• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 46
  • 15
  • 8
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 230
  • 227
  • 63
  • 60
  • 48
  • 45
  • 40
  • 33
  • 31
  • 27
  • 26
  • 24
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Techno-economic study for sugarcane bagasse to liquid biofuels in South Africa : a comparison between biological and thermochemical process routes

Leibbrandt, Nadia H. 03 1900 (has links)
Thesis (PhD (Process Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: A techno-economic feasibility study was performed to compare biological and thermochemical process routes for production of liquid biofuels from sugarcane bagasse in South Africa using process modelling. Processing of sugarcane bagasse for the production of bioethanol, pyrolysis oil or Fischer-Tropsch liquid fuels were identified as relevant for this case study. For each main process route, various modes or configurations were evaluated, and in total eleven process scenarios were modelled, for which fourteen economic models were developed to include different scales of biomass input. Although detailed process modelling of various biofuels processes has been performed for other (mainly first world) countries, comparative studies have been very limited and mainly focused on mature technology. This is the first techno-economic case study performed for South Africa to compare these process routes using data for sugarcane bagasse. The technical and economic performance of each process route was investigated using the following approach: Obtain reliable data sets from literature for processing of sugarcane bagasse via biological pretreatment, hydrolysis and fermentation, fast and vacuum pyrolysis, and equilibrium gasification to be sufficient for process modelling. Develop process models for eleven process scenarios to compare their energy efficiencies and product yields. In order to reflect currently available technology, conservative assumptions were made where necessary and the measured data collected from literature was used. The modelling was performed to reflect energy-self-sufficient processes by using the thermal energy available as a source of heat and electricity for the process. Develop economic models using cost data available in literature and price data and economic parameters applicable to South Africa. Compare the three process routes using technical and economic results obtained from the process and economic models and identify the most promising scenarios. For bioethanol production, experimental data was collected for three pretreatment methods, namely steam explosion, dilute acid and liquid hot water pretreatment performed at pretreatment solids concentrations of 50wt%, 10wt% and 5wt%, respectively. This was followed by enzymatic hydrolysis and separate co-fermentation. Pyrolysis data for production of bio-oil via fast and vacuum pyrolysis was also collected. For gasification, data was generated via equilibrium modelling based on literature that validated the method against experimental data for sugarcane bagasse gasification. The equilibrium model was used to determine optimum gasification conditions for either gasification efficiency or syngas composition, using sugarcane bagasse, fast pyrolysis slurry or vacuum pyrolysis slurry as feedstock. These results were integrated with a downstream process model for Fischer-Tropsch synthesis to evaluate the effect of upstream optimisation on the process energy efficiency and economics, and the inclusion of a shift reactor was also evaluated. The effect of process heat integration and boilers with steam turbine cycles to produce process heat and electricity, and possibly electricity by-product, was included for each process. This analysis assumed that certain process units could be successfully scaled to commercial scales at the same yields and efficiencies determined by experimental and equilibrium modelling data. The most important process units that need to be proven on an industrial scale are pretreatment, hydrolysis and fermentation for bioethanol production, the fast pyrolysis and vacuum pyrolysis reactors, and the operation of a twostage gasifier with nickel catalyst at near equilibrium conditions. All of these process units have already been proven on a bench scale with sugarcane bagasse as feedstock. The economic models were based on a critical evaluation of equipment cost data available in literature, and a conservative approach was taken to reflect 1st plant technology. Data for the cost and availability of raw materials was obtained from the local industry and all price data and economic parameters (debt ratio, interest and tax rates) were applicable to the current situation in South Africa. A sensitivity analysis was performed to investigate the effects of likely market fluctuations on the process economics. A summary of the technical and economic performances of the most promising scenarios is shown in the table below. The bioethanol process models showed that the liquid hot water and dilute acid pretreatment scenarios are not energy self-sufficient and require additional fossil energy input to supply process energy needs. This is attributed to the excessive process steam requirements for pretreatment and conditioning due to the low pretreatment solid concentrations of 5wt% and 10wt%, respectively. The critical solids concentration during dilute acid pretreatment for an energy selfsufficient process was found to be 35%, although this was a theoretical scenario and the data needs to be verified experimentally. At a pretreatment level of 50% solids, steam explosion achieved the highest process thermal energy efficiency for bioethanol of 55.8%, and a liquid fuel energy efficiency of 40.9%. Both pyrolysis processes are energy self-sufficient, although some of the char produced by fast pyrolysis is used to supplement the higher process energy demand of fast compared to vacuum pyrolysis. The thermal process energy efficiencies of both pyrolysis processes are roughly 70% for the production of crude bio-oil that can be sold as a residual fuel oil. However, the liquid fuel energy efficiency of fast pyrolysis is 66.5%, compared to 57.5% for vacuum pyrolysis, since fast pyrolysis produces more bio-oil and less char than vacuum pyrolysis. / Centre for Renewable and Sustainable Energy Studies
212

