• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 157
  • 40
  • 33
  • 18
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • Tagged with
  • 576
  • 196
  • 150
  • 117
  • 101
  • 84
  • 73
  • 63
  • 59
  • 57
  • 51
  • 50
  • 48
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Reator híbrido associando reator UASB e reator radial de leito fixo (RRLF), em escala piloto, no tratamento de esgoto sanitário / not available

Alexandre Colzi Lopes 10 June 2005 (has links)
Os sistemas combinados anaeróbio/aeróbio para tratamento de esgotos sanitários têm sido considerados alternativas viáveis do ponto de vista técnico-econômico em relação aos sistemas tradicionais. Este trabalho apresenta os resultados obtidos com uma nova configuração de reator, composto por uma unidade central - um reator anaeróbio de manta de lodo (UASB) modificado de 286 L, associado a um reator radial aerado de leito fixo (RRLF) de 215 L, disposto de maneira a circundar a zona de separação sólido/líquido/gás do reator UASB. A principal modificação no reator UASB foi, portanto, a incorporação, junto à sua parede externa, do RRLF. A alimentação do RRLF com o efluente do UASB dá-se através de aberturas laterais na parede do UASB, o que permitiu eliminar as calhas de coleta e sistemas de alimentação do segundo reator. Esse sistema foi alimentado com esgoto sanitário obtido da rede coletora de esgotos do campus da USP de São Carlos. Esperava-se obter remoção considerável de matéria orgânica solúvel e particulada, bem como a remoção parcial de nitrogênio. Foram obtidas eficiências médias de remoção de matéria orgânica (expressa como demanda química de oxigênio - DQO) e de sólidos suspensos voláteis (SSV), de 80% e 89%, respectivamente. Em condições de operação estável, os valores de DQO e SSV no efluente atingiram 110 mg/L e 16 mg/L, respectivamente. Observou-se, também, que o sistema apresentou grande estabilidade operacional, tendo a taxa de carregamento orgânico volumétrica atingido valores da ordem de 4,0 Kg DQO.m-3d-1. Nessas condições, o sistema atingiu eficiências de remoção de DQO e SSV da ordem de 90%. O sistema misto ensaiado mostrou ser uma configuração promissora, pois promoveu a remoção eficiente de matéria orgânica e de sólidos suspensos. Considera-se, no entanto, a necessidade de se introduzirem modificações no projeto RRLF que permitam o estabelecimento dos processos de nitrificação e desnitrificação nesse reator, uma vez que foi obtida baixa eficiência de nitrificação e, conseqüentemente, a remoção de nitrogênio foi prejudicada. / Integrated anaerobic/aerobic systems have been considered feasible alternatives concerning technical and economic aspects for treating domestic wastewaters. This paper presents the results obtained from the operation of this new reactor configuration, made up of a central unit - an upflow anaerobic sludge blanket reactor (UASB), with a working volume of 286 L, associated to a radial-flow aerobic immobilized-biomass (RAIB), with a working volume of 215 L. The RAIB reactor circles the solid/liquid/gas separation zone. The main modification in the UASB reactor concerns this association with the RAIB. The UASB effluent was distributed through openings along its side walls to the RAIB, allowing the elimination of collecting channels and feeding devices from the latter reactor. The objective of this work was to promote organic matter (raw and soluble) and nitrogen removal from domestic sewage. Organic matter (as COD) and volatile suspended solids removal achieved efficiencies of 80% and 89%, respectively. Under stable operational conditions, the system effluent presented COD and volatile suspended solids values of 110 mg/L and 16 mg/L, respectively. Efficiencies of 90% for COD and volatile suspended solids removal were achieved with a organic loading rate of 4,0 Kg COD.m-3.d-1. This integrated system has shown to be a valid configuration, efficiently removing organic matter and suspended solids from the domestic wastewater. However, contrarily to expectations based on the previous studies with RAIB, nitrification was poor. Therefore, modifications to the RAIB design must be considered for the establishment of nitrogen removing processes.
442

Remoção de nitrogênio de águas residuárias com elevada concentração de nitrogênio amoniacal em reator contendo biomassa em suspensão operado em bateladas seqüenciais e sob aeração intermitente / Nitrogen removal of wastewaters with high ammonium nitrogen concentrations in reactor containing suspended biomass operated in sequential batch and under intermittent aeration

