• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 57
  • 47
  • 44
  • 17
  • 15
  • 12
  • 12
  • 9
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 540
  • 181
  • 156
  • 97
  • 67
  • 58
  • 50
  • 41
  • 39
  • 38
  • 37
  • 37
  • 36
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Differences in the growth of the wolf spider Hogna helluo (Araneae: Lycosidae) reared under high and low food quantity diets

Balfour, Robert Andrew 05 March 2004 (has links)
No description available.
62

Determining the Optimal Aisle-Width for Order Picking in Distribution Centers

Wallace-Finney, Sheena R. 16 August 2011 (has links)
No description available.
63

Computer control of a pulse width modulated AC/DC converter under a variable frequency power supply

Singh, Gunjan January 1993 (has links)
No description available.
64

Single-stage high-power-factor electronic ballasts with buck-boost topology for fluorescent lamps

Cheng, Hung-Liang 19 June 2001 (has links)
Three novel single-stage electronic ballasts with the advantages of high-power-factor, low current harmonic, high efficiency, and low cost are proposed for rapid-start fluorescent lamps. Included are (1) single-stage high-power-factor electronic ballast with asymmetrical topology, (2) single-stage high- power-factor electronic ballast with symmetrical topology, and (3) single-stage single-switch high-power-factor electronic ballast. The circuit configurations are obtained by integrating the buck-boost power-factor-correction converter into the Class D or the Class E resonant inverter. With simple circuit configuration and less component count, desired circuit performances of high-power-factor and high efficiency are realized. The control methods of pulse-width-modulation (PWM) with asymmetrical and symmetrical approaches are utilized for the three presented ballasts. The buck-boost conversion stage is operated at discontinuous current mode (DCM) to achieve nearly unity power factor at a fixed switching frequency. With carefully designed circuit parameters, the power switches can exhibit either zero-voltage switching-on (ZVS) or zero-current switching-on (ZCS). As a result, high circuit efficiency can be ensured. Design equations are derived and computer analyses are performed based on the lamp¡¦s equivalent resistance model and fundamental approximation. Accordingly, design guidelines for determining circuit parameters are provided. Prototypes of the three proposed circuits designed for a T8-36W lamp, two series-connected T9-40W lamps and a PL-27W lamp are built and tested to verify the computer simulations and analytical predictions.
65

Continuous cast width prediction using a data mining approach

De Beer, Petrus Gerhardus 02 November 2007 (has links)
In modern times continuous casting is the preferred way to convert molten steel into solid forms to enable further processing. At Columbus Stainless the continuous casting machine cast slabs of constant thickness with varying width. One important aspect of the continuously cast strand that must be controlled, is the strand width. The strand width exiting from the casting machine, has a direct influence on the product yield which in turn influences the profitability of the company. In general, the strand width control on the austentic and ferritic type steels achieved is excellent with the exception of the 12% chrome non stabilised ferritic steel. This steel type exhibited different strand width changes when a sequence of different heats was cast. The strand width changes corresponded to the different heats in the sequence. Each heat has a unique chemistry and a relationship between the austenite and ferrite fraction at high temperature and the resulting strand width change was explained by Siyasiya[27]. The relationship between the heat composition and width change has in the past resulted in the development of a model that enabled the prediction of the expected width change of a specific heat before it is cast to enable preventative action to be taken. This model has been implemented as an on-line prediction model in the production environment with very encouraging results. This study was initiated because it was uncertain if the implemented model was the most accurate for this application. This study is concerned with the development of more models based on different techniques in an attempt to implement a more accurate model. The data mining techniques used include statistical regression, decision trees and fuzzy logic. The results indicated that the existing model was the most accurate and it could not be improved upon. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / MEng / unrestricted
66

Comparison Between PWM and SVPWM Three-Phase Inverters in Industrial Applications

Nusair, Ibrahim Rakad January 2012 (has links)
No description available.
67

Comparative Evaluation Of Space Vector Based Pulse Width Modulation Techniques In Terms Of Harmonic Distortion And Switching Loss