Environmental life cycle assessment of engineered nanomaterials in carbon capture and utilisation processes

Griffiths, Owen Glyn January 2014 (has links)
CO2 is a waste product from a number of human activities such as fossil fuel power generation, industrial manufacturing processes, and transport. The rising concentration of CO2 in the atmosphere is heating the planet’s surface via the well-established greenhouse effect; a mechanism for many irreversible climate change impacts. Coupled to this is the ever-increasing global pressure over the availability and access to fossil fuel reserves; the foundations of modern society. In recognition of this CO2 is gaining renewed interest as a carbon feedstock, a changing of attitude viewing it as an asset rather than waste. Carbon capture and utilisation (CCU) technologies are attempting to make use of it. However, little quantitative assessment work has been done to assessand verify such potentials. This thesis applies the principles and framework of the life cycle assessment (LCA) - environmental management tool to early stage CO2 utilisation laboratory processes. All processes employ engineered nanomaterials (ENM) to perform this function, a material class leading the way in the challenges of efficient and feasible CO2 chemistry. The LCA contribution in this thesis acts as a measuring and a guiding tool for technology developers, in the first instance to document the cradle-to-gate impacts of a number of formed ENMs. Appreciating the net environmental benefits of ENM uptake within society has yet to be wholly established, and the unavailability of data is recognised as a major factor. The work of this thesis will thus contribute to knowledge gaps, and be informative to wider community seeking to quantify technical performance benefits of ENMs in the context of net life cycle impact burdens. Finally the actual CCU processes are assessed, initially within the confines of the laboratory but further expanded for consideration at more industrially relevant scales. The potential for sound CCU performance were found achievable under best case conditions, with net GHG impact reductions over the life cycle, and the potential for lower impact carbon products, even carbon negative. However other environmental impacts such as ozone depletion, toxic emissions and the consumption of precious metalores are impacts that require consideration in the use of such technologies.
213

Caractérisation structurale de catalyseurs hétérogènes en conditions de fonctionnement par spectroscopie d'absorption des rayons X résolue dans le temps

Rochet, Amélie 23 November 2011 (has links) (PDF)
Les catalyseurs hétérogènes sont des matériaux complexes dont les structures peuvent être modifiées en cours de fonctionnement. Une meilleure compréhension des relations entre propriétés catalytiques et propriétés structurales est nécessaire pour répondre à de nouveaux enjeux environnementaux et économiques. Seules les caractérisations in situ résolues dans le temps i.e. dans des conditions réelles, permettent d'apporter ces informations. Dans ce travail, nous nous sommes intéressés à la caractérisation operando par spectroscopie d'absorption des rayons X (XAS) résolue dans le temps de deux types de catalyseurs hétérogènes : les catalyseurs Fischer-Tropsch et les catalyseurs d'hydrodésulfuration. Si ces catalyseurs sont connus depuis de nombreuses années, peu de caractérisations sont réalisées in situ ou operando au cours de la réaction.Etant données leurs conditions réactionnelles (haute température et haute pression), la mise en œuvre de ces caractérisations a nécessité tout d'abord la construction des outils nécessaires à la caractérisation in situ de catalyseurs hétérogènes sous haute pression de gaz. Ensuite, nous avons réuni un ensemble cohérent de techniques de caractérisation autour du catalyseur Fischer-Tropsch afin de permettre son étude structurale à différentes échelles : l'ordre local avec le Quick-EXAFS et l'ordre à grande distance avec la diffraction des rayons X. Afin d'observer l'effet de la forme cristalline de la phase active sur les propriétés catalytiques, nous avons pour un même catalyseur, activé selon deux voies d'activation, quantifié son activité au moyen de la spectroscopie Raman et la spectrométrie de masse. D'autre part, la caractérisation simultanée de deux centres métalliques, accessible par le dispositif QEXAFS installé sur la ligne de lumière SAMBA, a permis d'obtenir une description fine des processus d'activation des catalyseurs bimétalliques d'hydrodésulfuration. Notre étude s'est portée, sur la comparaison de catalyseurs de même formulation avec des prétraitements différents (séché/calciné) et de deux catalyseurs promus par des métaux différents : le cobalt et le nickel.
214

