• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Att sluta cirkeln : en implementering av den cirkulära modellen som verktyg för den hållbara designern

Ditlevsen, Linn, Nemell, Julia January 2016 (has links)
Syfte: Den här uppsatsen handlar om hållbarhet i förhållande till ett modeföretags produktrelaterade processer. Fokus har varit att studera och analysera designprocessens inverkan på en produkts hållbarhetsnivå – hur den här processen och dess beslut påverkar de övriga stegen i den textila värdekedjan. Syftet är att utveckla ett designverktyg som ökar kunskap, ger stöd för att sluta det textila kretsloppet och skapa hållbara produkter. Metod: Studien är baserad på en kvalitativ metod med fallstudie. Empirin samlades in genom semistrukturerade intervjuer i kombination med undersökning av företagsinformation på ett svenskt modeföretag. Analys: Det teoretiska ramverket utvecklades genom en litteraturgenomgång och baseras på cirkulär ekonomi och organisatoriskt lärande. Resultatet analyserades efter ramverket: livslängd och användarvänlighet, stänga kretsloppet, vision, policy och kommunikation och kunskap. Slutsats: Bristen på kunskap, förkommandet av subgrupper och kunskapsförflyttning i organisationen påverkar förutsättningarna för att kunna sluta cirkeln. Idag är dessutom infrastuktur och teknik ett hinder för en fullständig implementering av den cirkulära modellen. Företaget behöver skapa en tydlig och gemensam definition av hållbarhet och alla individer behöver involveras i arbetet kring hållbarhet i organisationen.
2

Förpackning med förbättrad miljö- och säljaspekt : Ett projekt i samarbete med Primus Sverige AB / Packaging with improved environmental and sale aspects : A project in collaboration with Primus Sverige AB

Lundqvist, Alexander, Eklund, Henrik January 2010 (has links)
This work of examination describes an environmentally oriented product development aimed to develop new packaging with improved environmental and sale aspects of the products from Primus Sweden AB. The report covers the design process from the first collection of facts to the final results with a description of all methods involved in the work. The focus has been on a clear environmental awareness and the report contains a deepening of the concept life cycle assessment (LCA) for product development. In the process, the consumers’ opinions of the brand Primus and environmental profiling formed the basis for the packaging to communicate the right values such as quality, technology, environmental awareness and adventurer’s first choice. The deepening of the life cycle analysis shows that composting and other alternative treatment of the biological cycle is not possible to implement in a satisfactory way in the design process. The work results in two final concepts. The first concept consists of a protective packaging made from natural fibres, which are vacuum - thermoformed to produce attractive and unique shapes. The raw material is waste from other industries which otherwise would be of no use. The packaging can be composted but also recycled among cardboard. The second concept is both packaging and commercial product in the form of a seat pad. An outer packaging is thus replaced with a seat pad with the same life span as a Primus stove. The material is recommended to be polyamide 6.6, which can be fully recycled and has qualities that meet all customer requirements. The material can be recycled among other plastics, but a take-back system is recommended to fully recover the properties of materials. The two concepts follows the Cradle to Cradle philosophy in which polyamide 6.6 is part of the technical life cycle, and the natural fibre is part of the biological life cycle. A clear common layout have been developed to distinguish Primus and their products on the market. / Denna rapport redogör för en miljövänligt inriktad produktutveckling som syftat till att ta fram ny förpackning med förbättrade miljö- och säljaspekter åt Primus Sverige AB:s produkter. Rapporten behandlar designprocessen från den första insamlingen av fakta till slutgiltiga resultat med en beskrivning av alla metoder som involverats i arbetet. Fokus har legat på en tydlig miljömedvetenhet och rapporten innehåller en fördjupning av begreppet livscykelanalys (LCA) för produktutveckling. Under arbetet har konsumenters åsikter om varumärket Primus och miljövänlig profilering legat till grund för att med förpackningarna kommunicera rätt värdeord som kvalitet, teknik, miljömedvetenhet och äventyrarens självklara val. Fördjupningen i livscykelanalysen visar att kompostering och andra alternativa avfallshanteringar från det biologiska kretsloppet inte går att implementera på tillfredställande sätt i designprocessen. Arbetet resulterar i två slutkoncept. Ett koncept innebär en skyddande förpackning som tillverkas av naturfiber med vakuum - termoformning för att få fram attraktiva och unika former. Råvaran är avfall från annan industri som annars inte används till något. Förpackningen kan komposteras men även återvinnas i pappåtervinningen. Det andra konceptet är både förpackning och nyttoprodukt i form av ett sittunderlag. En yttre förpackning ersätts således med ett sittunderlag med samma livslängd som ett Primuskök. Materialet rekommenderas vara polyamid 6.6, vilken har möjlighet att återvinnas till 100 % och vars kvaliteter uppfyller alla kundkrav. Materialet kan återvinnas bland annan plast men ett återtagningssystem rekommenderas för att till fullo utnyttja materialets egenskaper. De två koncepten följer filosofin Cradle to Cradle med polyamid 6.6 som näringsämne i ett tekniskt kretslopp och naturfiber som näringsvärde i ett biologiskt kretslopp. En tydlig gemensam layout för koncepten har tagits fram för att utmärka Primus och deras produkter på marknaden.
3

