Spelling suggestions: "subject:"diblock""
31 |
Structures et propriétés rhéologiques d’hydrogels à dynamique contrôlée obtenus par l’auto-assemblage de copolymères à blocs amphiphiles / Structures and rheological properties of hydrogels presenting a controlled dynamic obtained by the self-assembly of amphiphilic block copolymersCharbonneau, Céline 19 October 2012 (has links)
Les copolymères à blocs amphiphiles sont des macromolécules composées d’au moins un bloc hydrophile lié chimiquement à un ou plusieurs blocs hydrophobes. En milieu aqueux, ils s’auto-associent pour former des micelles dont les cœurs constitués des blocs hydrophobes sont protégés de l’eau par une couronne constituée des blocs hydrophiles hydratés. La majorité des copolymères à blocs amphiphiles génèrent dans l’eau des micelles « gelées » ne présentant aucun échange de chaînes entre elles. Ceci vient du fait que l’énergie nécessaire pour extraire un bloc hydrophobe du cœur des objets est beaucoup trop importante. Par conséquent, les caractéristiques des micelles sont plus contrôlées cinétiquement que thermodynamiquement. Pour diminuer cette énergie nous avons incorporé des unités hydrophile acide acrylique (AA) dans le bloc hydrophobe de poly(acrylate de n-butyle) (PnBA). L’incorporation de 50% molaire d’unités AA dans le bloc hydrophobe conduit à la formation d’agrégats pH-sensibles dans le cas du dibloc PAA-b-P(AA0.5-stat-nBA0.5) comme montré dans une étude antérieure. Cette thèse a consisté en une analyse quantitative de la dynamique d’auto-association de copolymères dibloc et tribloc amphiphiles à base d’acrylate de n-butyle et d’acide acrylique dont les blocs hydrophobes contiennent 50% d’unités hydrophiles réparties de manière statistique. Les copolymères à blocs ont été synthétisés par polymérisation radicalaire contrôlée par ATRP. L’influence de la concentration, du pH, de la température et de la force ionique sur la structure et les propriétés mécaniques des systèmes auto-assemblés a été systématiquement étudiée. Par diffusion statique de la lumière nous avons montré la présence d’une concentration d’agrégation critique (CAC) au-dessus de laquelle, des micelles de type étoile (dibloc) ou fleur (tribloc) sont formées par auto-association des blocs hydrophobes. A plus fortes concentrations, des interactions répulsives de type volume exclu apparaissent entre les micelles étoiles. Pour les micelles fleurs, à l’inverse des interactions attractives conduisent au pontage des fleurs jusqu’à l’obtention de réseaux tri-dimensionnels au-dessus de la concentration de percolation. Une attraction trop importante entre les fleurs peut même conduire à une séparation de phase à forte force ionique et bas pH. En diffusion dynamique de la lumière, nous avons montré que la formation des réseaux s’accompagnait de l’apparition d’un mode lent dont l’origine a été expliquée par un mouvement balistique d’hétérogénéités relaxées dans les systèmes. La vitesse de relaxation de ces hétérogénéités s’avèrent être dépendantes des propriétés mécaniques des hydrogels. La formation des réseaux et la dynamique d’échange des chaînes ont été étudiées par rhéologie. La viscosité augmente régulièrement avec la concentration jusqu’à la concentration de percolation où une augmentation brusque de la viscosité se produit et un temps de relaxation apparaît. Le temps de vie des ponts a été finement contrôlé et modulé sur plusieurs décades par modification du pH, de la température et de la force ionique. La formation in-situ des hydrogels nous a permis de mettre en évidence un phénomène de vieillissement des réseaux après leur formation avant d’atteindre un état stationnaire. Ce phénomène s’est traduit par une augmentation du temps de relaxation au cours du temps avant d’atteindre une valeur plateau. Ceci nous a également permis de comprendre pourquoi il était possible de générer des réseaux homogènes, par vieillissement, possédant une dynamique extrêmement lente voir nulle. / Amphiphilic block copolymers are macromolecules composed of at least one hydrophilic block chemically linked to one or several hydrophobic blocks. In water, these macromolecules self-assemble to form micelles composed of a hydrophobic core surrounded by a hydrated hydrophilic corona. The majority of amphiphilic block copolymers form “frozen” micelles in aqueous solution. This means that there is no dynamic exchange of chains between micelles because the energy necessary to extract a hydrophobic block from the core of micelles is too high. Consequently, the characteristics of the micelles are controlled kinetically and not thermodynamically. In order to decrease this energy, we have incorporated acrylic acid units (AA) in the hydrophobic block of poly(n-butyl acrylate) (PnBA). It was previously shown that the incorporation of 50% molar of AA units in the hydrophobic block led to generation of pH-sensitive micelles in the case of PAA-b-P(AA0.5-stat-nBA0.5) diblocks. This thesis presents of a quantitative analysis of the dynamics of self-assembled amphiphilic diblock and triblock copolymer based on acrylic acid units and n-butyl acrylate units. The hydrophobic blocks contained 50% of acrylic acids units incorporated randomly. The