Microkinetic Model of Fischer-Tropsch Synthesis on Iron Catalysts

Paul, Uchenna Prince 15 July 2008 (has links) (PDF)
Fischer-Tropsch synthesis (FTS), developed in the early 1900's, is defined as the catalytic conversion of H2 and CO to hydrocarbons and oxygenates with the production of H2O and CO2. Accurate microkinetic modeling can in principle provide insights into catalyst design and the role of promoters. This work focused on gaining an understanding of the chemistry of the kinetically relevant steps in FTS on Fe catalyst and developing a microkinetic model that describes FTS reaction kinetics. Stable Al2O3-supported/promoted (20% Fe, 1% K, 1% Pt) and unsupported Fe (99% Fe, 1% Al2O3) catalysts were prepared and characterized. Transient experiments including temperature programmed desorption (TPD), temperature programmed hydrogenation (TPH), and isothermal hydrogenation (ITH) provided insights into the chemistry and energetics of the early elementary reactions in FTS on Fe catalyst. Microkinetic models of CO TPD, ITH, and FTS were developed for Fe catalyst by combining transition state theory and UBI-QEP formalism. These models support the conclusion that hydrocarbon formation occurs on Fe via a dual mechanism involving surface carbide and formyl intermediates; nevertheless, hydrocarbon formation is more favorable via the carbide mechanism. Carbon hydrogenation was found to be the rate determining step in the carbide mechanism. CO heat of adsorption on polycrystalline Fe at zero coverage was estimated to be -91.6 kJ/mol and -64.8 kJ/mol from ITH and FTS models respectively, while a mean value of -50.0 kJ/mol was estimated from the TPD model. Statistically designed steady-state kinetic experiments at conditions similar to industrial operating conditions were used to obtain rate data. The rate data were used to develop a microkinetic model of FTS. FTS and ITH appear to follow similar reaction pathways, although the energetics are slightly different. In both cases, hydrocarbon formation via the carbide mechanism was more favorable than via a formyl intermediate while carbon hydrogenation was the rate determining step. Promotion of Fe with K does not alter Fischer-Tropsch synthesis reaction pathways but it does alter the energetics for the steps leading to the formation of CO2. This phenomenon accounts for the CO2 selectivity of 0.3 observed for K-promoted Fe against 0.17 observed for un-promoted Fe. A Langmuir Hinshelwood rate expression derived from the microkinetic model was put into a fixed bed FTS reactor design code; calculated reactor sizes, throughput, temperature profiles and conversion are similar to those of pilot and demonstration FTS reactors with similar feed rates and compositions.
215

Pyrolytic Decomposition of Synthetic Paraffinic Kerosene Fuel Compared to JP-7 and JP-8 Aviation Fuels

Parker, Grant Houston 30 August 2013 (has links)
No description available.
216

Alternative fuels for Swedish short sea shipping and inland waterways: Techno-economic study

