11 |
Emergent structure formation of the actin cytoskeleton / Emergente Strukturbildung des Aktin-ZytoskelettsHuber, Florian 23 July 2012 (has links) (PDF)
Anders als menschengemachte Maschinen verfügen Zellen über keinen festgeschriebenen Bauplan und die Positionen einzelner Elemente sind häufig nicht genau festgelegt, da die Moleküle diffusiven Zufallsbewegungen unterworfen sind. Darüber hinaus sind einzelne Bauteile auch nicht auf eine einzelne Funktion festgelegt, sondern können parallel in verschiedene Prozesse einbezogen sein. Basierend auf Selbstorganisation und Selbstassemblierung muß die Organisation von Anordnung und Funktion einer lebenden Zelle also bereits in ihren einzelnen Komponenten inhärent enthalten sein.
Die intrazelluläre Organisation wird zum großen Teil durch ein internes Biopolymergerüst reguliert, das Zytoskelett. Biopolymer-Netzwerke und –Fasern durchdringen die gesamte Zelle und sind verantworlich für mechanische Integrität und die funktionale Architektur. Unzählige essentielle biologische Prozesse hängen direkt von einem funktionierenden Zytoskelett ab.
Die vorliegende Arbeit zielt auf ein besser Verständnis und den Nachbau zweier verschiedener funktionaler Module lebender Zellen anhand stark reduzierter Modellsysteme. Als zentrales Element wurde Aktin gewählt, da dieses Biopolymer eine herausragende Rolle in nahezu allen eukaryotischen Zellen spielt.
Mit dem ersten Modellsystem wird der bewegliche Aktin-Polymerfilm an der Vorderkante migrierender Zellen betrachtet. Die wichtigsten Elemente dieser hochdynamischen Netzwerke sind bereits bekannt und wurden in dieser Arbeit benutzt um ein experimentelles Modellsystem zu etablieren. Vor allem aber lieferten detailierte Computersimulationen und ein mathematisches Modell neue Erkenntnisse über grundlegende Organisationsprinzipien dieser Aktinnetzwerke. Damit war es nicht nur möglich, experimentelle Daten erfolgreich zu reproduzieren, sondern das Entstehen von Substrukturen und deren Charakteristika auf proteinunabhängige, generelle Mechanismen zurückzuführen.
Das zweite studierte System betrachtet die Selbstassemblierung von Aktinnetzwerken durch entropische Kräfte. Aktinfilamente aggregieren hierbei durch Kondensation multivalenter Ionen oder durch Volumenausschluss hochkonzentrierter inerter Polymere. Ein neu entwickelter Experimentalaufbau bietet die Möglichkeit in gut definierten zellähnlichen Volumina, Konvektionseinflüsse zu umgehen und Aggregationseffekte gezielt einzuschalten. Hierbei wurden neuartige, regelmäßige Netzwerkstrukturen entdeckt, die bislang nur im Zusammenhang mit molekularen Motoren bekannt waren. Es konnte ferner gezeigt werden, dass die Physik der Flüssigkristalle entscheidend zu weiteren Variationen dieser Netzwerke beiträgt. Dabei wird ersichtlich, dass entstehende Netzwerke in ihrer Architektur direkt die zuvor herrschenden Anisotropien der Filamentlösung widerspiegeln.
|
12 |
Neuronal Growth Cone Dynamics: The Back and Forth of itRauch, Philipp 29 July 2013 (has links)
Sensory-motile cells fulfill various biological functions ranging from immune activity or wound healing to the formation of the highly complex nervous systems of vertebrates. In the case of neurons, a dynamic structure at the tip of outgrowing processes navigates towards target cells or areas during the generation of neural networks. These fan shaped growth cones are equipped with a highly complex molecular machinery able to detect various external stimuli and to translate them into directed motion. Receptor and adhesion molecules trigger signaling cascades that regulate the dynamics of an internal polymeric scaffold, the cytoskeleton. It plays a crucial role in morphology maintenance as well as in the generation and distribution of growth cone forces. The two major components, actin and microtubules (MTs) connect on multiple levels through interwoven biochemical and mechanical interactions. Actin monomers assemble into semiflexible filaments (F-actin) which in turn are either arranged in entangled networks in the flat outer region of the growth cone (lamellipodium) or in radial bundles termed filopodia. The dynamic network of actin filaments extends through polymerization at the front edge of the lamellipodium and is simultaneously moving towards the center (C-domain) of the growth cone. This retrograde flow (RF) of the actin network is driven by the polymerizing filaments themselves pushing against the cell membrane and the contractile activity of motor proteins (myosins), mainly in the more central transition zone (T-zone). Through transmembrane adhesion molecules, a fraction of the retrograde flow forces is mechanically transmitted to the cellular substrate in a clutch-like mechanism generating traction and moving the GC forward. MTs are tubular