block copolymers were synthesized by controlled radical polymerization (ATRP). The influence of the concentration, pH, temperature and the ionic strength on the structure and the mechanical properties of the self-assembled systems was systematically studied. At low concentrations, static light scattering measurements showed the formation of star-like micelles (diblock) or flower-like micelles (triblock) above a critical aggregation concentration (CAC). At higher concentrations, purely repulsive excluded volume interactions between micelles appeared in the case of diblock copolymers. In the case of triblock copolymers bridging of flower-like micelles induced in addition attractive interactions leading to network formation above the percolation concentration. At high ionic strength and low pH, we showed that the attraction between flower-like micelles became sufficiently stong to induce phase separation. Dynamic light scattering measurements showed besides a fast mode due to cooperative diffusion, a second slow relaxation mode that appeared at the percolation concentration. The origin of this mode was explained by a balistic motion induced by the relaxation of heterogeneities inside the system. The velocity of heterogeneities was determined by the mechanical relaxation of the hydrogels. The formation of the network and the exchange dynamic of chains were studied by rheology. The viscosity of solutions increased sharply at the percolation concentration. The terminal visco-elastic relaxation time of the network is related to the lifetime of bridges. It could be controlled and tuned over several decades by varing of pH, temperature and the ionic strength. The in-situ formation of networks revealed an aging of networks after their formation before they reached their stationary state. Aging caused a slow increase of the relaxation time before reaching its steady value. This explains why it is possible to generate homogeneous networks even if the network at steady is kinetically frozen.
|
32 |
Apport de la RMN diffusionnelle à l’étude des systèmes polymères : extrémités de chaîne, contrôle des architectures et auto-assemblage / Contribution of DOSY NMR to the study of polymer systems : Chain ends groups, control architectures and self-assemblyKhoukh, Abdelouahed 19 December 2014 (has links)
La Résonance Magnétique Nucléaire RMN DOSY (Diffusion Ordered SpectroscopY) 1H est une technique permettant de mesurer les coefficients de diffusion des espèces en solution. Elle permet ainsi d’obtenir des informations structurales de par sa dimension RMN conventionnelle mais également des informations physico-chimiques telles que la taille de la (macro)molécule ou encore la formation d’agrégats. L’objectif de ces travaux a été d’examiner comment les méthodes de RMN (RMN 1D ,2D et DOSY), permettent de fournir des informations sur la caractérisation des matériaux polymères. La première partie de ce travail souligne l’intérêt de la RMN pour la caractérisation de la microstructure de quelques matériaux polymères en s’attardant plus particulièrement sur l’exploration de leurs extrémités de chaînes. La RMN s’est en effet révélée très performante pour établir le lien entre extrémité de chaîne et méthode de polymérisation appliquée. Le deuxième volet de ces travaux concerne l’étude de quelques architectures complexes (type dibloc et tribloc) et la mise en évidence du caractère contrôlé d’une copolymérisation radicalaire grâce à la RMN diffusionnelle. Nous avons également vu comment déterminer la masse moyenne en poids (Mw) par une simple mesure du coefficient d’autodiffusion. Finalement, l’ensemble des travaux présentés dans ce manuscrit a été valorisé grâce à l’étude des interactions par RMN diffusionnelle. Plus particulièrement la RMN DOSY 1H a permis d’observer des phénomènes de micellisation, d’agrégation, d’encapsulation et de relargage de molécules de principe actif. / Diffusion Ordered Spectroscopic Nuclear Magnetic Resonance (DOSY NMR 1H) makes it possible to determine physicochemical data such diffusion coefficients. While typical NMR data on the structure of molecules can be obtained, this technique also permits determinations of the physicochemical characteristics, such as molecular sizes or aggregate formation. The objective of this work was to examine how various NMR methodologies, specifically, 1 and 2 dimensional DOSY NMR, can be applied to the characterization of polymers. The first part of the manuscript relates the NMR characterization of some polymeric materials with a special interest in chain-end groups. In particular, we demonstrate the relationships between chain-ends and the polymerization methods employed. In a second part, the potential of the DOSY technique is used to determine controlled features of a radical polymerization resulting in di- and triblock architectures. Molecular weights are also determined by self-diffusion coefficient measurements. The results presented herein demonstrate that diffusional NMR can be effectively employed to understand interactions in polymeric structures. Indeed, DOSY 1H-NMR provides new interesting results concerning micellization, aggregation, encapsulation phenomena and the release of active molecules.