Maszelin, Julien January 2022 (has links)
Climate change is raising huge challenges for all industries worldwide. It is mainly due to anthropogenic activity and energy consumption which is the cause for emissions of greenhouse gas (GHG) among other environmental impacts and is expected to have huge impact on our societies globally. Of those global GHG emissions, around a quarter is emitted by transportations of all kinds as transportation relies heavily on fossil fuels. If the past years have seen a rising share of electrification within the passenger car industry, the commercial transportation isn’t that prone to electrification and other pathway to decarbonization are studied. Shipping is responsible for around 90% of the world commercial transportation work and therefore is a keyplayer in the transition toward low carbon transportation. It relies exclusively on fossil fuels with different kinds of oil-based fuels being the historical fuel suppliers and has seen a quick increase of the share of liquefied natural gas (LNG) in the past decade. Yet the international maritime organization (IMO) has set ambitious emission reduction targets for shipping and alternative fuel technologies are considered to be a relevant pathway if not the most promising pathway to low carbon or even zero carbon shipping. This study aims at evaluating and comparing different alternative fuels pathways available to perform the shift toward low carbon fuel technologies within Swedish short sea shipping (SSS) and inland waterway transportation (IWT) based on a set of criteria designed to reflect all aspects of the implementation of an alternative fuel pathway implementation. Those criteria are divided into 5 different categories which are technological, technical, economic, environmental, and finally social. There are 2 main categories to consider for low carbon fuels, biofuels and electrofuels. Fossil fuels are also included within the study so that the alternative pathways get compared not only with one another but also with the current marine fuels. The first comparison between different alternative fuel pathways is relevant to choose the most promising and feasible one while the comparison between a chosen alternative fuelpathway and the main marine fossil fuels is what stakeholders will look at when considering an alternativefuel pathway implementation challenge. The electrofuels included within the comparison are ammonia and hydrogen within 2 similar pathways which include production using water electrolysis and renewableelectricity (the carbon intensity of the Swedish grid is considered) before consumption within fuel cells (FC)instead of internal combustion engines (ICE). Those electrofuels end up with the last ranks within the comparison due to low technological maturity, technical and economic challenges remaining and social issued to address despite being the most environmentally promising pathways. Biofuel’s pathways on the other hand include both fischer tropsch diesel (FTD) and bio-methanol production using as feedstock various mixes of black liquor (BL) andpyrolysis oil (PO). FTD ends up as the most promising alternative fuel pathway within the whole studywhile bio-methanol appears more challenging but also more promising toward environmental criteria. / Klimatförändringarna innebär stora utmaningar för alla branscher världen över. Den beror främst på antropogen aktivitet och energikonsumtion som orsakar utsläpp av växthusgaser bland andra miljöeffekter och förväntas få stora konsekvenser för våra samhällen globalt. Av de globala utsläppen av växthusgaser kommer omkring en fjärdedel från alla typer av transporter, eftersom transporterna är starkt beroende avfossila bränslen. Under de senaste åren har man sett en ökande andel elektrifiering inom personbilsindustrin,men kommersiella transporter är inte lika benägna att elektrifieras och andra vägar till avkolning studeras. Sjöfarten står för cirka 90 % av världens kommersiella transportarbete och är därför en nyckelspelare i övergången till koldioxidsnåla transporter. Den är uteslutande beroende av fossila bränslen med olika typer av oljebaserade bränslen som historiska bränsleleverantörer och har sett en snabb ökning av andelen flytande naturgas (LNG) under det senaste decenniet. Internationella sjöfartsorganisationen (IMO) har dock fastställt ambitiösa mål för minskning av utsläppen för sjöfarten, och tekniker för alternativa bränslen anses vara enr elevant väg, om inte den mest lovande, för att uppnå en sjöfart med låga koldioxidutsläpp eller till och med utan koldioxidutsläpp. Syftet med denna studie är att utvärdera och jämföra olika alternativa bränslen som finns tillgängliga för att genomföra övergången till bränsleteknik med låga koldioxidutsläpp inom svensk närsjöfart (SSS) och transport på inre vattenvägar (IWT) utifrån en uppsättning kriterier som är utformade för att återspegla alla aspekter av genomförandet av en alternativ bränslesatsning. Dessa kriterier är indelade i fem olika kategorier som är tekniska, tekniska, ekonomiska, miljömässiga och slutligen sociala. Det finns två huvudkategorier att ta hänsyn till när det gäller bränslen med låga koldioxidutsläpp, nämligen biobränslen och elektrobränslen. Fossila bränslen ingår också i studien så att de alternativa vägarna inte bara jämförs med varandra utan också med de nuvarande marina bränslena. Den första jämförelsen mellan olika alternativa bränslevägar är relevant för att välja den mest lovande och genomförbara, medan jämförelsen mellan en vald alternativ bränsleväg och de viktigaste marina fossila bränslena är vad intressenterna kommer att titta på när de överväger att genomföra en alternativ bränsleväg. De elektrobränslen som ingår i jämförelsen är ammoniak och vätgas inom två liknande vägar som omfattar produktion med hjälp av vattenelektrolys och förnybar el (det svenska elnätets koldioxidintensitet beaktas) innan de förbrukas i bränsleceller i stället för i förbränningsmotorer. Dessa elektrobränslen hamnar på de sista platserna i jämförelsen på grund av låg teknisk mognad, återstående tekniska och ekonomiska utmaningar och sociala problem som måste lösas, trots att de är de miljömässigt mest lovande vägarna. Biobränslevägar omfattar å andra sidan både fischer tropsch diesel(FTD) och produktion av biometanol med olika blandningar av svartlut (BL) och pyrolysolja (PO) som råmaterial. FTD är den mest lovande alternativa bränslevägen i hela studien, medan bio-metanol verkar vara en större utmaning men också mer lovande när det gäller miljökriterier.
217