polymeric structures assembled from two types of tubulin protein subunits. They are densely bundled in the neurite and at the growth cone “neck” (where the neurite opens out into the growth cone) they splay apart entering the C-domain and more peripheral regions (P-domain). Their advancement is driven by polymerization and dynein motor protein activity. The two subsystems, an extending array of MTs and the centripetal moving actin network are antagonistic players regulating GC morphology and motility. Numerous experimental findings suggest that MTs pushing from the rear interact with actin structures and contribute to GC advancement. Nevertheless, the amount of force generated or transmitted through these rigid structures has not been investigated yet. In the present dissertation, the deformation of MTs under the influence of intracellular load is analyzed with fluorescence microscopy techniques to estimate these forces. RF mechanically couples to MTs in the GC periphery through friction and molecular cross-linkers. This leads to MT buckling which in turn allows the calculation of the underlying force. It turns out that forces of at least act on individual MT filaments in the GC periphery. Compared to the relatively low overall protrusion force of neuronal GCs, this is a substantial contribution. Interestingly, two populations of MTs buckle under different loads suggesting different buckling conditions. These could be ascribed to either the length-dependent flexural rigidity of MTs or local variations in the mechanical properties of the lamellipodial actin network. Furthermore, the relation between MT deformation levels and GC morphology and advancement was investigated. A clear trend evolves that links higher MT deformation in certain areas to their advancement. Interactions between RF and MTs also influence flow velocity and MT deformation. It is shown that transient RF bursts are related to higher MT deformation in the same region. An internal molecular clutch mechanism is proposed that links MT deformation to GC advancement.
When focusing on GC dynamics it is often neglected that the retraction of neurites and the controlled collapse of GCs are as important for proper neural network formation as oriented outgrowth. Since erroneous connections can cause equally severe malfunctions as missing ones, the pruning of aberrant processes or the transient stalling of outgrowth at pivotal locations are common events in neuronal growth. To date, mainly short term pausing with minor cytoskeletal rearrangements or the full detachment and retraction of neurite segments were described. It is likely that these two variants do not cover the full range of possible events during neuronal pathfinding and that pausing on intermediate time scales is an appropriate means to avoid the misdetection of faint or ambiguous external signals. In the NG108-15 neuroblastoma cells investigated here, a novel type of collapse was observed. It is characterized by the degradation of actin network structures in the periphery while radial filopodia and the C-domain persist. Actin bundles in filopodia are segmented at one or multiple breaking points and subsequently fold onto the edge of the C-domain where they form an actin-rich barrier blocking MT extension. Due to this characteristic, this type of collapse was termed fold collapse. Possible molecular players responsible for this remarkable process are discussed. Throughout fold collapse, GC C-domain area and position remain stable and only the turnover of peripheral actin structures is abolished. At the same time, MT driven neurite elongation is hindered, causing the GC to stall on a time scale of several to tens of minutes. In many cases, new lamellipodial structures emerge after some time, indicating the transient nature of this collapse variant. From the detailed description of the cytoskeletal dynamics during collapse a working model including substrate contacts and contractile actin-myosin activity is derived. Within this model, the known and newly found types of GC collapse and retraction can be reduced to variations in local adhesion and motor protein activity.
Altogether the results of this work indicate a more prominent role of forward directed MT-based forces in neuronal growth than previously assumed. Their regulation and distribution during outgrowth has significant impact on neurite orientation and advancement. The deformation of MT filaments is closely related to retrograde actin flow which in turn is a regulator of edge protrusion. For the stalling of GCs it is not only required that actin dynamics are decoupled from the environment but also that MT pushing is suppressed. In the case of fold collapse, this is achieved through a robust barrier assembled from filopodial actin bundles.
