• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 157
  • 40
  • 33
  • 18
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • Tagged with
  • 577
  • 196
  • 150
  • 118
  • 102
  • 84
  • 74
  • 63
  • 59
  • 57
  • 52
  • 50
  • 48
  • 48
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Dynamic Modeling of an Advanced Wastewater Treatment Plant

Rathore, Komal 11 June 2018 (has links)
Advanced wastewater treatment plants have complex biological kinetics, time variant influent rates and long processing times. The modeling and operation control of wastewater treatment plant gets complicated due to these characteristics. However, a robust operational system for a wastewater treatment plant is necessary to increase the efficiency of the plant, reduce energy cost and achieve environmental discharge limits. These discharge limits are set by the National Pollutant Discharge Elimination System (NPDES) for municipal and industrial wastewater treatment plants to limit the amount of nutrients being discharged into the aquatic systems. This document summarizes the research to develop a supervisory operational and control system for the Valrico Advanced Wastewater Treatment Plant (AWWTP) in the Hillsborough County, Florida. The Valrico AWWTP uses biological treatment process and has four oxidation ditches with extended aeration where simultaneous nitrification and denitrification (SND) takes place. Each oxidation ditch has its own anaerobic basin where in the absence of oxygen, the growth of microorganisms is controlled and which in return also helps in biological phosphorus removal. The principle objective of this research was to develop a working model for the Valrico AWWTP using BioWin which mimics the current performance of the plant, predicts the future effluent behavior and allows the operators to take control actions based on the effluent results to maintain the discharge permit limits. Influent and experimental data from online and offline sources were used to tune the BioWin model for the Valrico Plant. The validation and optimization of the BioWin model with plant data was done by running a series of simulations and carrying out sensitivity analysis on the model which also allowed the development of operation policies and control strategies. The control strategies were developed for the key variables such as aeration requirements in the oxidation ditch, recycle rates and wastage flow rates. A controller that manipulates the wasting flow rate based on the amount of mixed liquor suspended solids (MLSS) was incorporated in the model. The objective of this controller was to retain about 4500-4600 mg/L of MLSS in the oxidation ditch as it is maintained by the Valrico Plant. The Valrico AWWTP recycles around 80% of their effluent and hence, the split ratios were adjusted accordingly in the model to recycle the desired amount. The effluent concentrations from the BioWin model for the parameters such as Total Nitrogen (TN), Ammonia, Nitrate, Nitrite, Total Kjeldahl Nitrogen (TKN) complied with the discharge limits which is usually less than 2 mg/L for all the parameters.
412

Rational bioenergy utilisation in energy systems and impacts on CO2emissions

Wahlund, Bertil January 2003 (has links)
The increased concentration of greenhouse gases in theatmosphere, in particular CO2, is changing the Earth’s climate. Accordingto the Kyoto protocol, where the international community agreedon binding emission targets, developed countries are committedto reduce their greenhouse gas emissions. The increased use ofbiomass in energy systems is an important strategy to reduce CO2emissions. The purpose of this thesis has been toanalyse the opportunities for Sweden to further reduce CO2emissions in the energy system, by rationallyutilising woody biomass energy. The characteristics of currentcommercially operating biofuel-based CHP plants in Sweden aresurveyed and systematically presented. A consistent andtransparent comprehensive reference base for system comparisonsis given. Furthermore, the fuel effectiveness and contributionto CO2reduction is calculated. The governmentalsubsidies of the CHP plants’investment, expressed as costof specific CO2reduction, appears to be low. The competitiveness of biomass-fuelled energy production inrelation to fossil-based production with carbon capture isanalysed, showing that the biomass-fuelled systems provide acompetitive option, in terms of cost of electricity andefficiencies. The remaining Swedish woody biofuel potential ofat least 100 PJ/yr is principally available in regions with abiomass surplus. Transportation is therefore required to enableits utilisation in a further national and international market.Refining the biofuel feedstock to pellets, or even furtherrefining to motor fuels (DME, methanol or ethanol) or power,could facilitate this transport. Different options for fuelrefining are studied and compared. The entire fuel chain, fromfuel feedstock to end users, is considered and CO2emissions are quantified. Substituting fuelpellets for coal appears to be the most costeffectivealternative and shows the largest CO2reduction per energy unit biofuel. Motor fuelsappear more costly and give about half the CO2reduction. Transportation of the upgraded biofuelpellets is highly feasible from CO2emissions point of view and does not constitute ahindrance for further utilisation, i.e. the pellets can betransported over long distances efficiently with only limitedemissions of CO2. Bioenergy utilisation has additional features forenvironmental improvement, apart from the CO2aspect. Waste heat from biofuel-based CHP can becost-effectively used in conjunction with sewage treatment. Theincoming sewage water to the nitrification process can bepreheated with the waste heat, and thereby substantiallyenhance the nitrification and the reduction of ammoniumnitrogen during the winter season. <b>Keywords:</b>CO2reduction, energy system, biofuel, CHP, refining,fuel pellets, ethanol, methanol, DME, fuel substitution, sewagewater, nitrification.
413