An Assessment of fuel physical and chemical properties in the combustion of a Diesel spray

Nerva, Jean-Guillaume 18 June 2013 (has links)
With the slow but ineluctable depletion of fossil fuels, several avenues are currently being explored in order to define the strategic boundaries for a clean and sustainable energetic future, while accounting for the specificities of each sectors involved. In regard to transport applications, alternative fuels may represent a promising solution, at least at short or middle term, such as the International Energy Agency foresees that their share could account for 9% of the road transport fuel needs by 2030 and 27 % by 2050, with the potential resources to reach 48% beyond. If they have already been included in significant blending proportions with conventional fossil fuel in most of the occidental countries, their introduction also coincides with a long-time established program of continuously more drastic standards for engine emissions of NOX and PM, now even further demanding by the seek for combustion efficiency aiming at reducing CO2 emissions. While several works discuss the alternative fuels effect on exhaust emissions when used directly in production Diesel engines, results and analysis are sometimes contradictory, depending sometimes on the conditions in which they were obtained, and the causes of these results remain unclear. Therefore, in order to better understand their effect on the combustion processes, and thus extract the maximum benefits from these fuels in the optimization of engine design and calibration, a detailed comprehension of their spray and combustion characteristics is essential. The approach of this study is mostly experimental and based on an incremental methodology of tests aiming at isolating injection and combustion processes with the objective to identify and quantify the role of both fuel physical and chemical properties at some key stages of the Diesel combustion process. After obtaining a detailed characterization of their properties, five fuels have been injected in an optical engine enabling a sharp control of the thermodynamic e / Nerva, J. (2013). An Assessment of fuel physical and chemical properties in the combustion of a Diesel spray [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/29767
218

Comparisons of the technical, financial risk and life cycle assessments of various processing options of sugercane bagasse to biofuels in South Africa