|
13 |
Transiente Mikrokompartimentierung des pflanzlichen Primärstoffwechsels am Zytoskelett / Transient Microcompartmentation of Plant Primary Metabolism on the CytoskeletonScholz, Anke 10 March 2005 (has links)
Um Beweise für eine mögliche Mikrokompartimentierung der Glykolyse im pflanzlichen System zu erhalten, sollten in der vorliegenden Arbeit Protein-Protein-Interaktionen der cytosolischen Mais-Aldolase mit anderen Proteinen experimentell nachgewiesen werden. Die in Tieren bekannte Interaktion des glykolytischen Enzyms Aldolase mit Aktin, einem Bestandteil des Cytoskeletts, wurde für Pflanzen in vitro durch Copolymerisationsversuche bestätigt. Die Bindung pflanzlicher Aldolase an Aktinfilamente wurde anders als im tierischen System durch das Substrat Fructose-1,6-bisphosphat auch in hohen Konzentrationen (10 mM) nicht vollständig verhindert, sondern führte lediglich zu einer um 50% verringerten Bindung. Eine ebenfalls hemmende Wirkung auf die Bindung der Aldolase an Aktin wiesen Fructose-6-phosphat und Fructose-2,6-bisphosphat in Konzentrationen von 10 mM auf. Ein eindeutiger Einfluss des Redox-Milieus auf die Aldolase-Aktin-Bindung konnte nicht nachgewiesen werden. Mit Hilfe des im Rahmen dieser Arbeit etablierten Hefe-2-Hybrid-Systems wurden weitere Interaktionspartner der Aldolase identifiziert. Insgesamt wurden neun mögliche Protein-Protein-Interaktionen nachgewiesen, bei denen es sich jedoch zum Teil um falsch-positive Interaktionen handeln kann. Neben einigen noch unbekannten Proteinen konnten Interaktionen mit einem Translations-Initiationsfaktor und dem spannungsabhängigen Anionenkanalprotein VDAC nachgewiesen werden. In Bindeversuchen auf Grundlage der Affinitätschromatographie mit den rekombinanten Proteinen VDAC und Aldolase wurde ein weiterer Hinweis auf eine Interaktion zwischen VDAC und Aldolase erhalten. Aufgrund unspezifischer Bindungen der Aldolase an die Affinitätsmatrix konnte mit dieser Methode jedoch keine eindeutige Verifizierung der Interaktion erzielt werden. Eine eindeutige Bestätigung der Interaktionen zwischen Aldolase und Aktin sowie zwischen Aldolase und VDAC erfolgte durch Far-Western-Blots .
|
14 |
Actomyosin mechanics at the cell levelErzberger, Anna 29 February 2016 (has links) (PDF)
Almost all animal cells maintain a thin layer of actin filaments and associated proteins underneath the cell membrane. The actomyosin cortex is subject to internal stress patterns which result from the spatiotemporally regulated activity of non-muscle myosin II motors in the actin network. We study how these active stresses drive changes in cell shape and flows within the cortical layer, and how these cytoskeletal deformations and flows govern processes such as cell migration, cell division and organelle transport. Following a continuum mechanics approach, we develop theoretical descriptions for three different cellular processes, to obtain - in collaboration with experimental groups - a detailed and quantitative understanding of the underlying cytoskeletal mechanics.
We investigate the forces and cortex flows involved in adhesion-independent cell migration in confinement. Many types of cell migration rely on the extension of protrusions at the leading edge, where the cells attach to the substrate with specific focal adhesions, and pull themselves forward, exerting stresses in the kPa range. In confined environments however, cells exhibit migration modes which are independent of specific adhesions. Combining hydrodynamic theory, microfluidics and quantitative imaging of motile, non-adherent carcinosarcoma cells, we analyze the mechanical behavior of cells during adhesion-independent migration. We find that the accumulation of active myosin motors in the rear part of these cells results in a retrograde cortical flow as well as the contraction of the cell body in the rear and expansion in the front, and we describe how both processes contribute to the translocation of the cells, depending on the geometric and mechanical parameters of the system. Importantly, we find that the involved propulsive forces are several orders of magnitude lower than during adhesive motility while the achieved migration velocities are similar. Moreover, the distribution of forces on the substrate during non-adhesive migration is fundamentally different, giving rise to a positive force dipole. In contrast to adhesive migration modes, non-adhesive cells move by exerting pushing forces at the rear, acting to expand rather than contract their substrate as they move. These differences may strongly affect hydrodynamic and/or deformational interactions between collectively migrating cells.
In addition to the work outlined above, we study contractile ring formation in the actin cytoskeleton before and during cell division. While in disordered actin networks, myosin motor activity gives rise to isotropic stresses, the alignment of actin filaments in the cortex during cell division introduces a preferred direction for motor-filament interactions, resulting in anisotropies in the cortical stress. Actin filaments align in myosin-dependent shear flows, resulting in possible feedback between motor activity, cortical flows and actin organization. We investigate how the mechanical interplay of these different cortical properties gives rise to the formation of a cleavage furrow during cell division, describing the level of actin filament alignment at different points on the cortex with a nematic order parameter, in analogy to liquid crystal physics. We show that cortical anisotropies arising from shear-flow induced alignment patterns are sufficient to drive the ingression of cellular furrows, even in the absence of localized biochemical myosin up-regulation. This mechanism explains the characteristic appearance of pseudocleavage furrows in polarizing cells.