|
33 |
Novel Possibilities for Advanced Molecular Structure Design for Polymers and NetworksFinne, Anna January 2003 (has links)
Synthetic and degradable polymers are an attractive choicein many areas, since it is possible to control the way in whichthey are manufactured; more specifically, pathways tomanipulate the architecture, the mechanical properties and thedegradation times have been identified. In this work,L-lactide, 1,5-dioxepan-2-one and ε-caprolactone were usedas monomers to synthesize polymers with different architecturesby ring-opening polymerization. By using novel initiators,triblock copolymers, functionalized linear macromonomers andstar-shaped aliphatic polyesters with well-defined structureshave been synthesized. To synthesize triblock copolymers,cyclic germanium initiators were studied. The polymerizationproceeded in a controlled manner although the reaction rateswere low. To introduce functionality into the polymer backbone,functionalized cyclic tin alkoxides were prepared and used asinitiators. During the insertion-coordination polymerization,the initiator fragment consisting mainly of a double bond wasincorporated into the polymer backbone. The double bond wasalso successfully epoxidized and this gave unique possibilitiesof synthesizing graft polymers with precise spacing. Themacromonomer technique is a very effective method for producingwell-defined graft polymers. Spirocyclic tin initiators weresynthesized and used to construct star-shaped polymers. Thestar-shaped polymers were subsequently crosslinked in apolycondensation reaction. These crosslinked structures swelledin water, and swelling tests showed that by changing thestructure of the hydrogel network, the degree of swelling canbe altered. A first evaluation of the surface characteristicsof the linear triblock copolymers was also performed. AFManalysis of the heat-treated surfaces revealed nanometer-scalefibers and tests showed that keratinocytes were able to growand proliferate on these surfaces. / QC 20100602
|
34 |
Synthèse et caractérisation d’architectures macromoléculaires complexes à base d’un bloc « stimuli-responsive » / Synthesis and Characterization of Complex Macromolecular Architectures, based on a Stimuli-Responsive Moiety.Baguenard, Céline 02 February 2012 (has links)
Les polymères répondant au pH ou à la température deviennent hydrophobes à partir d’un pH ou d’une température critique. Associés à un bloc polymère hydrophile, ils peuvent former des micelles réversibles en solution aqueuse en réponse à un stimulus. Cette thèse décrit principalement la synthèse par polymérisation radicalaire contrôlée de copolymères à blocs triple hydrophiles de type ABC ou ACB, composés d’un bloc très hydrophile (PEO, bloc A), d’un bloc répondant à la température et au pH (PDMAEMA, bloc B) et d’un bloc cationique (PDMAEMAquat, bloc C). Leur caractérisation par chromatographie d’exclusion stérique en phase aqueuse s’est révélée peu concluante ; c’est pourquoi nous les avons analysés par RMN diffusionnelle. D’autre part, l’auto-assemblage en solution aqueuse de ces copolymère triblocs en fonction du pH et de la température a été étudié par RMN 1H et par DLS. Par ailleurs, le bloc C, cationique, forme un complexe hydrophobe avec un polymère chargé négativement (PSS). Les objets résultant de cette complexation entre le dernier bloc du tribloc ABC et le PSS ont été caractérisés par RMN 1H, par DLS, par RMN diffusionnelle et par TEM. Leur comportement en solution aqueuse en fonction du pH et de la température a également été abordé. / PH- or temperature-responsive polymers become hydrophobic from a critical pH or temperature. When they are associated to a hydrophilic block, they may respond to a stimulus by forming reversible micelles in aqueous solution. This thesis mainly deals with the synthesis by controlled radical polymerization of ABC- or ACB-type triple hydrophilic block copolymers, based on a highly hydrophilic block (PEO, A-block), a pH- and temperature-responsive moiety (PDMAEMA, B-block) and a cationic sequence (PDMAEMAquat, C-block). As their characterization by SEC in aqueous phase was not conclusive, they were therefore analyzed by diffusional NMR. In addition, their self-assembly in aqueous solution depending on pH or temperature was studied by 1H NMR and DLS. Furthermore, the cationic C-block form a so-called polyelectrolyte complex with a negatively charged polymer (PSS). Objects resulting from the complexation between the last block of ABC-triblock and PSS were characterized by 1H NMR, DLS, diffusional NMR and TEM. Their behavior in aqueous solution was also investigated depending on pH and temperature.