Petersen, Abdul Muhaymin 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012 / ENGLISH ABSTRACT: Through many years of research, a number of production schemes have been developed for converting lignocellulosic biomass into transport fuels. These technologies have been assessed through a number of techno-economic studies for application in a particular context in terms of the technical and economic feasibility. However, previous studies using these methods have tended to lack vigour in various aspects. Either the energy efficiency of the processes were not maximised through adequate heat integration, or a competing technology which existed was not considered. From an economic perspective, the financial models would often lack the vigour to account for the risk and uncertainty that is inherent in the market prices of the commodities. This phenomenon is especially relevant for the biofuel industry that faces the full fledge of uncertainties experienced by the agricultural sector and the energy sector. Furthermore, from an environmental perspective, the techno-economic studies had often ignored the environmental impacts that are associated with biofuel production. Thus, a comparative study could have favoured an option due to its economic feasibility, while it could have had serious environmental consequences. The aim of this study was to address these issues in a South African context, where biofuels could be produced from sugarcane bagasse. The first step would be to modify an existing simulation model for a bioethanol scenario that operates with a Separate Hydrolysis and Fermentation (SHF process) configuration into a second processing scenario that operates with a Simultaneous Saccharification and Fermentation (SSF process) configuration using reliable experimental data. The second step was to ensure that the maximum energy efficiency of each scenario was realised by carrying out pinch point analysis as a heat integration step. In contrast to these biological models is the thermochemical model that converts bagasse to gasoline and diesel via gasification, Fischer-Tropsch synthesis and refining (GFT process). While there were no significant advances in technology concerning this type of process, the energy efficiency was to be maximised with pinch point analysis. The GFT process obtained the highest energy efficiency of 50.6%. Without the affects of pinch point technology, the efficiency dropped to 46%, which thus emphasises the importance of heat integration. The SSF had an efficiency of 42.8%, which was superior to that of the SHF at 39.3%. This resulted from a higher conversion of biomass to ethanol in the SSF scenario. Comparing the SHF model to an identical model found in literature that did not have pinch point retrofits, this study showed lower efficiency. This arose because the previous study did not account for the energy demands of the cold utility systems such as the cooling tower operation, which has been shown in this study to account for 40% of the electrical energy needs. The economic viability of all three processes was assessed with Monte Carlo Simulations to account for the risks that the fluctuations in commodity prices and financial indices pose. This was accomplished by projecting the fluctuations of these parameters from samples of a historical database that has been transformed into a probability distribution function. The consequences were measured in terms of the Net Present Value (NPV) and Internal Rate of Return (IRR) for a large number of simulations. The results of these variables were aggregated and were then assessed by testing the probability that the NPV<0, and that the IRR recedes below the interest rate of 12.64%. The investment was thus deemed unfeasible if these probabilities were greater than 20%. Both biological models were deemed profitable in terms of this standard. The probabilities were 13% for the SSF and 14% for the SHF. The GFT process however was deemed completely unfeasible because the probability that the NPV<0 was 78%. Given that the GFT process had the highest energy efficiency, this result arises mainly because the capital investment of 140,000USD/MWHHV of biomass energy input is to enormous for any payback to be expected. The environmental footprint of each process was measured using Life Cycle Assessments (LCAs). LCAs are a scientifically intricate way of quantifying and qualifying the effects of a product or process within a specified boundary. The impacts are assessed on a range of environmental issues, such as Global Warming, Acidification, Eutrophication and Human toxicity. Furthermore, if the project under concern has multiple output products, then the impacts are distributed between the output products in proportion to the revenue that each generates. The impacts were either relative to the flow of feedstock, which was 600MW of bagasse, or to the functional unit, which was the amount of fuel required to power a standard vehicle for a distance of 1 kilometre. In either case, the GFT scenario was the least burdening on the environmental. This was expected because the GFT process had the highest energy efficiency and the process itself lacked the use of processing chemicals. Relative to the feedstock flow, the SSF was the most environmentally burdening scenario due to the intensive use of processing chemicals. Relative to the functional unit, the SHF was the most severe due to its low energy efficiency. Thus, the following conclusions were drawn from the study:  The GFT is the most energy and environmentally efficient process, but it showed no sign of economic feasibility. iv  There is no significant difference in the economic and environmental evaluation