Hari, V S S Pavan Kumar 08 1900 (has links)
Voltage source inverters (VSI) are popular in variable speed induction motor drive applications. Pulse width modulation (PWM) is employed to achieve variable voltage variable frequency output from a fixed DC bus voltage. The modulation method greatly influences the harmonic distortion in line current and the inverter switching loss. This thesis evaluates a few space vectorbased PWM techniques which reduce the harmonic distortion and/or the inverter switching loss, compared to conventional space vector PWM (CSVPWM), at a given average switching frequency. In space vector-based PWM, the average voltage vector applied over a sub-cycle equals the commanded reference vector, thereby maintaining voltsecond balance. The given average vector can be realized by applying the voltage vectors of the inverter in different sequences. CSVPWM employs a switching sequence in which all the phases switch once in a sub-cycle. Sequences, in which a phase is clamped, while the other two phases switch once in a sub-cycle have been reported in literature. Further, certain special switching sequences have also been reported recently. These special sequences involve switching a phase twice, while switching the second phase once and clamping the third phase in a sub-cycle. This work investigates the use of such special switching sequences to reduce line current distortion and inverter switching loss in an induction motor drive. The influence of various switching sequences on line current ripple and inverter switching loss is discussed in the thesis. Comparison of the sequences in terms of switching loss leads to a hybrid PWM technique, which deploys the best sequence to reduce switching loss under a given operating condition. This technique is referred to as minimum switching loss PWM (MSLPWM). Further, a procedure for design of hybrid PWM techniques to achieve reduced line current distortion as well as inverter switching loss is elaborated. Four such specially designed hybrid PWM techniques are discussed. Analytical methods are presented for the evaluation of total RMS harmonic distortion factor of line current and inverter switching loss corresponding to different PWM techniques. The MSLPWM and the hybrid PWM techniques are evaluated analytically in terms of harmonic distortion and switching loss. It is observed that the switching loss corresponding to MSLPWM is considerably less than that with CSVPWM over the entire range of power factor. The reduction in switching loss with MSLPWM is as high as 36% at high power factors close to unity, while it is not less than 22% at power factors close to zero. MSLPWM also reduces the harmonic distortion for power factors close to unity at high modulation indices. Compared to CSVPWM, the hybrid PWM techniques result in a maximum reduction of about 40% in the harmonic distortion at fundamental frequencies close to 50Hz, and about 30% reduction in switching loss at power factors close to unity. The various PWM techniques are tested on a constant V /f induction motor drive with a digital control platform based on ALTERA Cyclone II field programmable gate array (FPGA) device. With a 10kVA IGBT based inverter feeding a 2.2kW, 415V, 50Hz, three-phase induction motor, the total RMS harmonic distortion factor of line current (IT HD) is measured at different fundamental frequencies for the various PWM techniques. The average switching frequency is 2.44kHz. The measured values of IT HD show a reduction in distortion with the hybrid PWM techniques over CSVPWM at high speeds of the drive. The relative values of IT HD corresponding to different PWM techniques agree with the theoretical predictions. With the 10kVA IGBT based inverter feeding a 6kW, 400V, 50Hz, 4pole, three-phase induction motor, the switching losses corresponding to CSVPWM and MSLPWM are evaluated and compared. This is done by measuring the steady state temperature rise of the heat sink over the ambient for the two techniques under different conditions. The thermal measurements are carried out at different loads with power factor ranging from 0.14 to 0.77. The measurements are also carried out at different fundamental frequencies (or modulation indices). Further, to separate conduction (constant) losses and switching (variable) losses, the heat sink temperatures are measured at two different switching frequencies, namely 2.44kHz and 4.88kHz. It is observed that the temperature rise due to MSLPWM is less than that due to CSVPWM consistently under various operating conditions. The thermal measurements confirm the theoretical prediction of reduction in switching loss with MSLPWM. Measurements of heat sink temperature rise corresponding to CSVPWM, MSLPWM and the hybrid PWM techniques are carried out at a higher power factor of 0.98 (lag) with the inverter feeding an RL load (instead of an induction motor). The hybrid PWM and MSLPWM result in lower switching losses as indicated by the reduction in temperature rise.
68

