• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 17
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 55
  • 11
  • 9
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Influência do verapamil na farmacocinética e na perfusão cerebral da oxcarbazepina e dos enantiômeros do metabólito 10-hidroxicarbazepina em voluntários sadios / Influence of verapamil on the pharmacokinetics and cerebral perfusion of oxcarbazepine and the enantiomers of its metabolite 10- hydroxycarbazepine in healthy volunteers

Natalicia de Jesus Antunes 25 November 2014 (has links)
A oxcarbazepina (OXC) é indicada como terapia adjuvante ou monoterapia no tratamento de crises epilépticas parciais ou crises tônico-clônicas generalizadas em adultos e crianças. A OXC sofre rápida eliminação pré-sistêmica com formação do metabólito ativo 10-hidroxicarbazepina (MHD), o qual possui como enantiômeros o R-(-)- e o S-(+)-MHD. A OXC e o MHD são substratos da glicoproteína-P (P-gp), que pode ser inibida pelo verapamil. O presente estudo avalia a influência do verapamil na farmacocinética e perfusão cerebral da OXC e dos enantiômeros do MHD em voluntários sadios. Os voluntários sadios (n=12) receberam em uma ocasião doses de 300 mg/12h de OXC e em outra ocasião doses de 300 mg/12h de OXC associadas com 80 mg/8h de verapamil. As amostras de sangue foram coletadas no estado de equilíbrio durante 12 horas e a avaliação da perfusão cerebral realizada utilizando a tomografia computadorizada por emissão de fóton único (SPECT) antes do início do tratamento e nos tempos 4, 6 ou 12h após a administração da OXC. As concentrações plasmáticas total e livre da OXC e dos enantiômeros do MHD foram avaliadas por LC-MS/MS. A análise farmacocinética não compartimental foi realizada com o programa WinNonlin e a farmacocinética populacional foi desenvolvida utilizando a modelagem não-linear de efeitos mistos com o programa NONMEM. Os limites de quantificação obtidos foram de 12,5 ng OXC/mL de plasma e 31,25 ng de cada enantiômero MHD/mL de plasma para a análise da concentração total, enquanto foi de 4,0 ng de OXC/mL de plasma e de 20,0 ng de cada enantiômero do MHD/mL de plasma para a determinação da concentração livre. Os coeficientes de variação obtidos nos estudos de precisão e a porcentagem de inexatidão inter e intra-ensaios foram inferiores a 15%, assegurando a reprodutibilidade e repetibilidade dos resultados. A análise farmacocinética não compartimental da OXC em monoterapia resultou nos seguintes parâmetros: concentração plasmática máxima (Cmax) de 1,35 ?g/mL como valor total e 0,32 ?g/mL como concentração livre em 1,0 h, área sob a curva concentração plasmática versus tempo (AUC0-12) de 3,98 ?g.h/mL e meia-vida de eliminação de 2,45 h, volume de distribuição aparente (Vss/F) de 352,17 L e clearance aparente (CLss/F) de 75,58 L/h. A disposição cinética do MHD é enantiosseletiva, com observação de maior proporção para o enantiômero S-(+)-MHD em relação ao R-(-)-MHD (razão AUC0-12 S-(+)/R-(-) de 4,26). A fração livre avaliada no tmax da OXC foi 0,26 para a OXC, 0,42 para o R-(-)-MHD e 0,38 para o S- (+)-MHD, mostrando enantiosseletividade na ligação às proteínas plasmáticas do MHD. O tratamento com o verapamil reduziu o tempo médio de residência (MRT) (4,71 vs 3,83 h) e Cmax como concentração livre (0,32 vs 0,53 ?g/mL) da OXC e aumentou os valores para ambos os enantiômeros do MHD de Cmax como valor total (2,60 vs 3,27 ?g/mL para o R-(-)- e 11,05 vs 11,94 ?g/mL para o S-(+)-MHD), Cmax como concentração livre (3,11 vs 4,14 ?g/mL para o S-(+)-MHD), Cmédia (2,11 vs 2,42 ?g/mL para o R-(-)- e 8,10 vs 9,07 ?g/mL para o S-(+)-MHD) e AUC0-12 (25,36 vs 29,06 ?g.h/mL para o R-(-)- e 97,19 vs 111,37 ?g.h/mL para o S-(+)-MHD). A ii farmacocinética populacional da OXC foi melhor descrita por modelo de dois compartimentos com eliminação de primeira ordem e com um conjunto de três compartimentos de trânsito para descrever o perfil de absorção da OXC. A disposição de ambos os enantiômeros do MHD foi caracterizada por modelo de um compartimento. Os valores de CLss/F estimados na monoterapia foram de 84,9 L/h para a OXC e de 2,0 L/h para ambos enantiômeros do MHD, enquanto os valores de Vss/F foram de 587 L para a OXC, 23,6 L para o R-(-)-MHD e 31,7 L para o S-(+)- MHD. Concluindo, a associação do verapamil aumentou a biodisponibilidade da OXC em 12% (farmacocinética populacional) e aumentou os valores de AUC de ambos os enantiômeros do metabólito MHD (farmacocinética não compartimental), o que está provavelmente relacionado com a inibição da P-gp no trato intestinal. A associação do verapamil aumentou as concentrações cerebrais preditas de ambos os enantiômeros do MHD em maior extensão do que aquelas observadas