|
35 |
Structuration de nanocomposites à partir de copolymères à blocs : expérience et modélisation / Structuring nanocomposites from copolymers block : experience and modelingPeng, Zhen 27 February 2012 (has links)
Les copolymères à blocs sont des matériaux très intéressants en raison de leur capacité à s’auto-organiser pour former des domaines de quelques dizaines de nanomètres. Cette organisation peut être mise à profit pour obtenir des matériaux hybrides organiques/inorganiques dans lesquels la phase inorganique peut être structurée dans un des domaines plutôt que répartie de façon aléatoire. Ceci peut conférer des propriétés particulières aux copolymères hybrides. Notre travail de thèse s’inscrit dans cette problématique. Des copolymères à blocs ont été modifiés soit par greffage en solution de molécules organiques/inorganiques du type POSS réactif (polyhedral oligomeric silsesquioxane), soit par mélange en solution ou à l’état fondu de POSS non réactif. Les copolymères triblocs considérés sont du type SBS (styrène-butadiène-styrène) et SEBS-g-MA (styrène-éthylène-butène-styrène greffé anhydride maléique). L’ensemble de ces copolymères a été caractérisé expérimentalement afin de déterminer leur morphologie et leur comportement thermo-mécanique. En parallèle une approche théorique a été proposée, basée sur la modélisation moléculaire de ces copolymères à l’échelle mésoscale. La méthode sélectionnée ‘Dissipative Particle Dynamics’ a permis de modéliser la morphologie de nos copolymères avec succès ainsi que celle de nos matériaux hybrides modifiés par les POSS. Ces derniers peuvent être dispersés à l’échelle moléculaire ou au contraire former des agrégats, selon le procédé de mise en œuvre et la structure chimique des POSS. / Experimental approaches and a modeling method have been carried out in parallele. The simulation method was used firstly to confirm the experimental results, and then will be applied to more complex nanocomposites. A series of hybrid systems based on triblock copolymer of polystyrene-butadiene-polystyrene (SBS) grafted with polyhedral oligomeric silsesquioxane(POSS) molecules with a dimethylsiloxy group (DMIPOSS) were synthesized by a hydrosilation method. The characteristics on incorporation of an unreactive POSS with constituent cyclohexyl (CyPOSS) in SBS matrix have been compared with above systems. The nanocomposites obtained were analyzed by atomic force microscopy, Transmission electron microscopy, X-ray scattering and dynamic mechanical.The same strategy has been carried out on polystyrene-b-poly (ethylene-co-butylene)-b-polystyrene-g-maleic anhydride (SEBS-g-MA) with other type of POSS. Dynamic particles dissipative (DPD) simulation methods in Materials Studio (Accelrys) were employed to study morphology of SB, SBS, SEBS and hybrid system. In this mesoscopic method, the polymer is simplified as a series of connecting beads which contains one or more monomer units. And all monomer units interact with each other following Newtonian Equations of Motion.