Förpackning med förbättrad miljö- och säljaspekt : Ett projekt i samarbete med Primus Sverige AB / Packaging with improved environmental and sale aspects : A project in collaboration with Primus Sverige AB

Lundqvist, Alexander, Eklund, Henrik January 2010 (has links)
<p>This work of examination describes an environmentally oriented product development aimed to develop new packaging with improved environmental and sale aspects of the products from Primus Sweden AB. The report covers the design process from the first collection of facts to the final results with a description of all methods involved in the work. The focus has been on a clear environmental awareness and the report contains a deepening of the concept life cycle assessment (LCA) for product development. In the process, the consumers’ opinions of the brand Primus and environmental profiling formed the basis for the packaging to communicate the right values such as quality, technology, environmental awareness and adventurer’s first choice.</p><p>The deepening of the life cycle analysis shows that composting and other alternative treatment of the biological cycle is not possible to implement in a satisfactory way in the design process.</p><p>The work results in two final concepts. The first concept consists of a protective packaging made from natural fibres, which are vacuum - thermoformed to produce attractive and unique shapes. The raw material is waste from other industries which otherwise would be of no use. The packaging can be composted but also recycled among cardboard. The second concept is both packaging and commercial product in the form of a seat pad. An outer packaging is thus replaced with a seat pad with the same life span as a Primus stove. The material is recommended to be polyamide 6.6, which can be fully recycled and has qualities that meet all customer requirements. The material can be recycled among other plastics, but a take-back system is recommended to fully recover the properties of materials.</p><p>The two concepts follows the Cradle to Cradle philosophy in which polyamide 6.6 is part of the technical life cycle, and the natural fibre is part of the biological life cycle. A clear common layout have been developed to distinguish Primus and their products on the market.</p> / <p>Denna rapport redogör för en miljövänligt inriktad produktutveckling som syftat till att ta fram ny förpackning med förbättrade miljö- och säljaspekter åt Primus Sverige AB:s produkter. Rapporten behandlar designprocessen från den första insamlingen av fakta till slutgiltiga resultat med en beskrivning av alla metoder som involverats i arbetet. Fokus har legat på en tydlig miljömedvetenhet och rapporten innehåller en fördjupning av begreppet livscykelanalys (LCA) för produktutveckling. Under arbetet har konsumenters åsikter om varumärket Primus och miljövänlig profilering legat till grund för att med förpackningarna kommunicera rätt värdeord som kvalitet, teknik, miljömedvetenhet och äventyrarens självklara val.</p><p>Fördjupningen i livscykelanalysen visar att kompostering och andra alternativa avfallshanteringar från det biologiska kretsloppet inte går att implementera på tillfredställande sätt i designprocessen.</p><p>Arbetet resulterar i två slutkoncept. Ett koncept innebär en skyddande förpackning som tillverkas av naturfiber med vakuum - termoformning för att få fram attraktiva och unika former. Råvaran är avfall från annan industri som annars inte används till något. Förpackningen kan komposteras men även återvinnas i pappåtervinningen. Det andra konceptet är både förpackning och nyttoprodukt i form av ett sittunderlag. En yttre förpackning ersätts således med ett sittunderlag med samma livslängd som ett Primuskök. Materialet rekommenderas vara polyamid 6.6, vilken har möjlighet att återvinnas till 100 % och vars kvaliteter uppfyller alla kundkrav. Materialet kan återvinnas bland annan plast men ett återtagningssystem rekommenderas för att till fullo utnyttja materialets egenskaper.</p><p>De två koncepten följer filosofin Cradle to Cradle med polyamid 6.6 som näringsämne i ett tekniskt kretslopp och naturfiber som näringsvärde i ett biologiskt kretslopp. En tydlig gemensam layout för koncepten har tagits fram för att utmärka Primus och deras produkter på marknaden.</p>
4