Nitrifying and denitrifying bacterial communities in the sediment and rhizosphere of a free water surface constructed wetland

Ruiz Rueda, Olaya 27 June 2008 (has links)
La contínua descàrrega de nutrients, sobretot fosfats i nitrogen, és la major causa d'eutrofització dels ecosistemes aquàtics. Els sistemes de tractament basats en aiguamolls construïts s'han emprat per reduir ells nivells de nitrogen a l'aigua com a alternativa de baix cost als mètodes de depuració convencionals. L'eliminació del nitrogen a aquests sistemes depèn en bona part de la vegetació, i l'alternança de condicions aeròbiques i anaeròbiques per promoure els processos de nitrificació i desnitrificació. En aquest treball hem volgut investigar les activitats microbianes de nitrificació i desnitrificació en relació a dues espècies de plantes macròfites en un sistema d'aiguamolls de tractament de flux superficial (FS-SAC), dissenyat per minimitzar l'impacte de l'alliberament d'aigua carregada de nutrients a la reserva natural dels Aiguamolls de l'Empordà (Girona, Espanya). / The continuous delivery of nutrients, mainly phosphate and nitrogen, is the major cause of eutrophication of aquatic environments. Treatment technologies based on constructed wetlands have been applied to reduce the levels of nitrogen as a cost-effective alternative compared to conventional treatment methods. The nitrogen removal efficiency in wetlands relies on the presence of plants and the alternation of aerobic and anaerobic conditions to promote both nitrification and denitrification. Although the role of emergent macrophytes in such systems is largely recognized, their contribution to the overall treatment process has not been quantified very frequently. We have investigated the microbial nitrification and denitrification activities in relation to two plant species in a free water surface constructed wetland (FWS-CW), designed to minimize the impact of nutrient release into the Natural Reserve of Els Aiguamolls de l'Empordà (Girona, Spain).
414

Luftflödesstyrning på Käppalaverket – utvärdering av konstanta styrsignaler / Aeration control at the Käppala wastewater treatment plant - evaluation of constant control signals