|
36 |
Morphologie und Bruchverhalten von Block- und Multipfropfcopolymeren / Morphology and Fracture Behaviour of Block and Multigraft CopolymersStaudinger, Ulrike 16 August 2007 (has links) (PDF)
Ziel der vorliegenden Arbeit war es, die Zusammenhänge zwischen der molekularen Architektur, Morphologie und den mechanischen bzw. bruchmechanischen Eigenschaften in S-SB-S-Triblockcopolymeren und deren Blends und in PI-PS-Multipfropfcopolymeren herauszuarbeiten und damit einerseits einen Beitrag für das Verständnis der Struktur-Eigenschaftsbeziehungen in Block- und Pfropfcopolymeren zu leisten und andererseits Möglichkeiten zur Entwicklung neuer Materialien aufzuzeigen, welche besondere Eigenschaftskombinationen aufweisen und damit ein bedeutendes Interesse für industrielle Anwendungen hervorrufen. Für die Untersuchungen wurde dabei der PS-Außenblockanteil und das S/B-Verhältnis im SB-Mittelblock in S-SB-S-Triblockcopolymeren, die Thermoplast/Thermoplastisches Elastomer (TP/TPE) -Zusammensetzung in S-SB-S-Triblockcopolymer-Blends sowie die Funktionalität und die Anzahl der Verknüpfungspunkte in PI-PS-Multipfropfcopolymeren variiert. Zur Charakterisierung der Phasenmischbarkeit und der Morphologie wurden die dynamisch mechanische Analyse (DMA), die Transmissionselektronenmikroskopie (TEM) und die Röntgenkleinwinkelstreuung (SAXS) angewandt. Die mechanischen Eigenschaften wurden mit dem einachsigen Zugversuch untersucht. Bruchmechanische Untersuchungen erfolgten unter Anwendung der „Essential Work of Fracture“- (EWF-) Methode, welche als Konzept der „Post-Yield“-Bruchmechanik innerhalb der Fließbruchmechanik für duktile nanostrukturierte polymere Materialien sehr gut anwendbar ist und Aussagen zur Bruchzähigkeit der Materialien liefert. Zur näheren Charakterisierung des zeitaufgelösten Deformationsverhaltens sowie der Rissausbreitungskinetik wurden die Dehnungsfeldanalyse, eine Bruchflächenanalyse mittels Rasterelektronenmikroskopie (REM) sowie das Risswiderstandskurven-Konzept angewandt. Die Untersuchungen der S-SB-S-Triblockcopolymersysteme und der PI-PS-Multipfropfcopolymere konnten den signifikanten Einfluss der molekularen Architektur, der Blockzusammensetzung und des PS-Gehaltes auf das Phasenverhalten, die Morphologie und die Eigenschaften klar herausstellen. Durch die Variation dieser Parameter kann das Eigenschaftsspektrum von thermoplastisch zu elastomer eingestellt und somit sowohl TPs oder TPEs mit hoher Steifigkeit und Zähigkeit als auch TPEs mit superelastischem Charakter erzeugt werden. Daraus eröffnet sich ein breiter Anwendungsbereich dieser Materialien, welche aufgrund ihrer Transparenz und physiologischen Verträglichkeit auch interessante optische und gesundheitliche Vorteile mitbringen. Es konnte gezeigt werden, dass durch die systematische Variation der Architektur die gezielte Einstellung gewünschter Eigenschaftsprofile möglich ist. Die Arbeit leistet somit einen Beitrag zur Entwicklung anwendungsorientierter Materialkonzepte, welche ingenieurwissenschaftlich interessant sind. / The aim of this thesis was to study the relation between molecular architecture, morphology and (fracture) mechanical properties of S-SB-S triblock copolymers and PI-PS multigraft copolymers. Hence, this work should contribute to the understanding of structure-property-relationship in block and multigraft copolymers and thus offer possibilities for the development of novel materials with special properties interesting for industrial application. Within this study in the case of S-SB-S triblock copolymers the PS outer block content and the S/B ratio of the middle block, in the case of S-SB-S triblock copolymer blends the thermoplast/thermoplastic elastomer (TP/TPE) composition and in case of PI-PS multigraft copolymers the functionality and number of branch points were varied. For the characterisation of morphology and phase miscibility dynamic mechanical analysis (DMA), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) were applied. Uniaxial tensile tests were carried out to investigate the mechanical properties. The fracture mechanical behaviour was studied using essential work of fracture (EWF) concept based on the post yield fracture mechanic principles, which is suitable to characterise fracture toughness of ductile nanostructured materials. The time resolved analysis of deformation and fracture behaviour was characterised qualitatively by strain field analysis, scanning electron microscopy (SEM) of the fractured surfaces and quantitatively by evaluation of the crack propagation kinetics and construction of R-curves. This study clearly highlights the significant influence of molecular architecture block composition and PS content on the phase behaviour, morphology and properties of S-SB-S triblock copolymers and PI-PS multigraft copolymers. By varying these parameters the property profile can be adjusted diversifying from thermoplastic to elastomeric and both TP or TPE materials with high stiffness and toughness and TPEs with super-elastic characteristics can be designed. Hence, fundamentally it offers a broad scope of application of these materials, in which physiological compatibility and transparency are added advantages. Thus, conceptually it could be shown, that by systematic variation of the architecture desired property profiles can be adjusted. Therefore the present work contributes to the development of application-oriented material concepts, which are interesting in engineering terms.