Finally, we study the characteristic nuclear movements in pseudostratified epithelia during development. These tissues consist of highly proliferative, tightly packed and elongated cells, with nuclei actively travelling to the apical side of the epithelium before each cell division. We explore how cytoskeletal properties act together with the mechanics of the surrounding tissue to control the shape of single cells embedded in the epithelium, and investigate potential mechanisms underlying the observed nuclear movements. These findings form a theoretical basis for a more detailed characterization of processes in pseudostratified epithelia.
Taken together, we present a continuum mechanics description of the actomyosin cell cortex, and successfully apply it to several different cell biological processes. Combining our theory with experimental work from collaborating groups, we provide new insights into different aspects of cell mechanics.
|
15 |
Zytoskelett als Target zur SchlaganfalltherapieEndres, Matthias 06 November 2001 (has links)
Neuroprotektion und Verbesserung der zerebralen Durchblutung stellen die beiden zentralen therapeutischen Ansätze für den ischämischen Schlaganfall dar. In dieser Arbeit stellen wir ein neues experimentelles Konzept vor, welches das neuronale und endotheliale Zytoskelett als therapeutisches Target zur Schlaganfallbehandlung identifiziert. Ungebremster intrazellulärer Kalziumeinstrom durch aktivierte N-methyl-D-aspartat (NMDA)-Rezeptoren und spannungsabhängige Ca++-(VDCC)-Kanäle ist ein entscheidender Trigger für den Zelltod nach Schlaganfall. Die Aktivität dieser Kanäle wiederum wird dynamisch durch Veränderungen des Aktin-Zytoskeletts modifiziert, welches u.a. durch das aktindegradierende Protein Gelsolin vermittelt wird. Neurone, denen Gelsolin fehlt (Gelsolin-Null), zeigen einen vermehrten Zelltod und erhöhten Ca++-Einstrom nach Sauerstoff/Glukose Deprivation und weiterhin erhöhte zytosolische Ca++-Spiegel in den Nervenendigungen nach Depolarisation in vitro. Nach transienter zerebraler Ischämie wiesen Gelsolin-Null Mäuse deutlich größere Infarkte im Vergleich zu den Kontrollen auf. Eine akute Behandlung mit Cytochalasin D, einem Pilztoxin, das spezifisch Aktinfilamente depolymerisiert, reduzierte das Schlaganfallvolumen in Gelsolin-Null und Wildtypmäusen auf das gleiche Volumen. Gelsolinaktivierung und Aktindepolymerisierung schützen somit vor Exzitotoxizität und Zelltod nach zerebraler Ischämie. Ein entscheidender Regulator des zerebralen Blutflusses ist die endotheliale NO Synthase (eNOS). Mäuse, denen dieses Enzym fehlt (eNOS-Null Mäuse), entwickeln grössere Infarkte nach fokaler zerebraler Ischämie. In unserer Arbeit zeigen wir, daß das G-Protein Rho Veränderungen im Zytosklett von Endothelzellen bewirkt, die zur eNOS Herunterregulierung führen. Die Behandlung von Mäusen mit Rho Inhibitoren, wie Statinen (HMG-CoA Reduktasehemmern), C3 Transferase von C. botulinum, oder aber mit dem (oben genannten) aktindepolymerisierenden Toxin Cytochalasin D führten zu einer höheren eNOS Aktivität, vermehrtem zerebralem Blutfluß und kleineren Infarkten nach zerebraler Ischämie. Diese neuroprotektiven Effekte konnten nicht in eNOS-Null Mäusen erzielt werden, was dieses Enzym als den entscheidenden Effektor dieses prophylaktischen Ansatzes identifiziert. Zusammenfassend stellen sowohl das neuronale Zytoskelett (durch Schutz vor Ca++-Influx) als auch das endotheliale Zytoskelett (über einen eNOS-abhängigen Mechanimus) ein neurartiges Target zur Schlaganfalltherapie dar. Diese ermöglichen neuartige Behandlungsstrategien sowohl in der Akutphase als auch zur Prophylaxe. Insbesondere die Tatsache, daß mit den Statinen bereits zugelassene spezifische Therapeutika zur Verfügung stehen, unterstreicht die unmittelbare klinische Relevanz der Untersuchungen. / Neuroprotection and reperfusion are the basic therapeutic concepts for the treatment of ischemic stroke. Here, we present a novel strategy which identifies both the neuronal and endothelial cytoskeleton as potential therapeutic targets. Increased Ca++ influx through activated NMDA receptors and voltage-dependent Ca++ channels (VDCC) is a major determinant of cell injury after brain ischemia. The activity of these channels is modulated by dynamic changes in the actin cytoskeleton, which may occur in part through the actions of the actin filament-severing protein gelsolin. We show that gelsolin null neurons have enhanced cell death and rapid, sustained elevation of Ca++ levels after glucose/oxygen deprivation as well as augmented cytosolic Ca++ levels in nerve terminals after depolarization in vitro. Moreover, major increases in infarct size are seen in gelsolin null mice after reversible middle cerebral artery occlusion compared to controls. In addition, treatment with cytochalasin D, a fungal toxin that depolymerizes actin filaments, reduced the infarct size of both gelsolin null and control mice to the same final volume. Hence, enhancement or mimickry of gelsolin activity may be neuroprotective during stroke. Cerebral blood flow