Nordenborg, Åsa January 2011 (has links)
På Käppalaverket i Stockholm står luftningen av de biologiska bassängerna för omkring en femtedel av verkets totala elenergiförbrukning. I ett försök att minska energikostnaden utvärderades under hösten 2010 nya metoder för luftflödesreglering på verket. Grundtanken var att styra luftflödet efter medelvärdet på utgående ammoniumkoncentration under en längre tid, istället för som idag efter momentana värden. Ett vanligt sätt att styra luftflöden på reningsverk idag är att använda återkoppling från utgående ammoniumkoncentration, vilket syftar till att alltid hålla den utgående koncentrationen vid ett valt börvärde. Lagstiftade gränsvärden på ammonium avser dock normalt medelvärden över en längre tid, såsom kvartal eller år. Istället för att anpassa luftflödet efter den inkommande belastningen är det därför möjligt att hålla luftflödet relativt konstant medan istället den utgående koncentrationen tillåts variera. I denna studie visades en energibesparing kunna erhållas om luftflödets variation reduceras. Två strategier utvärderades i vilka luftflödet respektive syrehalten hölls så konstant som möjligt. Dessa jämfördes med den idag använda styrstrategin på Käppalaverket, i vilken luftflödet anpassas efter den inkommande belastningen genom återkoppling. Studien inkluderade både simuleringar i modellen Benchmark Simulation Model no. 1 och fullskaleförsök på Käppalaverket. I både simuleringar och fullskaleförsök resulterade de två utvärderade strategierna i en lägre luftförbrukning per reningsgrad än den idag använda återkopplingsstrategin. I fullskaleförsöken erhölls en luftflödesreduktion på 11 % då luftflödet hölls konstant och 15 % då syrehalten hölls konstant. Båda strategierna genererade dock en kraftigt varierande utgående ammoniumkoncentration. Variationerna var störst då luftflödet hölls konstant och korrelerade inte med den dygnsbaserade belastningsprofilen. Sammanfattningsvis visade studien att en reducering av luftflödets variation resulterar i en lägre luftförbrukning men också i en ökad instabilitet. En konstant syrehalt gav en större energivinst och även en stabilare ammoniumreduktion än ett konstant luftflöde, varför denna metod har störst potential till vidare implementering i fullskala. / The aeration of the bioreactors is responsible for one fifth of the energy consumption at the Käppala wastewater treatment plant (WWTP) in Stockholm. In this report, new methods for aeration control were evaluated in order to reduce the energy costs at the plant. The main idea was to control the effluent ammonia concentration in terms of mean values instead of momentary values. A quite common approach for aeration control is to use feedback from the effluent ammonia concentration, thus aiming to keep the effluent concentration consistently at a certain set point. However, discharge limits normally refer to mean values over longer periods of time, such as months or years. Instead of adjusting the airflow to the incoming load it is therefore possible the keep the airflow fairly constant while allowing a fluctuating effluent concentration. In this paper, it was shown that by reducing the variation of the airflow, energy could be saved. Two methods were evaluated in which the airflow and oxygen concentration respectively was held constant. These methods were compared to the control strategy used today at the Käppala WWTP, where feedback control adjusts the airflow to the influent load. The study consisted of simulations with the Benchmark simulation model no. 1 (BSM1) as well as full scale experiments at the Käppala WWTP. Both the simulations and full scale experiments showed a reduced aeration per nutrient removal for the evaluated methods. In full scale, the total airflow reduction was 11 % when the airflow was held constant and 15 % when the oxygen concentration was held constant. However, the methods resulted in large variations of the effluent ammonia concentration, which did not correlate to the daily influent load. The variations were especially large when the airflow was held constant. In summary, this study showed that a reduced airflow variation results in lower aeration costs but also less stability. A constant oxygen concentration required less aeration and provided a more stable degree of ammonia removal than a constant airflow. For this reason, aeration control with a constant oxygen concentration has the best potential for further use at the Käppala WWTP.
415

Rejektvattenbehandlingens inverkan på kvävereduktionen vid Arboga reningsverk / The effect of reject water treatment on nitrogen removal at Arboga wastewater treatment plant