no plasma. As mudanças no fluxo sanguíneo cerebral (SPECTs realizados 6h após a administração da OXC) associadas à coadministração de verapamil provavelmente foram causadas pelo aumento dos níveis cerebrais de ambos os enantiômeros do MHD. A confirmação dessa observação requer um braço experimental adicional com SPECTs realizados também após a administração do verapamil em monoterapia. / Oxcarbazepine (OXC) is indicated as adjunctive therapy or monotherapy for the treatment of partial or generalized tonic-clonic seizures in adults and children. OXC undergoes rapid pre-systemic reduction with formation of the active metabolite 10- hydroxycarbazepine (MHD), which has the enantiomers R-(-)- and S-(+)-MHD. OXC and MHD are substrates of P-glycoprotein (P-gp), which can be inhibited by verapamil. The present study evaluates the influence of verapamil on the pharmacokinetics and cerebral perfusion of OXC and the MHD enantiomers in healthy volunteers. The healthy volunteers (n=12) received on one occasion doses of 300 mg/12h OXC and on another occasion they received doses of 300 mg/12h OXC associated with 80 mg/8h of verapamil. Blood samples were collected at steady state for 12 hours and the assessment of cerebral perfusion was performed using a single-photon emission computed tomography (SPECT) before the beginning of treatment and at times 4, 6 or 12 hours after OXC administration. The total and free plasma concentrations of OXC and MHD enantiomers were assessed by LC-MS/MS. The non-compartmental pharmacokinetics analysis was performed using the WinNonlin program, and population pharmacokinetics was developed using nonlinear mixed effects modelling with NONMEM.The limits of quantification obtained were 12.5 ng/mL plasma for OXC and 31.25 ng of each MHD enantiomer/mL plasma for total concentration analysis, while it was 4.0 ng OXC/mL plasma and 20.0 ng of each MHD enantiomer/mL plasma for the free concentration determination. The coefficients of variation obtained in studies of accuracy and the percentage of inaccuracy inter and intra-assay were less than 15%, ensuring the result reproducibility and repeatability. The non-compartmental pharmacokinetic analysis of OXC in monotherapy treatment, resulted in the following parameters: maximum plasma concentration (Cmax) of 1.35 ?g/mL as total concentration and 0.32 mg/mL as free concentration in 1.0 h, area under the plasma concentration vs time curve (AUC0-12) was 3.98 ?g.h/mL, half-life of 2.45 h, apparent volume of distribution (Vss/F) of 352.17 L and the apparent clearance (CLSS/F) of 75.58 L/h. The MHD kinetic disposition is enantioselective, with observation of a greater proportion of the S-(+)-MHD enantiomer compared to R-(-)-MHD (ratio AUC0-12 S-(+)/R-(-) of 4.26). The free fraction measured in the tmax of OXC was 0.26 for OXC, 0.42 for R-(-)-MHD and 0.38 for S-(+)-MHD, showing enantioselectivity in the plasma protein binding of MHD. Verapamil treatment reduced the mean residence time (MRT) (4.71 vs 3.83 h) and Cmax (0.26 vs 0.31 ?g/mL) as free concentration for OXC and increased the both MHD enantiomers values of Cmax (2.60 vs 3.27 ?g/mL for R-(-)- and 11.94 vs 11.05 ?g/mL for S-(+)-MHD) as total concentration, Cmax (3.11 vs 4,14 ?g/mL for S- (+)-MHD) as free concentration, Cavg (2.11 vs 2.42 ?g/mL for R-(-)- and 8.10 vs 9.07 ?g/mL for S-(+)-MHD) and AUC0-12 (25.36 vs 29.06 ?g.h/mL for R-(-)- and 97.19 vs 111.37 ?g.h/mL for S-(+)-MHD). The population pharmacokinetics of oxcarbazepine was best described by a two-compartment model with first-order elimination and a iv set of three transit compartments to describe the absorption profile of the parent compound. The disposition of both MHD enantiomers was characterised by onecompartment model. The CLss/F estimates in monotherapy were 84.9 L/h for OXC and 2.0 L/h for both MHD enantiomers, whereas the values of Vss/F were 587 L for OXC, 23.6 L for R-(-)-MHD and 31.7 L for S-(+)-MHD. In conclusion, verapamil coadministration increased the OXC bioavailability in 12% (population pharmacokinetics) and increased the AUC of both metabolite MHD enantiomers (non-compartmental pharmacokinetics), which is probably related to the inhibition of P-gp in the intestinal tract. Verapamil co-administration increased the predicted brain concentrations of both MHD enantiomers in a greater extent than those observed in plasma. Changes in cerebral blood flow (SPECTs performed 6h after administration of OXC) associated with co-administration of verapamil were probably caused by an increase in brain levels of both MHD enantiomers. Confirmation of this observation requires additional experimental arm with SPECTs also performed after administration of verapamil in monotherapy.
32