is regulated by endothelium-derived nitric oxide (NO), and endothelial NO synthase-deficient (eNOS-/- "knockout") mice develop larger cerebral infarcts following middle cerebral artery (MCA) occlusion. We report that the small G-protein rho mediates disruption of the endothelial actin cytoskeleton that leads to upregulation of eNOS. Mice treated with Rho inhibitors like statins (HMG-CoA reductase inhibitors), C3 transferase from C. botulinum, or with the actin cytoskeleton disruptor cytochalasin have higher eNOS expression and activity, increased cerebral blood flow and smaller ischemic lesions following MCA occlusion. No neuroprotection was observed with these agents in eNOS-/- mice. These findings suggest that therapies which target the endothelial actin cytoskeleton may have beneficial effects in ischemic stroke. Both the neuronal and the endothelial actin cytoskeleton were identified as novel therapeutic targets following cerebral ischemia stroke. This may have implications for the treatment and prophylaxis of ischemic stroke in man.
|
16 |
Characterization of two eukaryotic cytoskeletal proteins horizontally transferred to a cyanobacteriumGuljamow, Arthur 07 March 2012 (has links)
Das Cyanobakterium Microcystis aeruginosa PCC 7806 enthält zwei Proteine unbekannter Funktion, welche eine hohe Sequenzähnlichkeit mit Bausteinen des eukaryotischen Aktinzytoskeletts haben. Eines dieser Proteine ist Aktin selbst, das andere ist das Aktinbindeprotein Profilin. Die vorliegende Arbeit enthält eine detaillierte Charakterisierung beider Proteine sowie Vergleiche mit ihren eukaryotischen Verwandten. So inhibiert, im Gegensatz zu Eukaryoten, cyanobakterielles Aktin nicht das Enzym DNaseI. Es bildet jedoch Polymere, die hier mit Phalloidin visualisiert wurden. Konfokale Mikroskopie offenbart klare Unterschiede in den Polymeren, da die cyanobakteriellen eine Länge von 10 µm nicht überschreiten und breiter sind als die zylindrischen, ca. 100 µm langen Filamente eukaryotischen Aktins. Röntgen-Kleinwinkelstreuungsdaten zeigen, dass cyanobakterielle Aktinpolymere in ihrer Form am ehesten einem Band ähneln. Es bestehen auch Unterschiede hinsichtlich des Profilins: während es in Eukaryoten ausschließlich Aktinmonomere bindet, assoziiert cyanobakterielles Profilin mit Aktinfilamenten und vermittelt die Entstehung flächiger Heteropolymere. GFP-Fusionsstudien zeigen, dass die Koexpression von Aktin und Profilin die Bildung eines Hohlraumkompartiments in E.coli nach sich zieht. Ähnliche Gebilde wurden bereits in Microcystis gezeigt und könnten auf die beobachteten Heteropolymere zurückzuführen sein. Diese Arbeit verdeutlicht, dass beide Proteine in einer natürlichen Bakterienpopulation etabliert sind und dort Merkmale tragen, die ihre eukaryotischen Vorläufer nicht zeigen. Folglich könnte die Anpassung an die räumlichen Begrenzungen einer Bakterienzelle, welcher die für die Regulierung der Polymerisation notwendigen Aktinbindeproteine fehlen, die Triebkraft für eine Koevolution von cyanobakteriellem Aktin und Profilin gewesen sein. Dieser Prozess gipfelte möglicherweise in der Entstehung eines neuartigen intrazellulären Gebildes von potentiell struktureller Bedeutung. / The cyanobacterium Microcystis aeruginosa PCC 7806 harbors two proteins with unknown functions that were transferred horizontally from eukaryotes and show a high degree of sequence identity with key components of the eukaryotic actin cytoskeleton. One is actin itself; the other is profilin, an actin binding protein. This work presents the detailed characterization of both proteins and comparisons with the eukaryotic archetype. In contrast to bona fide actin, its cyanobacterial counterpart does not inhibit DNaseI. It forms polymers that can be visualized with labeled phalloidin, resembling eukaryotic actin in that respect. However, confocal microscopy reveals key differences between polymers of eukaryotic and cyanobacterial actin. Whereas the former appear as cylindrical filaments about 100 µm in length, the latter are shorter and wider arresting polymerization at 5-10 µm. Structural elucidation by Small-angle X-ray scattering shows that cyanobacterial actin polymers are ribbon-shaped. This work also shows fundamental differences between cyanobacterial and eukaryotic profilin. Most importantly, cyanobacterial profilin binds actin filaments and mediates their assembly into heteropolymeric sheets. GFP labeling experiments show that the co-expression of cyanobacterial profilin and actin results in the formation of large hollow enclosures in E.coli. These structures resemble the shell-like distribution of actin in Microcystis aeruginosa and may be based on the actin/profilin heteropolymers observed in vitro. This work shows that both cyanobacterial proteins are established in a natural bacterial community where they have gained properties unknown from their eukaryotic ancestors. Consequently, the adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes may have driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity of potential structural relevance.