|
37 |
Morphologie und Bruchverhalten von Block- und MultipfropfcopolymerenStaudinger, Ulrike 24 July 2007 (has links)
Ziel der vorliegenden Arbeit war es, die Zusammenhänge zwischen der molekularen Architektur, Morphologie und den mechanischen bzw. bruchmechanischen Eigenschaften in S-SB-S-Triblockcopolymeren und deren Blends und in PI-PS-Multipfropfcopolymeren herauszuarbeiten und damit einerseits einen Beitrag für das Verständnis der Struktur-Eigenschaftsbeziehungen in Block- und Pfropfcopolymeren zu leisten und andererseits Möglichkeiten zur Entwicklung neuer Materialien aufzuzeigen, welche besondere Eigenschaftskombinationen aufweisen und damit ein bedeutendes Interesse für industrielle Anwendungen hervorrufen. Für die Untersuchungen wurde dabei der PS-Außenblockanteil und das S/B-Verhältnis im SB-Mittelblock in S-SB-S-Triblockcopolymeren, die Thermoplast/Thermoplastisches Elastomer (TP/TPE) -Zusammensetzung in S-SB-S-Triblockcopolymer-Blends sowie die Funktionalität und die Anzahl der Verknüpfungspunkte in PI-PS-Multipfropfcopolymeren variiert. Zur Charakterisierung der Phasenmischbarkeit und der Morphologie wurden die dynamisch mechanische Analyse (DMA), die Transmissionselektronenmikroskopie (TEM) und die Röntgenkleinwinkelstreuung (SAXS) angewandt. Die mechanischen Eigenschaften wurden mit dem einachsigen Zugversuch untersucht. Bruchmechanische Untersuchungen erfolgten unter Anwendung der „Essential Work of Fracture“- (EWF-) Methode, welche als Konzept der „Post-Yield“-Bruchmechanik innerhalb der Fließbruchmechanik für duktile nanostrukturierte polymere Materialien sehr gut anwendbar ist und Aussagen zur Bruchzähigkeit der Materialien liefert. Zur näheren Charakterisierung des zeitaufgelösten Deformationsverhaltens sowie der Rissausbreitungskinetik wurden die Dehnungsfeldanalyse, eine Bruchflächenanalyse mittels Rasterelektronenmikroskopie (REM) sowie das Risswiderstandskurven-Konzept angewandt. Die Untersuchungen der S-SB-S-Triblockcopolymersysteme und der PI-PS-Multipfropfcopolymere konnten den signifikanten Einfluss der molekularen Architektur, der Blockzusammensetzung und des PS-Gehaltes auf das Phasenverhalten, die Morphologie und die Eigenschaften klar herausstellen. Durch die Variation dieser Parameter kann das Eigenschaftsspektrum von thermoplastisch zu elastomer eingestellt und somit sowohl TPs oder TPEs mit hoher Steifigkeit und Zähigkeit als auch TPEs mit superelastischem Charakter erzeugt werden. Daraus eröffnet sich ein breiter Anwendungsbereich dieser Materialien, welche aufgrund ihrer Transparenz und physiologischen Verträglichkeit auch interessante optische und gesundheitliche Vorteile mitbringen. Es konnte gezeigt werden, dass durch die systematische Variation der Architektur die gezielte Einstellung gewünschter Eigenschaftsprofile möglich ist. Die Arbeit leistet somit einen Beitrag zur Entwicklung anwendungsorientierter Materialkonzepte, welche ingenieurwissenschaftlich interessant sind. / The aim of this thesis was to study the relation between molecular architecture, morphology and (fracture) mechanical properties of S-SB-S triblock copolymers and PI-PS multigraft copolymers. Hence, this work should contribute to the understanding of structure-property-relationship in block and multigraft copolymers and thus offer possibilities for the development of novel materials with special properties interesting for industrial application. Within this study in the case of S-SB-S triblock copolymers the PS outer block content and the S/B ratio of the middle block, in the case of S-SB-S triblock copolymer blends the thermoplast/thermoplastic elastomer (TP/TPE) composition and in case of PI-PS multigraft copolymers the functionality and number of branch points were varied. For the characterisation of morphology and phase miscibility dynamic mechanical analysis (DMA), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) were applied. Uniaxial tensile tests were carried out to investigate the mechanical properties. The fracture mechanical behaviour was studied using essential work of