of the SSF and SHF process, even though the SSF is considered to be a newer and more efficient process. The major cause of this is because the setup of the SSF model was not optimised. / AFRIKAANSE OPSOMMING: Deur baie jare van navorsing is ‘n aantal produksie-skemas vir die omskakeling van lignosellulose biomassa na vloeibarebrandstof ontwikkel. Hierdie tegnologië is geassesseer ten opsigte van die tegniese en ekonomiese haalbaarheid deur middel van tegno-ekonomiese studies in bepaalde tekste. Tog het hierdie vorige studies besliste beperkings gehad. Of die energie-doeltreffendheid van die proses is nie gemaksimeer deur voldoende hitte-integrasie nie, of 'n mededingende tegnologie wat bestaan is nie oorweeg nie. Vanuit 'n ekonomiese perspektief, was die finansiële modelle dikwels nie die omvattend genoeg om rekening te hou met die risiko en onsekerheid wat inherent is in die markpryse van die kommoditeite nie. Hierdie verskynsel is veral relevant vir die biobrandstof bedryf wat die volle omvang van onsekerhede ervaar waaraan die landbousektor en die energiesektoronderhewig is. Verder het die tegno-ekonomiese studies dikwels die omgewingsimpakte wat verband hou met biobrandstofproduksie geïgnoreer. Dus kon ‘n opsie deur die ekonomiese haalbaarheid bevoordeel word, ten spyte van die ernstige omgewingsimpakte wat dit kon inhou. Die doel van hierdie studie was om hierdie kwessies aan te spreek in 'n Suid-Afrikaanse konteks, waar biobrandstof uit suikerriet bagasse geproduseer kan word. Die eerste stap was om 'n bestaande simulasiemodel vir 'n bio-scenario wat met Afsonderlike Hidroliese en Fermentasie (SHF proses) stappe werk, te modifiseer vir 'n tweede verwerking scenario wat met 'n gelyktydige Versuikering en Fermentasie (SSF proses) konfigurasie werk. Die verandering is gedoen deur die gebruik van betroubare eksperimentele data. Die tweede stap was om te verseker dat elke scenario die maksimum energie-doeltreffendheid het, deur 'n hitte-integrasie stap, wat gebruik maak van “pinch-point” analise. In teenstelling met hierdie biologiese modelle, is daar die thermochemiese roete waar petrol en diesel van bagasse vervaardig word via vergassing, Fischer-Tropsch-sintese en rafinering (GFT proses). Daar was geen betekenisvolle vooruitgang in tegnologie vir hierdie proses nie, maar die energie-doeltreffendheid is gemaksimeer word deur energie-integrasie. Die GFT proses toon die hoogste energie-doeltreffendheid van 50,6%. Sonder die invloed van energie-integrasie het die doeltreffendheid gedaal tot 46%, wat dus die belangrikheid van hitte-integrasie beklemtoon. Die SSF het 'n effektiwiteit van 42,8% gehad, wat beter was as dié 39,3% van die SHF opsie. Hierdie hoër effektiwiteit wasas gevolg van die hoër omskakeling van biomassa na etanol in die SSF scenario. Die energie doeltreffendheid vir die SHF-model was laer as met 'n identiese model (sonder energie-integrasie) wat in die literatuur gevind wat is. Dit het ontstaan omdat die vorige studie nie 'n volledig voorsiening gemaak het met die energie-eise van die verkillingstelselsnie, wat tot 40% van die elektriese energie behoeftes kan uitmaak. Die ekonomiese lewensvatbaarheid van al drie prosesse is bepaal met Monte Carlo simulasies om die risiko's wat die fluktuasies in kommoditeitspryse en finansiële indekse inhou, in berekening te bring. Hierdie is bereik deur die projeksie van die fluktuasies van hierdie parameters aan die hand van 'n historiese databasis wat omskep is in 'n waarskynlikheid verspreiding funksie. Die gevolge is gemeet in terme van die netto huidige waarde (NHW) en Interne Opbrengskoers (IOK) vir 'n groot aantal simulasies. Die resultate van hierdie veranderlikes is saamgevoeg en daarna, deur die toets van die waarskynlikheid dat die NPV <0, en dat die IRR laer as die rentekoers van 12,64% daal, beoordeel. Die belegging is dus nie realiseerbaar geag as die waarskynlikhede meer as 20% was nie. Beide biologieseprosesse kan as winsgewend beskou word in terme van bostaande norme. Die waarskynlikhede was 13% vir die SSF en 14% vir die SHF. Aangesien die NHW van die GFT-proses onder 0 met ‘n waarskynlikheid van 78% is, is die opsie as nie-winsgewend beskou. Gegewe dat die GFT-proses die hoogste energie-doeltreffendheid het, is die resultaat hoofsaaklik omdat die kapitale belegging van 140,000 USD / MWHHV-biomassa energie-inset te groot is, om enige terugbetaling te verwag. Die omgewingsvoetspoor van elke proses is bepaal deur die gebruik van Lewens Siklus Analises (“Life Cycle Assessments”) (LCAS). LCAS is 'n wetenskaplike metodeom die effek van ‘n produk of proses binne bepaalde grense beide kwalitatief en kwantitatief te bepaal. Die impakte word beoordeel vir 'n verskeidenheid van omgewingskwessies, soos aardverwarming, versuring, eutrofikasie en menslike toksisiteit. Voorts, indien die projek onder die saak verskeie afvoer produkte het, word die impakte tussen die afvoer produkte verdeel, in verhouding tot die inkomste wat elkeen genereer. Die impak was met of relatief tot die vloei van roumateriaal (600MW van bagasse), of tot die funksionele eenheid, wat die hoeveelheid van brandstof is om 'n standaard voertuig aan te dryf oor 'n afstand van 1 kilometer. In al die gevalle het die GFT scenario die laagste belading op die omgewing geplaas. Hierdie is te verwagte omdat die GFT proses die hoogste energie-doeltreffendheid het en die proses self nie enige addisionele chemikalieë vereis nie. Relatief tot die roumateriaal vloei, het die SSF die grootse belading op die omgewing geplaas as gevolg van die intensiewe gebruik van verwerkte chemikalieë. Relatief tot die funksionele eenheid, was die SHF die swakste as gevolg van sy lae energie-doeltreffendheid.
219