Bergkvist, Sophie January 2012 (has links)
Under 90-talet uppdagades övergödningsproblematiken i Östersjön, varför omgivande länder enades gällande åtgärder för att minska problemen. De svenska reningsverk som genom sina utsläpp av kväve och fosfor påverkade Östersjön tvingades då införa gränsvärden för kväve- och fosforutsläppen. Vid Arboga reningsverk, vars recipient är Arbogaån som mynnar i Galten, Mälaren, har kvävereducering sedan en tid tillbaka varit i drift. Dock krävdes från och med år 2012 att totalkvävehalten i utgående avloppsvatten ej översteg 15 mg tot-N/l. Införandet av detta gränsvärde resulterade i åtgärder för att minska kväveutsläppen.Rejektvattenbehandling är en vanlig metod för att minska halterna totalkväve i utgående avloppsvatten. Normalt utgör rejektvattnet 0,5–1,0 % av totala inflödet till reningsverket men 10–20 % av inkommande totalkvävebelastningen. I Arboga resulterade det nya gränsvärdet för totalkväveutsläpp i en nybyggnation av en rejektvattenbehandling utformad med fördenitrifikation. Detta innebär att rejektvattnet pumpas genom fyra zoner, två anaeroba följt av två aeroba. Ammoniumkvävet i inkommande vatten omvandlas genom detta processupplägg via nitrat till kvävgas.Denna studie syftade till att kartlägga rejektvattenbehandlingens effekt på halterna av totalkväve i utgående avloppsvatten från Arboga reningsverk. Detta inkluderade både simuleringar i Benchmark Simulation Model no. 2 (BSM2) samt studier genom vattenprovtagning vid Arboga reningsverk. Vid simuleringarna genomförda i BSM2 påvisades en märkbart lägre halt totalkväve i utgående avloppsvatten efter rejektvattenbehandlingens införande. Även vid den provtagningscykel som genomfördes på Arboga reningsverk under april år 2012 påvisades att markanta förändringar skett i utgående halter totalkväve och ammoniumkväve. Halterna totalkväve och ammoniumkväve i utgående avloppsvatten sjönk med ca 40 % respektive 65 % relativt samma tidsperiod år 2008–2011. Detta är dock endast resultat från det initiala skedet av rejektvattenbehandlingen som togs i drift 16 februari år 2012. Studien visade sammanfattningsvis att denna typ av processlösning för rejektvattenbehandling ledde till lägre halter av totalkväve och ammoniumkväve i utgående vatten från Arboga reningsverk. Dock krävs vidare studier för att kartläggaden slutgiltiga effekten av rejektvattenbehandlingen, då den i nuläget ännu ej nått sin slutgiltiga kapacitet. / Eutrophication problems were discovered in the Baltic Sea during the 1990s, why thesurrounding countries came to an agreement regarding measures to reduce the problem. Swedish wastewater treatment plants that influence the Baltic Sea by their emissions ofnitrogen and phosphorus have since introduced limit values for nitrogen and phosphorusconcentrations in the effluent water.At Arboga wastewater treatment plant (WWTP) a nitrogen reduction process withactive sludge was implemented a few years back. The recipient Arbogaån leading intoGalten, Mälaren, has eutrophication issues, and from the year 2012 the concentration oftotal nitrogen in treated wastewater must not exceed 15 mg tot-N/l. This limit resulted inmeasures to reduce nitrogen emissions.Reject water treatment is a common method to reduce the levels of total nitrogen intreated wastewater. Normally, the reject water contributes to 0.5–1.0 % of the totalinflow to the treatment plant but 10–20 % of the incoming total nitrogen load. In Arboga, the new limit for total nitrogen emissions resulted in a reject water treatmentfacility with predenitrification. The reject water is routed through four zones, twoanaerobic followed by two aerobic. Ammonium is by this process converted in to nitrogen gas via nitrate. This study aimed at identifying the effect from what implementing a reject watertreatment on the levels of total nitrogen in treated wastewater from Arboga WWTP.This included simulations in the Benchmark Simulation Model no. 2 (BSM2) as well aswater sampling at Arboga WWTP. The simulations that were carried out in BSM2 showed a significantly lower content of total nitrogen in treated wastewater after thereject water treatment was implemented. The sampling cycle conducted at ArbogaWWTP in April 2012 revealed that changes occurred in the levels of total nitrogen andammonium in the effluent water. The concentrations of total nitrogen and ammonia nitrogen in treated wastewater decreased by about 40 % and 65 %, compared to thesame time period in 2008–2011. This is, however, only results from the initial stage ofthe reject water treatment, which began operating on February 16th 2012.In summary, this study showed that this type of process solution for reject watertreatment resulted in lower levels of total nitrogen and ammonia in the effluent water at  Arboga WWTP. Further studies are needed to determine the final efficiency of the rejectwater treatment, since it yet has to reach its full capacity.
416

Die Bedeutung der wurzelassoziierten Mikroorganismen für die Stickstoffumsetzungen in Pflanzenkläranlagen / The importance of root associated microorganisms to the processes of nitrogen transformation in constructed wetlands