fracture (EWF) concept based on the post yield fracture mechanic principles, which is suitable to characterise fracture toughness of ductile nanostructured materials. The time resolved analysis of deformation and fracture behaviour was characterised qualitatively by strain field analysis, scanning electron microscopy (SEM) of the fractured surfaces and quantitatively by evaluation of the crack propagation kinetics and construction of R-curves. This study clearly highlights the significant influence of molecular architecture block composition and PS content on the phase behaviour, morphology and properties of S-SB-S triblock copolymers and PI-PS multigraft copolymers. By varying these parameters the property profile can be adjusted diversifying from thermoplastic to elastomeric and both TP or TPE materials with high stiffness and toughness and TPEs with super-elastic characteristics can be designed. Hence, fundamentally it offers a broad scope of application of these materials, in which physiological compatibility and transparency are added advantages. Thus, conceptually it could be shown, that by systematic variation of the architecture desired property profiles can be adjusted. Therefore the present work contributes to the development of application-oriented material concepts, which are interesting in engineering terms.
|
38 |
SHEAR RHEOMETRY PROTOCOLS TO ADVANCE THE DEVELOPMENT OF MICROSTRUCTURED FLUIDSEduard Andres Caicedo Casso (6620462) 15 May 2019 (has links)
<p></p><p>This doctoral dissertation takes the reader through a
journey where applied shear rheology and flow-velocimetry are used to
understand the mesoscopic factors that control the flow behavior of three
microstructured fluids. Three individual protocols that measure relative
physical and mechanical properties of the flow are developed. Each protocol
aims to advance the particular transformation of novel soft materials into a
commercial product converging in the demonstration of the real the chemical,
physical and thermodynamical factors that could potentially drive their
successful transformation. </p>
<p> </p>
<p>First, this dissertation introduces the use of rotational
and oscillatory shear rheometry to quantify the solvent evaporation effect on
the flow behavior of polymer solutions used to fabricate isoporous asymmetric
membranes. Three different A-B-C triblock copolymer were evaluated:
polyisoprene-<i>b</i>-polystyrene-<i>b</i>-poly(4-vinylpyridine) (ISV);
polyisoprene-<i>b</i>-polystyrene-<i>b</i>-poly(<i>N</i>,<i>N</i>-dimethylacrylamide)
(ISD); and polyisoprene-<i>b</i>-polystyrene-<i>b</i>-poly(<i>tert</i>-butyl methacrylate) (ISB). The resulting evaporation-induced
microstructure showed a solution viscosity and film viscoelasticity strongly
dependent on the chemical structure of the triblock copolymer molecules. </p>
<p> </p>
<p>Furthermore, basic shear rheometry, flow birefringence, and
advanced flow-velocimetry are used to deconvolute the flow-microstructure relationships
of concentrated surfactant solutions. Sodium laureth sulfate in water (SLE<sub>1</sub>S)
was used to replicate spherical, worm-like, and hexagonally packed micelles and
lamellar structures. Interesting findings demonstrated that regular features of
flow curves, such as power-law shear thinning behavior, resulted from a wide
variety of experimental artifacts that appeared when measuring microstructured
fluids with shear rheometry.</p>
<p> </p>
<p>Finally, the successful integration of shear rheometry to
calculate essential parameters to be used in a cost-effective visualization
technique (still in development) used to calculate the dissolution time of
polymers is addressed. The use of oscillatory rheometry successfully quantify
the viscoelastic response of polyvinyl alcohol (PVA) solutions and identify
formulations changes such as additive addition. The flow behavior of PVA
solutions was correlated to dissolution behavior proving that the developed
protocol has a high potential as a first screening tool.</p><br><p></p>
|
Page generated in 0.0294 seconds