Stratégie d'éradication de cellules cancéreuses chimiorésistantes surexprimant le transporteur de drogues MRP1 par des composés activateurs de son activité d’efflux de glutathion / Eradication of chemoresistant cancer cells overexpressing the drug transporter MRP1 using activators of GSH efflux through MRP1

Dury, Lauriane 05 November 2015 (has links)
Le transporteur de drogues membranaire MRP1 participe à la résistance des cellules cancéreuses à la chimiothérapie lorsqu’il est surexprimé. Cette surexpression peut être exploitée afin de provoquer l’apoptose sélective de ces cellules, MRP1 devenant leur talon d’Achille : c’est l’effet de sensibilité collatérale (SC). Ainsi, le vérapamil stimule l’efflux médié par MRP1 d’un tripeptide antioxydant indispensable aux cellules, le GSH ou glutathion réduit, et provoque la mort sélective des cellules surexprimant ce transporteur. La recherche d’autres agents de SC comme le vérapamil nous a menés à l’étude de composés flavonoïdiques pouvant induire un efflux rapide et massif de GSH. Parmi ces composés, nous avons identifié un puissant agent de SC des cellules résistantes surexprimant MRP1, le dimère de flavonoïde 4e, candidat très prometteur pour de futures études in vivo. Nous avons déterminé que la surexpression de MRP1 est effectivement responsable de la SC dans les cellules cancéreuses résistantes H69AR, et que l’efflux de GSH se doit d’être massif et prolongé pour induire l’apoptose des cellules. Nous avons montré que cet efflux perturbe l’homéostasie du glutathion et l’état redox des cellules, entraînant un stress oxydatif qui participe au déclenchement de la mort cellulaire. Enfin, nous nous sommes attachés à identifier d’éventuelles cibles secondaires des agents de SC dans les cellules surexprimant MRP1, via l’initiation de l’étude de leur transcriptome et métabolome. La compréhension du mécanisme d’action de ces agents de sensibilité collatérale vise, à terme, à l’éradication des cancers résistants surexprimant MRP1 / The membrane drug transporter MRP1 is involved in the resistance of cancer cells to chemotherapy, when overexpressed. This overexpression can be exploited in order to induce the selective apoptosis of these cells, so that MRP1 becomes their Achilles’ heel: this is called Collateral Sensitivity (CS). Thus verapamil stimulates the MRP1-mediated efflux of GSH (reduced form of glutathione) that is an antioxidant tripeptide essential for cells, and induces the selective death of MRP1- overexpressing cells. Seeking for other CS agents than verapamil led to the study of flavonoid compounds able to induce a massive and rapid efflux of GSH and to the identification of a powerful CS agent of resistant cells overexpressing MRP1, i.e. flavonoid dimer 4e, which is a very promising candidate for in vivo studies. We determined that overexpression of MRP1 is indeed responsible for CS in H69AR resistant cancer cells, and that GSH efflux must be massive and protracted in order to induce cell apoptosis. We showed that this efflux disturbs glutathione homeostasis and cell redox state, which leads to an oxidative stress that is involved in triggering cell death. At last, we sought to identify possible secondary targets of CS agents in MRP1-overexpressing cells, via the initiation of transcriptomic and metabolomic studies. Understanding the mechanism of action of these Collateral Sensitivity agents aims to the eradication of resistant cancers that overexpress MRP1
33

Develop Microchip with Gold Nanoelectrode Ensemble Electrodes for Electrochemical Detection of Verapamil