|
17 |
Elastic interactions of cellular force patterns / Elastic interactions of cellular force patternsBischofs, Ilka Bettina January 2004 (has links)
Gewebezellen sammeln ständig Informationen über die mechanischen Eigenschaften ihrer Umgebung, indem sie aktiv an dieser ziehen. Diese Kräfte werden an Zell-Matrix-Kontakten übertragen, die als Mechanosensoren fungieren. Jüngste Experimente mit Zellen auf elastischen Substraten zeigen, dass Zellen sehr empfindlich auf Veränderungen der effektiven Steifigkeit ihrer Umgebung reagieren, die zu einer Reorganisation des Zytoskeletts führen können.
In dieser Arbeit wird ein theoretisches Model entwickelt, um die Selbstorganisation von Zellen in weichen Materialien vorherzusagen. Obwohl das Zellverhalten durch komplexe regulatorische Vorgänge in der Zelle gesteuert wird, scheint die typische Antwort von Zellen auf mechanische Reize eine einfache Präferenz für große effektive Steifigkeit der Umgebung zu sein, möglicherweise weil in einer steiferen Umgebung Kräfte an den Kontakten effektiver aufgebaut werden können. Der Begriff Steifigkeit umfasst dabei sowohl Effekte, die durch größere Härte als auch durch elastische Verzerrungsfelder in der Umgebung verursacht werden. Diese Beobachtung kann man als ein Extremalprinzip in der Elastizitätstheorie formulieren. Indem man das zelluläre Kraftmuster spezifiziert, mit dem Zellen mit ihrer Umgebung wechselwirken, und die Umgebung selbst als linear elastisches Material modelliert, kann damit die optimale Orientierung und Position von Zellen vorhergesagt werden.
Es werden mehrere praktisch relevante Beispiele für Zellorganisation theoretisch betrachtet: Zellen in externen Spannungsfeldern und Zellen in der Nähe von Grenzflächen für verschiedene Geometrien und Randbedingungen des elastischen Mediums. Dafür werden die entsprechenden elastischen Randwertprobleme in Vollraum, Halbraum und Kugel exakt gelöst. Die Vorhersagen des Models stimmen hervorragend mit experimentellen Befunden für Fibroblastzellen überein, sowohl auf elastischen Substraten als auch in physiologischen Hydrogelen.
Mechanisch aktive Zellen wie Fibroblasten können auch elastisch miteinander wechselwirken. Es werden daher optimale Strukturen als Funktion von Materialeigenschaften und Zelldichte bzw. der Geometrie der Zellpositionen berechnet. Schließlich wird mit Hilfe von Monte Carlo Simulationen der Einfluss stochastischer Störungen auf die Strukturbildung untersucht.
Das vorliegende Model trägt nicht nur zu einem besseren Verständnis von vielen physiologischen Situationen bei, sondern könnte in Zukunft auch für biomedizinische Anwendungen benutzt werden, um zum Beispiel Protokolle für künstliche Gewebe im Bezug auf Substratgeometrie, Randbedingungen, Materialeigenschaften oder Zelldichte zu optimieren. / Adherent cells constantly collect information about the mechanical properties of their extracellular environment by actively pulling on it through cell-matrix contacts, which act as mechanosensors. In recent years, the sophisticated use of elastic substrates has shown that cells respond very sensitively to changes in effective stiffness in their environment, which results in a reorganization of the cytoskeleton in response to mechanical input.
We develop a theoretical model to predict cellular self-organization in soft materials on a coarse grained level. Although cell organization in principle results from complex regulatory events inside the cell, the typical response to mechanical input seems to be a simple preference for large effective stiffness, possibly because force is more efficiently generated in a stiffer environment. The term effective stiffness comprises effects of both rigidity and prestrain in the environment. This observation can be turned into an optimization principle in elasticity theory. By specifying the cellular probing force pattern and by modeling the environment as a linear elastic medium, one can predict preferred cell orientation and position.