Münch, Christiane 27 September 2003 (has links) (PDF)
Plants in constructed wetlands serve as carriers for attached microbial growth. They mainly transfer oxygen and release exudates into the root zone. As a result, an area exists around the roots (rhizosphere) in which bacteria are stimulated by root growth. Our goals were to ascertain whether stimulating the microbial community only has a local effect on the rhizoplane, and to establish the importance of this stimulation for wastewater purification in the root zone. Observations were carried out in a planted and an unplanted laboratory batch reactor incubated with an artificial wastewater with a high concentration of ammonia. Samples were taken at intervals of 10 mm away from the roots. The chemical and physical conditions and enzyme activities in soil sections at various distances from the roots affecting the efficiency of microbial nitrogen removal were characterized. An influence on the nitrification and denitrification process was detected via several parameters up to a range of different root distances: microbial parameters such as the total bacterial number, respiratory activity, protein and DNA amount seem to be affected by roots up to a distance of 50 mm from the roots, whereas the oxygen concentration, DOC and redox potential are unaffected at a distance exceeding 20-30 mm. This indicates that improved nitrogen removal is also possible in the wider root surroundings. Given the average root-to-root distance of 35 mm, the root-influenced area could therefore be expanded to the whole rooted zone in a constructed wetland.
417

Rational bioenergy utilisation in energy systems and impacts on CO2emissions

Wahlund, Bertil January 2003 (has links)
<p>The increased concentration of greenhouse gases in theatmosphere, in particular CO<sub>2</sub>, is changing the Earth’s climate. Accordingto the Kyoto protocol, where the international community agreedon binding emission targets, developed countries are committedto reduce their greenhouse gas emissions. The increased use ofbiomass in energy systems is an important strategy to reduce CO<sub>2</sub>emissions. The purpose of this thesis has been toanalyse the opportunities for Sweden to further reduce CO<sub>2</sub>emissions in the energy system, by rationallyutilising woody biomass energy. The characteristics of currentcommercially operating biofuel-based CHP plants in Sweden aresurveyed and systematically presented. A consistent andtransparent comprehensive reference base for system comparisonsis given. Furthermore, the fuel effectiveness and contributionto CO<sub>2</sub>reduction is calculated. The governmentalsubsidies of the CHP plants’investment, expressed as costof specific CO<sub>2</sub>reduction, appears to be low.</p><p>The competitiveness of biomass-fuelled energy production inrelation to fossil-based production with carbon capture isanalysed, showing that the biomass-fuelled systems provide acompetitive option, in terms of cost of electricity andefficiencies. The remaining Swedish woody biofuel potential ofat least 100 PJ/yr is principally available in regions with abiomass surplus. Transportation is therefore required to enableits utilisation in a further national and international market.Refining the biofuel feedstock to pellets, or even furtherrefining to motor fuels (DME, methanol or ethanol) or power,could facilitate this transport. Different options for fuelrefining are studied and compared. The entire fuel chain, fromfuel feedstock to end users, is considered and CO<sub>2</sub>emissions are quantified. Substituting fuelpellets for coal appears to be the most costeffectivealternative and shows the largest CO<sub>2</sub>reduction per energy unit biofuel. Motor fuelsappear more costly and give about half the CO<sub>2</sub>reduction. Transportation of the upgraded biofuelpellets is highly feasible from CO<sub>2</sub>emissions point of view and does not constitute ahindrance for further utilisation, i.e. the pellets can betransported over long distances efficiently with only limitedemissions of CO<sub>2</sub>.</p><p>Bioenergy utilisation has additional features forenvironmental improvement, apart from the CO<sub>2</sub>aspect. Waste heat from biofuel-based CHP can becost-effectively used in conjunction with sewage treatment. Theincoming sewage water to the nitrification process can bepreheated with the waste heat, and thereby substantiallyenhance the nitrification and the reduction of ammoniumnitrogen during the winter season.</p><p><b>Keywords:</b>CO<sub>2</sub>reduction, energy system, biofuel, CHP, refining,fuel pellets, ethanol, methanol, DME, fuel substitution, sewagewater, nitrification.</p>
418

Nitrogen in the soil-plant system of successive rainfed wheat crops under conventional cultivation.