Chuang, Jui-Fen 11 August 2011 (has links)
Verapamil is a commonly used medicine for the treatment of supraventricular arrhythmias, angina and hypertension. Recently, some newly developed applications of Verapamil, such as treating hypomania and chemotherapy for cancers, have been reported. Thus, monitoring the concentration of Verapamil accurately is very important. The major clinical analytical methods of Verapamil concentration determination are high performance liquid chromatography (HPLC) with UV or with fluorescence detector. However, these analytical methods have some disadvantages, like expensive instruments, complex operation, and time-consuming etc. The chemical structure and properties of Verapamil are very stable. The preliminary result of electrochemical analysis doesn¡¦t show any electrochemical activity. In this study, we developed an innovative ozone pre-treatment method to oxidize Verapamil to the smaller molecules and change its structure. Verapamil have excellent electrochemical activity after ozone pre-treatment. The spectroscopy and mass spectrometry show the changes of Verapamil structure. The products of Verapamil treated with ozone are also predicted by mass spectrometry. The gold nanoelectrode ensemble electrodes (GNEE) are used as working electrode for its good catalytic activity of electrochemical reaction, high sensitivity and high selectivity. The overall experimental framework of this study is microchip with GNEE working electrode accompanied by cyclic voltammetry, an electrochemical analytical instrument. Compared with traditional analytical methods, the system has some advantages such as small size, micro sample volume, easy operation, rapid detection and low cost. The limit concentration of Verapamil solution for stable detection in the system is 10 ng/mL. A linear dynamic range with a high correlation factor from 10 ng/mL to 100 £gg/mL was obtained. For the analysis of serum sample, Verapamil present excellent electrochemical activity at 1 ng/mL. A linear dynamic range with a high correlation factor from 1 ng/mL to 100 £gg/mLwas obtained. According to the results, our system for clinical Verapmil concentration analysis has the feasibility of the practical application.
34

Formulation and assessment of verapamil sustained release tablets

Khamanga, Sandile Maswazi Malungelo January 2005 (has links)
The oral route of drug administration is most extensively used due to the obvious ease of administration. Verapamil hydrochloride is a WHO listed phenylalkylarnine, L-type calcium channel antagonist that is mainly indicated for cardiovascular disorders such as angina pectoris, supraventricular tachycardia and hypertension. Due to its relatively short half-life of approximately 4.0 hours, the formulation of a sustained-release dosage form is useful to improve patient compliance and to achieve predictable and optimized therapeutic plasma concentrations. Direct compression and wet granulation were initially used as methods for tablet manufacture. The direct compression method of manufacture produced tablets that exhibited formulation and manufacturing difficulties. Mini-tablets containing veraparnil hydrochloride were then prepared by wet granulation using Surelease® E-7-19010.and Eudragit® NE 30D as the granulating agents after which the granules were incorporated with an hydrophilic matrix material, Carbopol® 974P NF. Granule and powder blends were evaluated using the angle of repose, loose and tapped bulk density, Can's compressibility index, Hausner's ratio and drug content. Granules with good flow properties and satisfactory compressibility were used for further studies. Tablets were subjected to thickness, diameter and weight variation tests, crushing strength, tensile strength, friability and content uniformity studies. Tablets that showed acceptable pharmaco-technical properties were selected for further analysis. Drug content uniformity and dissolution release rates were determined using a validated isocratic HPLC method. Initially, USP apparatus 1 and 3 dissolution apparatus were used to determine in-vitro drug release rates from the formulations over a 22-hour period. USP apparatus 3 was finally selected as it offers the advantages of mimicking, in part, the changes in the physicochemical environment experienced by products in the gastro-intestinal tract. Differences in release rates between the test formulations and a commercially available product, Isoptin® SR were observed at different pH's using USP apparatus 1. The release of veraparnil hydrochloride from matrix tablets was pH dependent and was markedly reduced at higher pH values. This may be due, in part, to the poor solubility of veraparnil hydrochloride at these pH values and also the possible interaction of verapamil hydrochloride with anionic polymers used in these formulations. Swelling and erosion behaviour of the tablets were evaluated and differences in behaviour were observed which may be attributed to the physico-chemical characteristics of the polymers used in this study. In-vitro dissolution profiles were characterized by the difference (j1) and similarity factor (j2) and also by a new similarity factor, Sct. In addition, the mechanism of drug release from these dosage forms was mainly evaluated using the Korsmeyer-Peppas model and the kinetics of drug release assessed using other models, including Zero order, First order, Higuchi, HixsonCrowell, Weibull and the Baker-Lonsdale model. Dissolution kinetics were best described by application of the Weibull model, and the Korsmeyer-Peppas model. The release exponent, n, confirmed that drug release from these dosage forms was due to the mixed effects of diffusion and swelling and therefore, anomalous release kinetics are predominant. In conclusion, two test batches were found to be comparable to the reference product Isoptin® SR with respect to their in-vitro release profiles.
35

Ação reversora in vitro e in vivo do verapamil sobre a resistência de Haemonchus contortus à invermectina