Study On Overmodulation Methods For PWM Inverter Fed AC Drives

Venugopal, S 05 1900 (has links)
A voltage source inverter is commonly used to supply a variable frequency variable voltage to a three phase induction motor in a variable speed application. A suitable pulse width modulation (PWM) technique is employed to obtain the required output voltage in the line side of the inverter. Real-time methods for PWM generation can be broadly classified into triangle comparison based PWM (TCPWM) and space vector based PWM (SVPWM). In TCPWM methods such as sine-triangle PWM, three phase reference modulating signals are compared against a common triangular carrier to generate the PWM signals for the three phases. In SVPWM methods, a revolving reference voltage vector is provided as voltage reference instead of three phase modulating waves. The magnitude and frequency of the fundamental component in the line side are controlled by the magnitude and frequency, respectively, of the reference vector. The fundamental line side voltage is proportional to the reference magnitude during linear modulation. With sine-triangle PWM, the highest possible peak phase fundamental voltage is 0.5Vdc, where Vdc is the DC bus voltage, in the linear modulation zone. With techniques such as third harmonic injection PWM and space vector based PWM, the peak phase fundamental voltage can be as high as (formula) (i.e., 0:577Vdc)during linear modulation. To increase the line side voltage further, the operation of the VSI must be extended into the overmodulation region. The overmodulation region extends upto the six-step mode, which gives the highest possible ac voltage for a given (formula). In TCPWM based methods, increasing the reference magnitude beyond a certain level leads to pulse dropping, and gradually leads to six-step operation. However, in SVPWM methods, an overmodulation algorithm is required for controlling the line-side voltage during overmodulation and to achieve a smooth transition from PWM to six-step mode. Numerous overmodulation algorithms have been proposed in the literature for space vector modulated inverter. A well known algorithm among these divides the overmodulation zone into two zones, namely zone-I and zone-II. This is termed as the 'existing overmodulation algorithm' here. This algorithm is modified in the present work to reduce computational burden without much increase in the line current distortion. During overmodulation, the fundamental line side voltage and the reference magnitude are not proportional, which is undesirable from the control point of view. The present work ensures a linear relationship between the two. Apart from the fundamental component, the inverter output voltage mainly consists of harmonic components at high frequencies (around switching frequency and the integral multiples) during linear modulation. However, during overmodulation, low order harmonic components such as 5th, 7th, 11th, 13th etc., are also present in the output voltage. These low order harmonic voltages lead to low order harmonic currents in the motor. The sum of the lower order harmonic currents is termed as 'lower order current ripple'. The present thesis proposes a method for estimation of lower order current ripple in real-time. In closed loop current control, the motor current is fed back to the current controller. During overmodulation, the motor current contains low order harmonics, which appear in the current error fed to the controller. These harmonic currents are amplified by the current error amplifier deteriorating the performance of the drive. It is possible to filter the lower order harmonic currents before being fed back. However, filtering introduces delay in the current loop, and reduces the bandwidth even during linear modulation. In the present work, the estimated lower order current ripple is subtracted from the measured current before the latter is fed back to the controller. The estimation of lower order current ripple and the proposed current control are verified through simulation using MATLAB/SIMULINK and also experimentally on a laboratory prototype. The experimental setup comprises of a field programmable gate arrays (FPGA) based digital controller, an IGBT based inverter and a four-pole squirrel cage induction motor. (Pl refer the original document for formula)
69

Investigations On PWM Signal Generation And Common Mode Voltage Elimination Schemes For Multi-Level Inverter Fed Induction Motor Drives

Kanchan, Rahul Sudam 08 1900 (has links) (PDF)
No description available.
70

Integrierte Hochvolt-Ansteuerelektronik für Mikroaktoren mit elektrostatischem Antrieb

Heinz, Steffen 29 August 2006 (has links) (PDF)
Die vorliegende Arbeit behandelt integrierte Hochvolt-Schaltungen für die Ansteuerung elektrostatisch arbeitender Mikroaktoren und Mikroaktorarrays. Im Besonderen wird auf die Gesichtspunkte der Treiberschaltungen von Torsionsspiegelarrays eingegangen. Es werden verschiedene Verstärkerbetriebsarten und Schaltungsvarianten hinsichtlich der Ansteuerung kleiner kapazitiver Lasten beurteilt. Für die hocheffiziente Signalübertragung zwischen Low-Side und High-Side in geschalteten Hochvolt-Verstärkern wird ein neuer dynamischer Level-Shifter vorgestellt. Anhand eines gebondeten Mikroelektronik-Mikromechanik-Aufbaus für ein Hadamard-Transformations-Spektrometer werden die speziellen Aspekte des Elektronikentwurfs für ein System-in-Package aufgezeigt. Als Entwurfsgrundlage wird ein Überblick über die wesentlichen Isolationstechnologien für integrierte Hochvolt-Schaltungen und über die Bauelementemodellierung in einer SOI-Technologie ausgearbeitet. Außerdem werden die Vor- und Nachteile der wichtigsten Antriebsprinzipien von Mikroaktoren zusammengefasst.

Page generated in 0.0437 seconds