Otto, Willem Morkel. January 2002 (has links)
Soil mineral N and soil water content at planting, biomass accumulation, yield and grain quality parameters (hectolitermass and protein percentage) were measured on an unfertilized and recommended-N-application treatment during two consecutive growing seasons (1997-1998). The trials were planted in a fallow-wheat-wheat cropping system at three representative localities in the summer rainfall region of South Africa. High levels of available soil water and mineral N were measured following the fallow period preceding the start of the trials in 1997. For example, soil water content was 81.7%, 69.6%, and 78.2% of DUL at Bethlehem, Kroonstad and Petrusburg respectively. Although comparable total soil profile water contents to 1997 were measured in 1998 at all three sites, the cultivation zone (0-400 mm) had a substantially lower soil water content. This was due to erratic rainfall distribution during the fallow period, which prevented effective soil cultivation management, subsequent soil water conservation and residue decomposition. Undecomposed residue in the cultivation layer at planting appeared to affect availability of soil mineral N to the growing crop. At planting in 1998, undecomposed crop residue amounted to 53.6% at Bethlehem, 32.5% at Kroonstad and 46.9% at Petrusburg of that added at harvest in 1997. Soil mineral N was lower at planting in 1998 compared to 1997 due to decomposing residue (C:N ratio of above 73) in the cultivation zone immobilizing soil mineral N. This reduced initial growth, N accumulation, yield, and grain protein percentage without additional fertilizer N. Distribution of soil mineral N showed notable amounts in the 600-1200 mm soil layers, with limited changes over the trial period. This was linked to low root exploration of these soil layers (10-15% of total root distribution). The ratios of soil mineral NH(4+):N0(3)- for the different soil layers indicated similar values over the trial period. Climatic data for the localities indicated differences in the amount and distribution of rainfall and temperatures during the study period, which influenced crop development, yield and grain protein percentage. At Bethlehem above average in-season rainfall was measured during 1997, at Kroonstad average rainfall and at Petrusburg below average in-season rainfall. Response to applied N at the localities varied in magnitude during 1997. Nitrogen application significantly increased N concentrations of plant components, N uptake, yield and grain protein percentage, although values for all these parameters were lower in 1998 than in 1997. Indeed higher yields were produced in 1997 (mean=1.838 t ha(-1)) compared to 1998 (mean=0.980 t ha(-1)). A significant yield response to applied N was measured at the two higher yielding localities in both cropping years, but there was no significant response at the lower yielding locality. The limiting factors appeared to be the availability of soil water and residual soil mineral N. From the calculated response functions, the variables soil water content at planting, soil mineral N content at planting, in-season rainfall, and added fertilizer N explained the bulk of the variations in grain protein percentage, plant N uptake, and yields. It was concluded that the present fertilizer N recommendation system for dryland wheat production, which is based on fertilizer response curves for specific yield potentials, should be augmented by using initial soil mineral N and water contents in the profile measured prior to planting. / Thesis (M.Sc.Agric.)-University of Natal, Pietermaritzburg, 2002.
419

An investigation into the technical feasibility of using vegetated submerged bed constructed wetlands for the treatment of landfill leachate.

Olufsen, Jonathan Simon. January 2003 (has links)
Landfill leachate treatment in South Africa is still in its early stages; research has been conducted but primarily at pilot scale level. Current legislation in South Africa does not prohibit the discharge of landfill leachate into the sewer line, despite the high risk of methane explosions and corrosion of the sewer pipes. Thus, to date, the off site channelling of landfill leachate into the sewer lines for further dilution in municipal wastewater treatment plants is the most common practice. Due to the development of stricter environmental regulations, the design of sustainable landfills is leading to the 'treatment at source' concept. Increasing public pressure is also forcing new landfills to be situated in remote areas where there is no avaliable sewer line to discharge into and 'treatment at source' will be required. Due to these developments, coupled with the lack of full scale leachate treatment experience in South Africa, Durban Solid Waste (The waste service unit of the Durban metropolitan), in an attempt to develop the knowledge and practical experience required for leachate treatment, undertook a research project to investigate the use of nitrification/denitrification pilot scale sequencing batch reactors (SBR) to treat leachate from the Bisasar Road and Mariannhill Landfills. The successful completion of the trials proved that the full removal of nitrogen compounds could be easily achieved, under South African climatic conditions, in a single sludge SBR system. The system was found to be simple to operate and required low maintenance. However, the final effluent required further treatment before it could meet the general discharge standards into natural watercourses. Being South Africa, a 'low gross income' country, it became necessary to consider an appropriate, cost effective and technically feasible 'polishing' treatment system. It was decided that a pilot scale treatment trial, using vegetated submerged bed constructed wetlands, be undertaken to assess the applicability and feasibility of such a passive system for the 'polishing' of the effluent from the pilot scale sequencing batch reactors. The wetland systems were found to be affected by many interrelating climatic factors. The trials concluded that the wetlands could not achieve the required discharge standards, in terms of concentration. However, it also showed that the effluent organics posed no oxygen demand or toxic threat to a receiving environment. The trials showed the ability of the wetlands to behave as mass removal systems, which could achieve the required mass removal efficiency in terms of mass output per day. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.
420

Nitrification inhibition assessment of industrial effluents and influent to Amanzimtoti wastewater treatment plant.