Life cycle assessment on sodium-ion cells for energy storage systems : A cradle-to-gate study including 16 environmental perspectives, focusing on climate change impact

Nibelius, Rebecca January 2023 (has links)
Because of the changing energy supply landscape, with the transition towards renewable energy, an emerging demand for energy storage systems (ESS) is expected in the near future. Battery energy storage is promising to contribute to mitigate the greenhouse gas emissions, but face issues considering resource use (IEA, 2023; IRENA, 2022). Sodium-ion batteries are a promising technology for the ESS-market, expected to take up 21 % of new installations by 2030. This means an anticipated demand of about 50 GWh of sodium-ion cells required in 2030. Key drivers for the expected entrance of sodium-ion storage are the low price, high abundance of cell materials and expectations of a more safe and sustainable battery. Lithium-ion technology is currently dominating the energy storage market, but have concerns with ethical resource supply and rising mineral prices combined with the growing demand. (BloombergNEF, 2023; IEA, 2023) There is a scarcity of information considering sodium-ion environmental reporting (Liu et al., 2021; Peters et al., 2021). Therefore, the purpose of this study is to evaluate the environmental aspect of sodium-ion storage technology. Thereby, with this study a life cycle assessment (LCA) is performed on a specific sodium-ion cell. The specific scope for the thesis is to look at 1 kWh of produced battery energy storage, in a cradle-to-gate perspective. The results are to be presented with a decomposition of the emissions across the value chain including materials, transport, and energy influence. As well a division of the cell materials impacts are demonstrated. For the assessed cell, it is assumed to be intended for a giga scale production (&gt;1 GWh annual cell storage produced). Hypothetically this is to be placed in Europe, with both a global and a local supply chain presented. In order with European initiatives, there is a guideline called PEFCR, that recommends how to access the environmental footprint of different products. Among these guidelines, there is a certain standard for battery environmental assessment, which was pursued to be followed. According to these recommendations, the methodology of this assessment will include 16 environmental perspectives, called EF2.0. The EF2.0 emission categories presented as main result are Climate Change (total), Acidification, Resource Use (fossils), Resource Use (minerals &amp; metals), and Particulate Matter, since these are considered relevant for batteries by PEFCR. (European Commission and ReCharge, 2018) Furthermore, it was chosen for this study to have its core in analysing the EF2.0 Climate Change impact, with the aim to identify measures on how to reduce the carbon footprint caused by the cell’s life cycle. With the perspective of the 16 environmental effects, a sodium-ion current state scenario was put in focus. On top of this, a decarbonized scenario is presented for the EF2.0 Climate Change impact. For the current state scenario, a comparison is made with a lithium-ion cell from industry, produced from fossil-free energy. This is framing the sodium-ion environmental results in the perspective of how a decarbonized lithium-ion cell performs environmentally. Both the sodium and lithium cells included in the comparison, have the aim to be used for energy storage system applications (ESS). Regarding the results for the 16 environmental categories, overall, the cathode is the main driver for emissions, followed by electrolyte and anode. Furthermore, in the decarbonized scenario, it is illustrated that implementing certain measures within the value chain could reduce the sodium-cell carbon emissions with potentially more than half of what is estimated today. Altogether, the sodium-ion value chain is in an emerging expansion phase (Rho motion, 2023), with a young supply chain starting to form. It is discussed that in the near future, with higher energy density on sodium cells commercialized (Peters et al., 2021), the environmental footprint for sodium-ion could significantly improve. Anyhow, the strongest indication from this study, is that the resource use from minerals and metals drastically would reduce with a technology switch from lithium to sodium. Among the 16 environmental impacts as a whole, the main trend is that sodium-ion cells induce less harm on the environment compared to lithium technologies. Certainly, in the future sodium-ion