Borges, Fernando de Almeida [UNESP] 18 December 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:33:26Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-12-18Bitstream added on 2014-06-13T21:06:07Z : No. of bitstreams: 1 borges_fa_dr_jabo.pdf: 465595 bytes, checksum: 54f3defcb12b86c4f559cfac83cd1c2f (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / A presente pesquisa teve como objetivo caracterizar e isolar uma estirpe de campo de Haemonchus contortus resistente à ivermectina, avaliar a ação reversora do verapamil, por meio de testes in vitro (migração de larvas em gel de ágar) e in vivo (redução de OPG e necropsias parasitológicas), e realizar a análise de genes relacionados à glicoproteína-P e canais de cloro ativados por glutamato (GP-P e HcGluCL). A estirpe de H. conctortus isolada apresentou elevada resistência à ivermectina, sendo observada eficácia ínfima de 6,59%. O verapamil isoladamente não apresentou efeito nematodicida, porém, em concentrações crescentes, associado à ivermectina (DL50-4,317μmol) proporcionou aumento de eficácia contra a cepa resistente de H. contortus, alcançando o percentual de 94,3% (verapamil 100 mmol). Os resultados do teste anti-helmíntico controlado, em que foram utilizados 42 ovinos experimentalmente infectados com H. contortus resistente à ivermectina, revelaram que o verapamil apresentou uma atividade de reversão parcial significativa (P<0,05) da resistência. Pela análise genotípica efetuada nas sete amostras desta população de H. contortus, submetidas aos diferentes tratamentos com ivermectina, verapamil ou associação entre estas drogas, verificou-se similaridade em relação à glicoproteína-P e pouca semalhança em relação aos canais de cloro ativados por glutamato. / The present work aimed to identify and isolate a field ivermectin-resistant Haemonchus contortus strain, evaluate the effect of verapamil as a P-GP modulator agent by in vitro (agar gel larval migration assay) and in vivo (FECRT and controlled test), and analyze the genes related to the P-glycoprotein (P-GP) and H. contortus glutamate chloride (HcCluCl) chanel expression. The H. contortus field strain isolated was highly resistant to ivermectin, showing only 6.59% of efficacy. Verapamil alone didn’t show any in vitro anthelmintic action but increasing concentrations of this drug associated to ivermectin (LD50-4.317μmol) resulted in higher efficacy, when compared to ivermectin alone, with 94.3% efficacy in the 100 mmol concentration. The results of the anthelmintic controlled test, in wich it was used 42 sheep experimentally infected with the field ivermectin-resistant H. contortus strain, showed a significant (P<0,05) parcial ivermectin resistance reversion by verapamil. The genomic analysis of the seven samples from this H. contortus resistant population submited to diferent treatment with ivermctin, verapamil and the association between theese two drugs, showed similarity in the genes related to the expression of P-GP and high polimorfism related to HcGluCL.
36

Influencia de bloqueadores de canais de calcio no processo de degeneração/regeneração muscular em camundongos ditroficos MDX / The influence iof calcium channel blockers in the process of muscular degeneration/regeneration in mdx mice