Elaboration et études physico-chimiques de nouveaux catalyseurs moléculaires ou composites pour l'électroréduction du CO2

Pellissier, Aymeric 04 November 2005 (has links) (PDF)
Ce mémoire est consacré à l'élaboration et à l'étude physico-chimique de nouveaux catalyseurs bifonctionnels pour l'électroréduction du CO2. Dans ce contexte, une approche dite « moléculaire » et une dite « inorganique » ont été développées.<br />Pour l'approche « moléculaire », des catalyseurs bifonctionnels, nouveaux complexes hétérobimétalliques du type [Cl(CO)3Re(L)M(Cp*)Cl]+ (L = ligand bisdiimine ; M = Ir, Rh ; Cp* = η5-pentaméthyl-cyclopentadiényle) ont été synthétisés, et les interactions intramoléculaires entre les centres métalliques ont été étudiées. Des électrocatalyses préparatives de réduction du CO2 ont été conduites avec ces complexes en solution homogène mais aussi avec des électrodes modifiées obtenues par électropolymérisation anodique des pyrrole fonctionnalisés par ces mêmes complexes en milieu hydro-organique ou aqueux.<br />Pour la deuxième approche « inorganique », nous avons mis au point la synthèse des précurseurs adéquats pour élaborer des films fonctionnalisés par des complexes carbonyle de ruthénium cationiques [Ru(L)(CO)2(MeCN)2]2+ et [Ru(L)(CO)2(MeCN)]22+ (L = bipyridine substituée par des pyrroles), substrats nécessaires à la préparation de matériaux composites associant des nanoparticules métalliques et un polymère rédox. Ces complexes ont été déposés à la surface d'électrodes par électropolymérisation anodique des pyrroles et ont ainsi permis d'obtenir des films cationiques précurseurs de catalyseurs bifonctionnels.<br />Les résultats des électrocatalyses de réduction du CO2 avec les composés issus des deux approches montrent qu'il existe des effets coopératifs au sein des catalyseurs bifonctionnels.
220

Etude de l'hydrocondensation des oxydes de carbone sur un catalyseur Fe/Al<sub>2</sub>O<sub>3</sub>

Pijolat, Michèle 27 October 1983 (has links) (PDF)
L'hydrocondensation des oxydes de carbone sur un catalyseur Fe/Al<sub>2</sub>O<sub>3</sub> a été étudiée entre 1 et 30 bars de pression et à des températures de réaction comprises entre 200 et 275°C. L'activité et la sélectivité ont été mesurées en fonction du temps de réaction, conjointement à la caractérisation physico-chimique in situ du fer en volume par spectroscopie Mossbauer et mesures magnétiques, et des espèces superficielles par spectroscopie infra-rouge, thermodésorption programmée et thermoréduction programmée. Les résultats obtenus pour la réaction H<sub>2</sub> + CO ont conduit à l'élaboration d'un mécanisme basé sur la dissociation initiale du monoxyde de carbone, et croissance de chaîne par addition successive d'espèces CH<sub>x</sub> (x = 1, 2 ou 3). Le fer est rapidement transformé en carbure de fer Fe<sub>(2+x)</sub>C (0 < x < 0,4) dont la teneur en carbone augmente en fonction du temps de réaction. Aucun oxyde de fer ne se forme en quantité décelable. Le vieillissement observé du catalyseur est attribué à la carburation du fer et à l'accumulation de carbone peu réactif. L'étude comparative de la réaction H<sub>2</sub> + CO<sub>2</sub> a mis en évidence l'évolution particulière de l'activité en fonction du temps selon un modèle en trois étapes successives (désactivation, réactivation, nouvelle désactivation) qui ont pu être interprétées à l'aide des études physico-chimiques in situ du catalyseur. L'effet de la pression totale des réactifs de 8 à 30 bars sur l'orientation des sélectivités a été établi. Des alcools homologues sont produits préférentiellement aux hydrocarbures dans certaines conditions de la réaction H<sub>2</sub> + CO, et en particulier : le méthanol à 200-225°C et dès 8 bars de pression. Avec la réaction H<sub>2</sub> + CO<sub>2</sub>, les produits prépondérants sont le méthane et le méthanol. L'ensemble des résultats obtenus entre 1 et 30 bars a conduit à l'élaboration d'un schéma réactionnel faisant intervenir le monoxyde de carbone sous forme dissociée pour la production d'hydrocarbures, et simultanément sous forme moléculaire pour la production d'alcools. La nature des sites actifs est discutée.

Page generated in 0.0485 seconds