Various examples for cell organization, which are of large practical interest, are considered theoretically: cells in external strain fields and cells close to boundaries or interfaces for different sample geometries and boundary conditions. For this purpose the elastic equations are solved exactly for an infinite space, an elastic half space and the elastic sphere. The predictions of the model are in excellent agreement with experiments for fibroblast cells, both on elastic substrates and in hydrogels.
Mechanically active cells like fibroblasts could also interact elastically with each other. We calculate the optimal structures on elastic substrates as a function of material properties, cell density and the geometry of cell positioning, respectively, that allows each cell to maximize the effective stiffness in its environment due to the traction of all the other cells. Finally, we apply Monte Carlo simulations to study the effect of noise on cellular structure formation.
The model not only contributes to a better understanding of many physiological situations. In the future it could also be used for biomedical applications to optimize protocols for artificial tissues with respect to sample geometry, boundary condition, material properties or cell density.
|
18 |
Einfluss des Aktin-bindenden Proteins Synaptopodin-1 auf die Prognose des Pankreaskarzinoms / Impact of the actin-binding protein Synaptopodin-1 on pancreatic cancer's prognosisRommel, Anna Friederike 08 January 2019 (has links)
No description available.
|
19 |
Verknüpfung zwischen Plasmamembran und Zytoskelett / Charakterisierung der Organisation von Ezrin und F-Aktin an artifiziellen Lipidmembranen / Linkage between Plama Membrane and Cytoskeleton / Characterizing the Organization of Ezrin and F-Actin on artificial Lipid BilayersReinermann, Corinna 14 July 2016 (has links)
Die dynamische Verknüpfung zwischen Plasmamembran und dem unterliegenden Zytoskelett der Zelle ist fundamental für zelluläre Prozesse wie Zellmorphogenese, Zellmotilität und Zelladhäsion. Ezrin als Bestandteil der ERM (Ezrin, Radixin, Moesin) Proteinfamilie verbindet L-α-Phosphatidylinositol-4,5-bisphosphat (PIP2) der Plasmamembran mit filamentösem Aktin (F-Aktin) des Zytoskeletts. Die Ezrinbindung an F-Aktin wird reguliert über den Aktivierungsgrad des Proteins, welcher von der N-terminalen PIP2 Bindung und der Phosphorylierung des Threoninrests 567 abhängt. Aufgrund der Bindung an PIP2 und der Phosphorylierung wechselt Ezrin von einer inaktiven, N- und C-terminal assoziierten Konformation in einen aktivierten, geöffneten Zustand, welcher die C-terminale F-Aktinbindung ermöglicht. Ziel dieser Arbeit war es Aspekte der Verknüpfung zwischen Plasmamembran und Zytoskelett zu untersuchen. Basierend auf Bindung von Ezrin an PIP2-haltige artifizielle Lipidmembranen und der anschließenden F-Aktinbindung, wurden Bindungseigenschaften, die Organisation des F-Aktinnetzwerkes und die durch das Aktinnetzwerk beeinflusste Lipidmembranmechanik untersucht. Im ersten Abschnitt dieser Arbeit wurde der molekulare Aktivierungsprozess von Ezrin anhand der Charakterisierung von Bindungsaffinitäten und der Organisation von Ezrin an Lipidmembranen untersucht. Aufgrund einer reduzierten Proteinhöhe und FRET (FÖRSTER-Resonanzenergietransfer)-Effizienz im Fall der vollständigen Aktivierung (PIP2-Bindung und Phosphorylierung) wurde postuliert, dass Ezrin eine weniger dicht gepackte, geöffnete Konformation gebunden an Lipidmembranen ausbildet. Dies ermöglicht dem Protein C-terminal F-Aktin zu binden. Im zweiten Teil der Arbeit wurden Aktinnetzwerke an festkörperunterstützten Lipidmembranen (SLBs) immobilisiert und über Ezrin an PIP2- oder elektrostatisch an 1,2-Dioleoyl-sn-glycero-3-ethylphosphocholin (DOEPC)-haltige SLBs gebunden. Die Netzwerkorganisation wurde mit Hilfe der Fluoreszenzmikroskopie untersucht und unter Berücksichtigung der Immobilisierungsstrategie in Hinblick auf den Einfluss der Anzahl an Verknüpfungspunkten und aktinbindender Proteine (Fascin und α-Actinin) analysiert. Es konnte gezeigt werden, dass beide Immobilisierungsstrategien zu Aktinnetzwerken mit ähnlichen Eigenschaften führten, bezugnehmend auf Maschengröße und Filamentsegmentlänge. Die Aktinnetzwerkdichte konnte direkt über die Anzahl an Verknüpfungspunkten und aktinbindende Proteine (ABPs) reguliert werden, dies demonstriert die physiologische Relevanz der Ergebnisse. Es ist bekannt, dass die Aktindichte in Zellen über PIP2- und ABP-Konzentration gesteuert wird. Im dritten Teil der Arbeit wurde das etablierte Modelsystem auf poröse Substrate übertragen. Unter Kenntnis der vorangegangenen Teile der Arbeit wurde der Einfluss des F-Aktinnetzwerkes auf die Lipidmembranmechanik untersucht. Mit Hilfe der Rasterkraftmikroskopie wurden Indentationsexperimente an porenüberspannenden Lipidmembranen (PSLBs) durchführt, welche zeigten, dass ein aufliegendes F-Aktinnetzwerk die PSLBs versteift. Dies ließ sich auf die reduzierte laterale Mobilität der Lipide innerhalb der PSLBs aufgrund des Aktinnetzwerkes zurückführen, vergleichbar mit dem Picket-Fence-Modell der Plasmamembran bei welchem die Mobilität der Lipide und (Membran-)Proteine, aufgrund der Kompartimentierung der Membran durch das Aktin-Zytoskelett, eingeschränkt ist.