cells could be a low cost and sustainable option available for energy storage systems. / I och med dagens förändrade energiförsörjningslandskap, med en pågående trend mot mer förnybar energi, förväntas en ökad efterfrågan på storskaliga energilagringssystem (ESS) inom en snar framtid. Däribland är batterilagring lovande för att bidra till att minska utsläppen av växthusgaser, men försörjningen av batterier står samtidigt inför utmaningar vad gäller resursutarmning (IEA, 2023; IRENA, 2022). Natriumjonbatterier är en lovande teknik för ESS-marknaden, som förväntas uppta 21 % av försäljningsmarknaden till 2030. Vilket skulle motsvara en efterfrågan på cirka 50 GWh natriumjonceller till 2030. De viktigaste drivkrafterna för en förmodad ökning av natriumbatterilagring är låga kostnader, överflödig tillgång på cellmaterial och förväntningar om att det ska vara ett säkrare och mer hållbart batteri. Litiumbatterier dominerar för närvarande energilagringsmarknaden, men har problem med etisk resursförsörjning och stigande mineralpriser, samtidigt som det finns en växande efterfrågan av energilagring. (BloombergNEF, 2023; IEA, 2023) Eftersom det finns sparsamt med information kring miljökonsekvenser av natriumbatteriproduktion (Liu et al., 2021; Peters et al., 2021) är syftet med den här studien att utvärdera miljöavtrycket av natriumjonbatterilagring. I studien utförs därför en livscykelanalys (LCA) på en bestämd natriumjoncell. Mer specifikt omfattar det att analysera det ekologiska avtrycket av 1 kWh producerad batterikapacitet, i ett cradle-to-gate-perspektiv. Resultaten presenteras dels som en fördelning av utsläppen över hela värdekedjan, inklusive material, transport och produktionspåverkan. Därtill visas en differentiering av cellmaterialets miljöpåverkan. Det berörda batteriet antas vara tillverkad i en giga scale produktion (&gt;1 GWh årlig celltillverkning). Hypotetiskt antas tillverkningen placeras i Europa, men både en global och en lokal leveranskedja bedöms. I enlighet med europeiska initiativ finns det riktlinjer kallade PEFCR, som rekommenderar hur bedömningar av produkters miljöavtryck bör utföras. Det finns en specifik standard för miljöbedömning av batterier, vilken har eftersträvats i den här studien. I enlighet med rekommendationerna, innefattar den här studiens metod att utvärdera 16 miljöperspektiv, kallade EF2.0. De utsläppskategorier (EF2.0) som presenteras som huvudresultat är Climate Change (total), Acidification, Resource Use (fossils), Resource Use (minerals &amp; metals), och Particulate Matter, eftersom dessa enligt PEFCR anses vara relevanta för just batterier. (European Commission and ReCharge, 2018) Det bör understrykas att den här studie har sitt huvudfokus på att analysera EF2.0 Climate Change (total), med målet att identifiera åtgärder för hur koldioxidavtrycket orsakat av batteriets livscykel kan minskas. För de 16 miljökategorierna, har ett natriumbatteris nuvarande läge ”current state scenario” satts i fokus. Utöver det presenteras ett ”decarbonized scenario” för EF2.0 Climate Change (total). För ”current state”-scenariot görs en jämförelse med ett litiumbatteri från industrin, vilket produceras med fossilfri energi. Därmed skapas förståelse för hur natriumbatteriets miljöpåverkan skiljer sig från det lågfossilintensiva litiumjoncellen. Både natrium- och litiumcellerna som ingår i jämförelsen har som avsikt att användas för energilagringssystem (ESS). Gällande resultatet av de 16 miljökategorierna är det tydligt att katoden är den främsta källan för utsläpp, följt av elektrolyten och anoden. I ”decarbonized scenario” illustreras därtill att om vissa specifika åtgärder implementeras i värdekedjan, skulle det kunna minska natriumbatteriers koldioxidutsläpp med potentiellt mer än hälften av vad som uppskattats idag. I nuläget pågår en utveckling och expansion av leveranskedjan för natriumbatteriproduktion (Rho motion, 2023), med en materialproduktion som börjar ta form. Samtidigt kan det i en snart framtid förväntas levereras natriumbatterier med högre energidensitet (Peters et al., 2021) och då skulle miljöpåverkan från natriumceller kunna sjunka avsevärt. Det centrala medskicket från den här studien är att resursanvändningen av mineraler och metaller drastiskt skulle minska i och med ett teknikskifte från litium- till natriumbatterier. Med de 16 miljöperspektiven i åtanke, är det övergripande resultatet att natriumceller orsakar mindre miljöskada jämfört med litiumteknik. Högst troligt, kan natriumceller i framtiden vara ett billigt och hållbart alternativ för energilagringssystem.
5