Petlane, Mapaseka. January 2005 (has links)
The aim of process industries is to produce products and intermediates from raw materials and other intermediates. Inevitably, there are waste products to be disposed of and if these are of no use, they must be returned to the air, water or land environments. Such returns should be carried out in such a way as to minimise any adverse effects on the environment, otherwise the waste is bound to cause pollution to the environIDent. Wastewater is one such product that has to be returned to the environment. A weakness in the current practice of wastewater treatment is that the potential toxicity of the effluent is only addressed through the prevention of specific types of waste being discharged to the sewer. The discharge of effluents containing toxic or inhibitory substances is currently not directly addressed or controlled by many industries and local authorities. While cost recovery is important, due consideration must be given to the possible effect on the receiving environment. The magnitude of the problem of toxic components in the inflow to wastewater treatment plants in South Africa is largely unknown. However, it is thought by some treatment authorities to be relatively serious. In addition, there has been no attempt to quantify the effect of individual toxicants on the performance of the treatment processes and thus put a monetary value to individual discharges. Nitrification is one of the important biological processes that takes place in wastewater treatment plants, which may be affected by toxicants from wastewater. The toxicants may inhibit the nitrification process and create problems in the treatment plant. The aim of this study was to determine if the Amanzimtoti Wastewater Treatment Plant is experiencing inhibition of nitrification, and if so, determine whether large industries discharging into the plant contribute to this problem. The study site used in this research was the Amanzimtoti Wastewater Treatment Plant, located at Isipingo, in Durban, together with some selected industries that discharge their effluents into this treatment plant. In this study, the Amanzimtoti Wastewater Treatment Plant together with lO industries that discharge effluent into it, were surveyed for inhibition of nitrification. A screening method for estimation of inhibition of nitrification at municipal wastewater treatment plants described by Jonsson (2001) was used in the investigations. This involved testing inhibition of nitrification at various dilutions of wastewater effluent from 20% to 80% dilution. An investigation was conducted of inhibitory substances within influent wastewaters to the Amanzimtoti Wastewater Treatment Plant, and inhibitory substances were detected in all four sampling weeks. The level of inhibition was in general up to 29%, with the greatest inhibition being observed at 20% and the least at 80% dilution. In order to investigate the source of inhibition, inhibition of nitrification was measured in the sewage influent during times when industries are open and when they are closed. Inhibition was significantly lower during December when industries close, supporting the hypothesis that industrial effluent contributes to inhibition of nitrification. Comparison of wastewater from different industries showed that of 10 surveyed industries, 9 generated wastewaters that were found to be inhibitory, with Industry D showing the highest inhibition of approximately 30% over the 4 dilutions. The least inhibitory effluent was from Industry C with an average of 10%. Industry A was found to stimulate nitrification. There was no correlation found between the daily volume contribution of the industries to the treatment plant, and the inhibition of nitrification. There was also no correlation found between the inhibition of nitrification and the chemical oxygen demand and settleable solids concentration of wastewater from each of the industries.. At 80% dilution, the nitrification inhibition results obtained for all nine industries were similar and it was difficult to distinguish between them, whereas at 20% dilution, the differences among the industrial effluents on nitrification could be clearly evaluated. Industries B, D, E, G and J were found to have higher inhibition than the other four surveyed industries. Results obtained at the 20% dilution could therefore be used as a decision making tool by wastewater pollution officers to identify industries requiring close monitoring. From the study, it was clear that the inhibition of nitrification that resulted from mixtures of industrial wastewaters cannot be readily predicted from nitrification inhibition by the individual wastewaters. New compounds may be formed during mixing in the sewer network that are more or less inhibitory than if the wastewaters are not mixed. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2005.

Page generated in 1.6788 seconds