Cristina Yuriko Iamamoto 04 August 2006 (has links)
O reator em batelada seqüencial com biomassa em suspensão foi submetido a concentrações de N-amoniacal de 125, 250 e 500 mg N/L e em condições de oxigênio dissolvido (OD) no reator de 2 mg 'O IND.2'/L, em ciclos de 2h/2h de anóxico/aeróbio. Em todas as fases, o reator foi operado como batelada alimentada. Na condição de 125 mg N/L obteve-se eficiência de remoção de 87% de N, tendo o nitrato sido o principal produto da nitrificação. Na condição de 250 mg N/L, obteve-se eficiência de remoção de N de 84%, com predominância de nitrito como principal produto da nitrificação e com ocorrência de nitrificação e desnitrificação simultânea durante os dois primeiros ciclos aeróbios. Na condição de 500 mg N/L, as condições de concentração de OD de 2 mg 'O IND.2'/L e aeração intermitente a cada 2h não foram suficientes para promover a remoção total de nitrogênio amoniacal. Foram feitas alterações: ciclos de 2h anóxico e 9h aeróbios, com concentração média de 2,8 mg 'O IND.2'/L, que resultaram em eficiências de remoção de N de 94%, com predominância de nitrito. Foram isoladas cepas desnitrificantes com similaridade de 97% para Thauera mechernichensis e Thauera sp. 27 nas condições operacionais de 125 e 250 mg N/L e de 99% para Ochrobactrum anthropi e Ochrobactrum tritici, na condição operacional de 500 mg N/L. O longo tempo de operação resultou na diminuição da população de bactérias oxidantes de nitrito, podendo ter sido uma das causas que contribuiu para que se criassem condições que levariam à nitrificação via nitrito na concentração de 500 mg N/L. O sucesso na prevenção da inibição do processo por amônia livre foi atribuído à adoção das condições operacionais do reator, que foi operado sob aeração intermitente e batelada alimentada. / The sequential batch reactor with suspended bioma was subjected to ammonium concentrations of 125, 250 and 500 mg N/L, oxygen dissolved (OD) concentrations of 2 mg 'O IND.2'/L, 2h/2h of anoxic/aerobic steps. The reactor was operated under fed-batch feeding. At the operational condition of 125 mg N/L, the mean nitrogen removal efficiency of 87% was obtained and nitrate was the main nitrification product. At operational condition of 250 mg N/L, was gotten nitrogen removal efficiencies of 84% and nitrite was the predominant form of nitrogen and simultaneous nitrification and denitrification occurred during the two first aerobic steps of the cycle. At 500 mg N/L, the operating conditions imposed to the reactor (OD concentrations of 2 mg 'O IND.2'/L and intermittent aeration of 2h) did not lead to complete nitrification during the aerated steps, thus affecting nitrogen removal. The conditions were altered increasing the aerated steps to 9 hours, with OD concentration of 2,8 mg 'O IND.2'/L, and keeping the duration of the anoxic steps in 2 hours. Under such conditions, the mean nitrogen removal efficiency attained 94% and nitrite was the predominant oxidized nitrogen specie. It was isolated denitrifiers with similarity of 97% for Thauera mechernichensis and Thauera sp. 27 at the operational conditions of 125 and 250 mg N/L and of 99% for Ochrobactrum anthropi and Ochrobactrum tritici, at operational condition of 500 mg N/L. The long term operation resulted in the decrease of nitrite oxidizers populations and this was probably the main factor contributing for the creation of conditions for the partial nitrification via nitrite to prevail during the operation at ammonium concentration of 500 mg N/L. The success in preventing free ammonia inhibition was attributed to the adoption of intermittent aeration and fed batch operation.
443

Reator combinado anaeróbio-aeróbio de leito fixo para remoção de matéria orgânica e nitrogênio de água residuária de indústria produtora de lisina / Upflow anaerobic-aerobic combined fixed bed reactor for organic matter and nitrogen removal from lysine industry wastewater