Matsumura, Cintia Yuri, 1981- 06 February 2008 (has links)
Orientador: Maria Julia Marques / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-11T07:52:24Z (GMT). No. of bitstreams: 1 Matsumura_CintiaYuri_M.pdf: 2365512 bytes, checksum: f477a4a5cc24566572273d6e630a85c9 (MD5) Previous issue date: 2008 / Resumo: A ausência da distrofina em fibras musculares de camundongos mdx e na Distrofia Muscular de Duchenne (DMD) provoca ruptura no sarcolema, aumento no influxo de cálcio e conseqüente degeneração muscular. Neste trabalho verificamos os efeitos dos bloqueadores de canais de cálcio diltiazem e verapamil na degeneração/regeneração do músculo distrófico de camundongos mdx. Camundongos mdx (n=32; 18 dias de vida pós-natal) receberam diariamente injeção intraperitoneal de diltiazem (n=16; 72 mg/kg) ou verapamil (n=16; 25 mg/kg) por 18 dias. Após este período os músculos esternomastóide, diafragma, tibial anterior e coração foram retirados. Animais mdx controle (n=16) foram injetados com solução salina. Ambas drogas diminuíram significativamente os níveis séricos de creatina quinase (mdx tratado com salina: 573±245 U/l, animais tratado com diltiazem: 161±53*U/l e animais tratados com verapamil: 217±57*U/l; média±desvio padrão, *p<0,05 comparados a animais tratados com salina, teste t de Student). A quantificação de cálcio total, por espectrômetro de emissão óptica em plasma, foi 173-475% maior em músculos do mdx comparado a músculos de animais controles não-distróficos C57Bl/10. Verapamil e diltiazem reduziram a concentração de cálcio total apenas no diafragma (diltiazem: 229 mg de cálcio/kg versus salina: 295mg de cálcio/kg; p=0,06, teste t de Student) e no músculo cardíaco (diltiazem/verapamil: 10 mg de cálcio/kg versus salina: 16 mg de cálcio/kg; p<0,05, teste t de Student). Na análise histológica, o diltiazem diminui significativamente a degeneração muscular no diafragma (salina: 28% fibras com núcleo central e 7% fibras positivas ao Azul de Evans versus 12% fibras com núcleo central e 1% fibras positivas ao Azul de Evans; p<0,05, teste t de Student). Encontramos um aumento significativo de calsequestrina e ß-distroglicana, pela técnica de Western blotting, em alguns músculos dos animais tratados com diltiazem e verapamil. O diltiazem aparenta ser o mais efetivo agente na proteção contra degeneração muscular, especialmente nos músculos mais afetados. Nossos resultados indicam que bloqueadores de canais de cálcio protegem contra a degeneração muscular na ausência de distrofina e podem ser úteis para o melhor entendimento dos mecanismos envolvidos nas distrofinopatias / Abstract: The lack of dystrophin in dystrophin-deficient fibers of mdx mice and in Duchenne muscular dystrophy leads to sarcolemmal breakdown and enhanced calcium influx followed by muscle degeneration.In this work, we examined whether the calcium channel blockers diltiazem and verapamil could protect dystrophic muscles from degeneration/regeneration. Mdx mice (n=32; 18 days old) received daily intraperitoneal injections of diltiazem (n=16; 72 mg/kg body weight) or verapamil (n=16; 25 mg/kg body weight) for 18 days, after which the sternomastoid, diaphragm, tibialis anterior and cardiac muscles were removed. Control mdx mice (n=16) were injected with saline. Both drugs significantly decreased the blood levels of creatine kinase (saline-treated mdx mice: 573±245 U/l, diltiazem-treated mice: 161±53* U/l and verapamil-treated mice: 217±57* U/l; mean+S.E.M., *p<0.05 vs. saline controls, Student's t-test). The total calcium content, measured by plasma emission spectrometry, was 173-475% greater in mdx muscles compared to control C57Bl/10 muscles. Verapamil and diltiazem reduced the total calcium content only in diaphragm (diltiazem-treated mice: 229 mg calcium/kg vs. saline-treated mice: 295 mg calcium/kg; p=0.06, Student¿s t-test) and cardiac muscle (diltiazem/verapamil-treated mice: 10 mg calcium/kg vs. saline-treated mice: 16 mg calcium/kg; p<0.05, Student¿s t-test). Histological analysis showed that diltiazem significantly attenuated muscle degeneration only in diaphragm muscle (28% central nucleated fibers and 7% Evans blue-positive fibers in saline-treated mice vs. 12% central nucleated fibers and 1% Evans blue-positive fibers in diltiazem-treated mice; p<0.05, Student¿s t-test). Immunoblots showed a significant increase in the levels of calsequestrin and ß-dystroglycan in some diltiazem- and verapamil-treated muscles. Diltiazem was more effective than verapamil in protecting against muscle degeneration in mdx mice, especially in the more affected muscles. These results indicate that calcium channel blockers protect against muscle degeneration in the absence of dystrophin. They also suggest that these drugs could be useful therapeutic alternatives in the treatment of Duchenne muscular dystrophy. ABSTRACT The lack of dystrophin in dystrophin-deficient fibers of mdx mice and in Duchenne muscular dystrophy leads to sarcolemmal breakdown and enhanced calcium influx followed by muscle degeneration.In this work, we examined whether the calcium channel blockers diltiazem and verapamil could protect dystrophic muscles from degeneration/regeneration. Mdx mice (n=32; 18 days old) received daily intraperitoneal injections of diltiazem (n=16; 72 mg/kg body weight) or verapamil (n=16; 25 mg/kg body weight) for 18 days, after which the sternomastoid, diaphragm, tibialis anterior and cardiac muscles were removed. Control mdx mice (n=16) were injected with saline. Both drugs significantly decreased the blood levels of creatine kinase (saline-treated mdx mice: 573±245 U/l, diltiazem-treated mice: 161±53* U/l and verapamil-treated mice: 217±57* U/l; mean+S.E.M., *p<0.05 vs. saline controls, Student's t-test). The total calcium content, measured by plasma emission spectrometry, was 173-475% greater in mdx muscles compared to control C57Bl/10 muscles. Verapamil and diltiazem reduced the total calcium content only in diaphragm (diltiazem-treated mice: 229 mg calcium/kg vs. saline-treated mice: 295 mg calcium/kg; p=0.06, Student¿s t-test) and cardiac muscle (diltiazem/verapamil-treated mice: 10 mg calcium/kg vs. saline-treated mice: 16 mg calcium/kg; p<0.05, Student¿s t-test). Histological analysis showed that diltiazem significantly attenuated muscle degeneration only in diaphragm muscle (28% central nucleated fibers and 7% Evans blue-positive fibers in saline-treated mice vs. 12% central nucleated fibers and 1% Evans blue-positive fibers in diltiazem-treated mice; p<0.05, Student¿s t-test). Immunoblots showed a significant increase in the levels of calsequestrin and ß-dystroglycan in some diltiazem- and verapamil-treated muscles. Diltiazem was more effective than verapamil in protecting against muscle degeneration in mdx mice, especially in the more affected muscles. These results indicate that calcium channel blockers protect against muscle degeneration in the absence of dystrophin. They also suggest that these drugs could be useful therapeutic alternatives in the treatment of Duchenne muscular dystrophy / Mestrado / Biologia Celular / Mestre em Biologia Celular e Estrutural
37