Livscykelanalys av en härvsats

Brodin, Gustav, Johansson, Klara Mia Johanna January 2022 (has links)
Livscykelanalys (LCA) används för att beräkna produktsystemets potentiella miljöpåverkan och identifiera hotspots i livscykeln. Resultatet kan användas för att tilllämpaåtgärder på produktsystemets hotspots för en minskad potentiell miljöpåverkan. SCC AB är specialiserade på tillverkning av härvsatser, som är en delkomponent ielmotorer och generatorer. En härvsats består av lindningstråd gjord av koppar ochisoleringsmaterial. Syftet med denna studie är att redovisa kvalitativa- och kvantitativadata om härvsatsens potentiella miljöpåverkan under tillverkningen genom att– beräkna potentiell miljöpåverkan från vald härvsats– identifiera var det finns störst potential att göra förbättringar i livscykel– redovisa förbättringar för att minska potentiell miljöpåverkan i livscykeln. Den funktionella enheten (FE) är definierad som nytillverkning av generatorlindning tillrenovering av elektrisk utrustning. I jämförelse med andra härvsatser är den av mellanstorlek ochinte den mest producerade härvtypen på SCC. Den har en märkspänning (Un) på 13,8 kV ochbestår av 100 härvor gjorda av 1650 kg koppar och 230 kg isoleringsmaterial. Resultatet erhålls för miljöpåverkanskategorierna Global uppvärmnings-potential(GUP), försurnings-potential (FP) och abiotisk resursutarmnings-potential (ARP). Global uppvärmning beror främst på smältverket och koppargruvan som står för 43%respektive 38% av det totala bidraget på 9106 kg koldioxidekvivalenter (CO2e). Detär främst smältverket som bidrar till försurning på 63% av det totala bidraget på 279kg svaveldioxidekvivalenter (SO2e). Abiotisk resursutarmning beror till största delenpå koppargruvan som står för 82% av det totala bidraget på 3330 kg kopparekvivalenter (CUe). Förbättringsanalysen är baserad på ett materialflödesbaserat cirkularitetsmått (MEM),vilket beräknas genom att jämföra användning av primär- och sekundär kopparråvarai produktionen. Analysen visar att det finns sekundärproducerad lindningstråd påmarknaden som kan användas i tillverkning och kan beställas till en extra kostnad. Slutsatsen är att sekundärproducerad lindningstråd kan ersätta primärproduceradlindningstråd till en extra ekonomisk kostnad för att tillämpa en open loop mellan SCCAB och smältverket. Det kan bidra till en potentiellt minskad miljöpåverkan och enfrämjad CE. / Lifecycle assessment (LCA) is used to calculate the products potential environmentalimpact and identify hotspots in the life cycle. The result can be used to apply measuresto the product system hotspots for a reduced potential environmental impact. SCC AB specializes in the manufacture of coils, which are a sub-component in electricmotors and generators. A coil set consists of winding wire made of copper and insulating material. The purpose of this study is to present qualitative and quantitativedata on the coil set during production by– calculate the potential environmental impact from the selected coil set– identify the greatest potential to make improvements in the life cycle– report improvements to reduce the potential environmental impact in thelife cycle. The functional unit (FU) is defined as the manufacture of generator coil set for the renovation of electrical equipment. In comparison with other coil set, it is of medium size and not themost produced coil set on SCC. It has a rated voltage (Un) of 13.8 kV and consists of 100 coilsmade of 1650 kg of copper and 230 kg of insulation material. The result is obtained for the environmental impact categories global warming potential (GWP), acidification potential (AP) and abiotic resource depletion potential(ADP). Global warming is mainly due to the copper smelter and the copper mine,which account for 43% and 38%, respectively, of the total contribution of 9106 kgcarbon dioxide equivalents (CO2e). It is mainly the copper smelter that contributesto acidification of 63% of the total contribution of 279 kg sulphur dioxide equivalents(SO2e). Abiotic resource depletion is largely due to the copper mine, which accountsfor 82% of the total contribution of 3330 kg of copper equivalents (CUe). The improvement analysis is based on a material flow circularity measure (MEM),which is calculated by comparing the use of primary and secondary copper materialin the production. The analysis shows that there are secondary-produced wires on themarket thar can be used to produce the coil set. The conclusion is that secondary produced winding wire can replace primary windingwire at an extra financial cost to apply an open loop between SCC AB and the smelter.It can contribute to a potentially reduced environmental impact and a promoted CE.
6

