; diseñar la metodología y determinar qué herramientas y reportes son necesarios; extraer y procesar los datos para su análisis estadístico; realizar regresiones que permitan obtener ecuaciones de predicción de las variables de éxito seleccionadas; y validar las ecuaciones de predicción con datos de test y obtener su precisión, sirviendo esta como grado de confianza en la predicción.
El diseño de la metodología ha servido para observar una sobre dispersión significativa en los datos, así como demostrar que el éxito de un contenido web tiene un carácter fuertemente multifactorial, lo cual provoca una disminución en la variabilidad calculada mediante los indicadores propuestos por investigaciones previas.
Esta tesis sirve, entonces, como base para una línea de investigación sobre la optimización de contenido digital basándose en la predicción estadística de su éxito. / [CAT] L'objectiu d'estudi és el disseny d'una metodologia cibermètrica per a mesurar l'èxit dels continguts publicats en un mitjà de comunicació en línia i la seua possible predicció, de manera que es puga orientar l'optimització dels futurs continguts publicats pel mitjà.
Emmarcada en l'àmbit del periodisme digital, respon a la necessitat d'analitzar l'èxit dels continguts web de manera que es puga ajudar en la presa de decisions de l'equip editorial.
Per a això, s'ha realitzat un extens estudi de les publicacions acadèmiques versades en les diferents disciplines que tenen lloc en aquesta tesi: la comunicació de continguts digitals, Twitter, la difusió de les notícies en Twitter, l'analítica web, la cibermetría, l'analítica en Twitter, l'anàlisi de tendències en Twitter i la publicitat web.
Amb aquest marc, s'ha obtingut informació valuosa per a l'optimització futura dels continguts digitals, ja siga procedent de l'anàlisi estadística de les dades o de la possible predicció dels indicadors d'èxit de major interés per al mitjà. D'aquesta manera, es podria integrar de manera retroalimentada en l'estratègia de continguts i afavorir així la seua optimització iterativament.
Per a això, s'han tingut en compte els següents objectius específics: investigar el concepte d'èxit en el periodisme digital, la xarxa social Twitter, l'analítica web i la publicitat en la web; dissenyar la metodologia i determinar quines eines i reportes són necessaris; extraure i processar les dades per a la seua anàlisi estadística; realitzar regressions que permeten obtindre equacions de predicció de les variables d'èxit seleccionades; i validar les equacions de predicció amb dades de test i obtindre la seua precisió, servint aquesta com a grau de confiança en la predicció.
El disseny de la metodologia ha servit per a observar una sobre dispersió significativa en les dades, així com demostrar que l'èxit d'un contingut web té un caràcter fortament multifactorial, la qual cosa provoca una disminució en la variabilitat calculada mitjançant els indicadors proposats per investigacions prèvies.
Aquesta tesi serveix, llavors, com a base per a una línia d'investigació sobre l'optimització de contingut digital basant-se en la predicció estadística del seu èxit. / Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009
|
110 |
The crime threat analysis process, an assessmentKrause, André 30 November 2007 (has links)
The study investigated the application of the crime threat analysis process at station level within the Nelson Mandela Metro City area with the objective of determining inhibiting factors (constraints) and best practices.
Qualitative research methodology was applied and interviews were conducted with crime analysts and specialised investigators/intelligence analysts. The research design can be best described as descriptive and explorative in nature.
The crime threat analysis process embroils the application of various crime analysis techniques and the outcomes thereof intends to have a dual purpose of generating operational crime management information in assisting crime prevention initiatives and crime detection efforts, mainly focussing on the criminal activities of group offenders (organised crime related), repeat offenders and serial offenders.
During the study it became evident that crime analysts understand and thus apply the crime threat analysis process indifferently, which impeded on the relevancy and the utilisation thereof as an effective crime management tool. / Criminology / M.Tech. (Policing)
|
Page generated in 0.1081 seconds