<b>INVESTIGATING THE INFLUENCE OF EFFLUX PUMP INHIBITORS ON BIOFILM FORMATION, ANTIBIOTIC RESISTANCE AND LIPID BIOSYNTHESIS IN MYCOBACTERIUM ABSCESSUS</b>

Toe Ko Ko Htay (18423819) 23 April 2024 (has links)
<p dir="ltr">Mycobacterium abscessus (Mab) is a type of mycobacterium that is known for its remarkable resistance to a variety of antibiotics. This pathogen poses a significant risk for individuals with weakened immune systems as it can cause skin and soft tissue infections, pulmonary disease and disseminated infections. Mab's ability to expel antibiotics through efflux pumps and form strong biofilms makes it even more challenging to treat infections. Lipids form a major part of the extracellular matrix of Mab biofilms. Efflux pumps have been shown to export lipids to the cell surface. Despite ongoing research into Mab's antibiotic tolerance, there is still much to learn about the impact of efflux pump inhibitors (EPIs) on antibiotic resistance and lipid biosynthesis during biofilm development in Mab. In this study, we investigated the impact of the EPIs; CCCP (carbonyl cyanide m-chlorophenyl hydrazone), piperine (PIP), reserpine (RES), berberine (BER), and verapamil (VER) on efflux activity, biofilm formation, antibiotic resistance, and lipid biosynthesis in Mab during planktonic and biofilm growth conditions. We found that Mab cells had a higher tolerance to EPIs in biofilm-stimulating medium and that the presence of EPIs led to a decrease in minimum inhibitory concentrations of frontline antibiotics, reduced efflux activity within Mab cells, and significantly inhibited biofilm formation. We examined the effects of EPIs that inhibited biofilm formation on lipid metabolism in Mab using radiolabeling with 14C?palmitic acid and 14C-acetic acid which are precursors of lipid biosynthesis. We observed that the EPI berberine inhibited the incorporation of 14C-palmitic acid into glycopeptidolipids in the surface lipids of planktonic cells and increased cellular glycopeptidolipid (GPL) in biofilm cells. Verapamil-treated cells showed a 55 % increase in cellular trehalose monomycolate (TMM) compared to controls. Piperine-treated cells exhibited a 50 % increase in cardiolipin. The incorporation of 14C-acetate into biofilm cells showed that piperine-treated biofilm cells showed a 146 % increase in surface glycopeptidolipids. Overall, our study enhances our understanding of lipid biosynthesis in Mab, the effects of EPIs on Mab biofilms, efflux mechanisms, and antibiotic resistance and offers insights for combating Mab-related infections.</p>
38

Nanoemulsions Within Liposomes for Cytosolic Drug Delivery to Multidrug-Resistant Cancer Cells

Williams, Jacob Brian 01 December 2016 (has links)
Cancer cells that survive chemotherapy treatment often develop resistance to the administered chemotherapeutics, as well as to many other types of drugs, because the cancer cells increase their production of efflux pumps in the cell. This undesired phenomenon of resistance to cancer drugs is known as multidrug resistance. This work uses a novel drug carrier, called an eLiposome, to achieve cytosolic drug delivery to kill multidrug-resistant cancer cells. An eLiposome consists of a perfluoropentane (PFC5) emulsion droplet inside of a liposome. Folate attached to the eLiposome facilitates uptake into the cell. The PFC5 droplet is metastable at body temperature, but will rupture the liposome as the droplet expands during vaporization, and will release any drugs encapsulated inside of the liposome directly to the cell cytosol. Laser and ultrasound were examined as triggers to initiate the vaporization of the PFC5 droplet and actuate the release of doxorubicin (Dox) from folated eLiposomes containing Dox (feLD). Gold nanorods (GNRs) were synthesized and transferred to PFC5 droplets. Although GNRs are efficient at converting irradiated laser light to heat, no vaporization of the PFC5 droplets was observed when irradiated with laser light. Further investigation into the energy required for vaporization of PFC5 droplets revealed that there are currently no portable and wearable lasers available to provide enough energy to vaporize PFC5 droplets. Two seconds of ultrasound can release 78% of encapsulated Dox from feLD. Dox-sensitive KB-3-1 cells and Dox-resistant KB-V1 cells treated with feLD (without ultrasound) had cell viabilities of 33% and 60%, respectively. Ultrasound had negligible additional effect on the cell viability of KB-3-1 and KB-V1 cells treated with feLD (33% and 53%, respectively). We hypothesized that the Dox fiber formed during the loading of Dox into the eLiposome is a site for heterogeneous nucleation once the feLD is endocytosed by the cell, and vaporization and drug release occurs with or without ultrasound. Blocking the efflux pumps with verapamil decreases the rate at which Dox is exported from multidrug-resistant cells. When verapamil is co-delivered with feLD, the cell viability of KB-3-1 and KB-V1 cells decreases to 29% and 25%, respectively; thereby reversing the multidrug resistance possessed by KB-V1 cells. The delivery of doxorubicin inside of folated eLiposomes with an efflux pump blocker is a novel way to kill multidrug-resistant cancer cells as effectively as non-resistant cancer cells independent of lasers or ultrasound.
39