Life cycle assessment of cotton yarns for IKEA / Livscykelanalys av bomullsgarn för IKEA

Campos, Ana Teresa Villarreal, Goyal, Ruchira January 2021 (has links)
Cotton is one of the leading fibers in the textile industry due to its superior mechanical qualities. It accounts for high environmental impacts, especially water consumption and scarcity. Since cotton is a significant raw material for IKEA, it had set a target to source from only sustainable sources such as from the Better Cotton Initiative, and recycled cotton. At the same time, IKEA also has a commitment to transition to a circular business, which includes recycling. This comparative and accounting Life Cycle Assessment (LCA) analyzes virgin (two types - conventional cotton and Better Cotton) yarns, and mixed (virgin plus recycled) cotton yarns from some of the top supplier countries of the company, on a cradle-to-gate perspective. Water quantity and quality impacts are analyzed together with climate change. The Life Cycle Impact Assessment (LCIA) shows that there is a proportional reduction in impacts of the mixed yarns as recycled cotton percentage is increased, since the impacts of recycled yarns are much lower than virgin yarns. In virgin conventional yarns, the main stages that contributed the most to the impacts were cotton cultivation and spinning. Irrigation used in cotton cultivation accounted for the most impacts in water availability. For water quality, the impacts were mostly coming from electricity use and direct field emissions from cotton cultivation. In addition, this study demonstrated that there were high differences between the impacts in the countries studied. The results also suggested that there were water savings by using Better Cotton compared to conventional cotton yarns. / Bomull är en av de vanligaste fibrerna i textilindustrin på grund av dess överlägsna mekaniska egenskaper. Den orsakar dock hög miljöpåverkan, särskilt vattenförbrukning och -brist. Eftersom bomull är ett viktigt råmaterial för IKEA, har de satt ett mål att endast använda hållbara källor, som från Better Cotton Initiative, och återvunnen bomull. Samtidigt har IKEA också åtagit sig att övergå till en cirkulär affärsmodell som inkluderar återvinning. Denna jämförande studie beaktar livscykelanalys (LCA) och analyserar jungfruligt garn (två typer - konventionell bomull och Better Cotton) och blandat bomullsgarn (jungfru plus återvunna) från några av företagets främsta leverantörsländer ur ett vagga-till-port-perspektiv. Vattenmängder och kvalitetseffekter analyseras tillsammans med klimatförändringar. Livscykelbedömningen (LCIA) visar att det finns en proportionell minskning av effekterna av de blandade garnerna när andelen återvunnen bomull ökar, eftersom effekterna av återvunnet garn är mycket lägre än jungfruliga garner. I konventionellt jungfruligt garn var bomullsodling och spinning de främsta stegen som bidrog mest till effekterna. Bevattning som används vid bomullsodling svarade för de största effekterna på tillgången till vatten. För vattenkvaliteten kom effekterna huvudsakligen från elanvändning och direkta utsläpp från bomullsodling. Dessutom visade denna studie att det fanns stora effektskillnader mellan de studerade länderna. Resultaten antydde också att det fanns vattenbesparingar genom att använda Better Cotton jämfört med konventionella bomullsgarn.

Page generated in 0.0415 seconds