|
20 |
Actomyosin mechanics at the cell levelErzberger, Anna 14 January 2016 (has links)
Almost all animal cells maintain a thin layer of actin filaments and associated proteins underneath the cell membrane. The actomyosin cortex is subject to internal stress patterns which result from the spatiotemporally regulated activity of non-muscle myosin II motors in the actin network. We study how these active stresses drive changes in cell shape and flows within the cortical layer, and how these cytoskeletal deformations and flows govern processes such as cell migration, cell division and organelle transport. Following a continuum mechanics approach, we develop theoretical descriptions for three different cellular processes, to obtain - in collaboration with experimental groups - a detailed and quantitative understanding of the underlying cytoskeletal mechanics.
We investigate the forces and cortex flows involved in adhesion-independent cell migration in confinement. Many types of cell migration rely on the extension of protrusions at the leading edge, where the cells attach to the substrate with specific focal adhesions, and pull themselves forward, exerting stresses in the kPa range. In confined environments however, cells exhibit migration modes which are independent of specific adhesions. Combining hydrodynamic theory, microfluidics and quantitative imaging of motile, non-adherent carcinosarcoma cells, we analyze the mechanical behavior of cells during adhesion-independent migration. We find that the accumulation of active myosin motors in the rear part of these cells results in a retrograde cortical flow as well as the contraction of the cell body in the rear and expansion in the front, and we describe how both processes contribute to the translocation of the cells, depending on the geometric and mechanical parameters of the system. Importantly, we find that the involved propulsive forces are several orders of magnitude lower than during adhesive motility while the achieved migration velocities are similar. Moreover, the distribution of forces on the substrate during non-adhesive migration is fundamentally different, giving rise to a positive force dipole. In contrast to adhesive migration modes, non-adhesive cells move by exerting pushing forces at the rear, acting to expand rather than contract their substrate as they move. These differences may strongly affect hydrodynamic and/or deformational interactions between collectively migrating cells.
In addition to the work outlined above, we study contractile ring formation in the actin cytoskeleton before and during cell division. While in disordered actin networks, myosin motor activity gives rise to isotropic stresses, the alignment of actin filaments in the cortex during cell division introduces a preferred direction for motor-filament interactions, resulting in anisotropies in the cortical stress. Actin filaments align in myosin-dependent shear flows, resulting in possible feedback between motor activity, cortical flows and actin organization. We investigate how the mechanical interplay of these different cortical properties gives rise to the formation of a cleavage furrow during cell division, describing the level of actin filament alignment at different points on the cortex with a nematic order parameter, in analogy to liquid crystal physics. We show that cortical anisotropies arising from shear-flow induced alignment patterns are sufficient to drive the ingression of cellular furrows, even in the absence of localized biochemical myosin up-regulation. This mechanism explains the characteristic appearance of pseudocleavage furrows in polarizing cells.
Finally, we study the characteristic nuclear movements in pseudostratified epithelia during development. These tissues consist of highly proliferative, tightly packed and elongated cells, with nuclei actively travelling to the apical side of the epithelium before each cell division. We explore how cytoskeletal properties act together with the mechanics of the surrounding tissue to control the shape of single cells embedded in the epithelium, and investigate potential mechanisms underlying the observed nuclear movements. These findings form a theoretical basis for a more detailed characterization of processes in pseudostratified epithelia.
Taken together, we present a continuum mechanics description of the actomyosin cell cortex, and successfully apply it to several different cell biological processes. Combining our theory with experimental work from collaborating groups, we provide new insights into different aspects of cell mechanics.
|
Page generated in 0.6291 seconds