Intestinal Permeability and Presystemic Extraction of Fexofenadine and R/S-verapamil

Tannergren, Christer January 2004 (has links)
<p>The main objective of this thesis was to investigate the in vivo relevance of membrane transporters and cytochrome P450 (CYP) 3A4-mediated metabolism in the intestine and liver for the bioavailability of drugs in humans after oral administration.</p><p>In the first part of the thesis, the main transport mechanisms involved in the intestinal absorption and bioavailability were investigated for fexofenadine, a minimally metabolized drug, which is a substrate for P-glycoprotein (P-gp) and members of organic anion transporting polypeptide (OATP) family. Jejunal perfusion studies revealed that co-perfusion with verapamil increased the bioavailability of fexofenadine by decreasing the first-pass liver extraction as the low intestinal permeability was unchanged by the transport inhibitors studied. The mechanism behind the interaction probably involves inhibition of OATP-mediated sinusoidal uptake and/or P-gp-mediated canalicular secretion of fexofenadine. Results from the Caco-2 model supported that the intestinal absorption of fexofenadine is mainly determined by the low passive permeability of the drug, even though fexofenadine clearly is a P-gp substrate. </p><p>In the second part of the thesis, the effect of repeated oral administration of the P-gp and CYP3A4 inducer St. John’s wort on the in vivo intestinal permeability and presystemic metabolism of the dual P-gp and CYP3A4 substrate verapamil was investigated in a jejunal perfusion study. St. John’s wort decreased the bioavailability of the enantiomers of verapamil by inducing the CYP3A4-mediated presystemic metabolism, probably mainly in the gut. It was also concluded that induction of efflux transporters, such as P-gp, does not affect the intestinal transport or the gut wall extraction of high permeability substrates like verapamil. Data from Caco-2 cells with induced CYP3A4-activity supported these findings. The plasma levels of the enantiomers of norverapamil also decreased despite an increased formation, which was attributed to induction of CYP3A4 and/or other metabolic routes. </p>
40

Blood-Brain Barrier Transport : Investigation of Active Efflux using Positron Emission Tomography and Modelling Studies

Syvänen, Stina January 2008 (has links)
<p>This thesis examines the transport of exogenous molecules across the blood-brain barrier (BBB), focusing on active efflux, using positron emission tomography (PET), computer simulation and modelling. P-glycoprotein (P-gp) inhibition was studied using [<sup>11</sup>C]verapamil and [<sup>11</sup>C]hydroxyurea was investigated as a new marker for active efflux transport. Simulations were carried out to explore the importance of the efflux transporter location in the BBB. Brain concentrations of [<sup>11</sup>C]verapamil, [<sup>11</sup>C]GR205171 and [<sup>18</sup>F]altanserin were compared in various laboratory animal species and in humans.</p><p>A central aspect of the studies has been the novel combination of dynamic PET imaging of the brain pharmacokinetics of a labelled drug, administered through an exponential infusion scheme allowing time-resolved consequence analysis of P-gp inhibition, and mathematical modelling of the obtained data. The methods are applicable to drugs under development and can be used not only in rodents but also in higher species, potentially even in humans, to investigate the effects of P-gp or other transporters on drug uptake in the brain.</p><p>The inhibition of P-gp by cyclosporin A (CsA) and the subsequent change in brain concentrations of [<sup>11</sup>C]verapamil occurred rapidly in the sense that [<sup>11</sup>C]verapamil uptake increased rapidly after CsA administration but also in the sense that the increased uptake was rapidly reversible. The P-gp inhibition was best described by an inhibitory indirect effect model in which CsA decreased the transport of [<sup>11</sup>C]verapamil out of the brain. The model indicated that approximately 90% of the transport of [<sup>11</sup>C]verapamil was P-gp-mediated. The low brain concentrations of [<sup>11</sup>C]hydroxyurea appeared to be a result of slow transport across the BBB rather than active efflux. This exemplifies why the extent and the rate of brain uptake should be approached as two separate phenomena. The brain-to-plasma concentration ratios for the three studied radiotracers differed about 10-fold be-tween species, with lower concentrations in rodents than in humans, monkeys and pigs. The increase in brain concentrations after P-gp inhibition was somewhat greater in rats than in the other species. </p><p>The findings demonstrate a need to include the dynamics of efflux inhibition in the experimental design and stress the importance of the choice of species in preclinical studies of new drug candidates. </p>

Page generated in 0.082 seconds