Moacir Messias de Araújo Junior 21 July 2006 (has links)
Grande parte das indústrias alimentícias, principalmente as que utilizam processos fermentativos, geram efluentes com altas concentrações de material orgânico e nutrientes (principalmente de nitrogênio), necessitando de sistemas complexos para o seu tratamento. Neste sentido, o presente trabalho foi proposto com o intuito de desenvolver um sistema compacto que possa operar como única unidade de tratamento de águas residuárias industriais, tanto na remoção de matéria orgânica quanto na remoção de nitrogênio, com baixo consumo de energia e baixa produção de lodo. Constatou-se, portanto, a viabilidade técnica do reator combinado anaeróbio-aeróbio vertical de leito fixo para o tratamento de efluentes industriais contendo matéria orgânica (1400 mg DQO/l) e nitrogênio (160 mg N/l). A melhor condição operacional do reator foi conseguida aplicando-se tempo de detenção hidráulica (TDH) de 35 h (21 h na zona anaeróbia e 14 h na zona aeróbia), com base no volume útil do reator, e razão de recirculação (R) igual a 3,5, apresentado eficiências na remoção de DQO, NTK e NT de 97%, 94% e 77%, respectivamente, com concentrações efluentes médias de 36 '+ OU -' 10 mg DQO/l, 2 '+ OU -' 1 mg N-'NH IND.4' POT.+'/l,8 '+ OU -' 3 mg N-org/l, 1 '+ OU -' 1 mg N-'NO IND.2'POT.-'/l e 26 '+ OU -' 23 mg N-'NO IND.3'POT.-'/l. O reator vertical de leito fixo, operando unicamente em condição anaeróbia, apresentou eficiências médias na remoção de DQO de 43 '+ OU -' 9%, 60 '+ OU -' 9% e 70 '+ OU -' 6%, respectivamente para TDH aplicados de 11 h, 17 h e 21 h / Most of the food industries, mainly the ones that use fermentative processes, generates effluent with high concentrations of organic matter and nutrients (nitrogen mainly), needing of complex systems for its treatment. In this direction, the present work was considered to develop a compact system that can operate as only unit of industrial wastewater treatment, in the removal of organic matter and nitrogen, with low consumption of energy and low sludge production. Therefore, the viability of the upflow anaerobic-aerobic combined fixed bed reactor for the treatment of industrial effluent with organic matter (1400 mg COD/l) and nitrogen (160 mg N/l) was evidenced. The best operational condition of the reactor was obtained applying 35 h of hydraulic retention time (21 h in the anaerobic zone and 14 h in the aerobic zone) and recycle ratio (R) of 3.5. In this condition, the COD, TKN and TN efficiencies removal were of 97%, 94% and 77%, respectively, with average effluent concentrations of 10 '+ OU -' 36 mg COD/l, 2 '+ OU -' 1 mg N-'NH IND.4'POT.+'/l, 8 '+ OU -' 3 mg N-org/l, 1 '+ OU -' 1 mg N-'NO IND.2'POT.-'/l and 26 '+ OU -' 23 mg N-'NO IND.3'POT.-'/l. The up-flow fixed bed reactor, operating only in anaerobic condition, presented average efficiencies in the COD removal of 43 '+ OU -' 9%, 60 '+ OU -' 9% and 70 '+ OU -' 6%, for HRT applied of 11 h, 17 h and 21 h, respectively
444

Estudo em escala laboratorial dos mecanismos de produção de N2O emetido por solos alagados

Silva, Ana Paula 09 February 2017 (has links)
Submitted by Biblioteca de Pós-Graduação em Geoquímica BGQ (bgq@ndc.uff.br) on 2017-02-09T16:06:33Z No. of bitstreams: 1 TESEDOUTORADO_ANA PAULA DA SILVA_2016.pdf: 3643578 bytes, checksum: aee17ef8cffb8a82bfd826eb5c41ddac (MD5) / Made available in DSpace on 2017-02-09T16:06:33Z (GMT). No. of bitstreams: 1 TESEDOUTORADO_ANA PAULA DA SILVA_2016.pdf: 3643578 bytes, checksum: aee17ef8cffb8a82bfd826eb5c41ddac (MD5) / Coordenação de Aperfeiçoamento de Pessoal Nível Superior / Universidade Federal Fluminense. Instituto de Química. Programa de Pós-Graduação em Geociências- Geoquímica, Niterói, RJ. / O Óxido nitroso (N2O) é um importante gás do efeito estufa que contribui para as mudanças climáticas globais através do aquecimento radiativo e depleção do ozônio estratosférico. Segundo o IPCC a concentração atmosférica de N2O aumenta a taxas de 0,2 a 0,3% anualmente, e aumentou do período pré-industrial de 270 ppb para 329 ppb em 2016. A emissão deste gás por solos resulta principalmente dos processos de nitrificação e desnitrificação. O melhor conhecimento da contribuição de cada processo poderá ajudar a prever e mitigar as emissões de N2O por solos. Os métodos atuais para a investigação das taxas brutas de nitrificação e desnitrificação envolvem aplicação de inibidores químicos e/ou marcadores isotópicos 15N, os quais alteram a composição da atmosfera do solo. Neste trabalho a teoria do método da separação barométrica de processos (BaPS) foi utilizada para quantificar as taxas brutas de nitrificação e desnitrificação através de medidas de variações da pressão do ar num sistema hermético e isotérmico sem aplicação de inibidores ou marcadores químicos. Câmaras para incubação do solo equipadas com sensores de pressão, temperatura, O2 e CO2 foram construídas e amostras de solo de uma região que emite altos fluxos de óxido nitroso localizada em Jardim Catarina em São Gonçalo (RJ) foram selecionadas para o estudo dos processos de produção do gás. O fluxo in situ foi medido e o resultado médio foi de 25 ngN2O-Ncm-2h-1. A alta emissão de N2O in situ foi observada após período de alagamento da área de amostragem pelas águas poluídas do Rio Alcântara. O método BaPS foi utilizado para determinar as taxas de respiração do solo, nitrificação bruta e desnitrificação em experimentos no laboratório. Os resultados mostraram que as taxas brutas de desnitrificação foram sempre maiores que as taxas brutas de nitrificação e que os maiores fluxos de N2O gerados estão associados ao processo de desnitrificação. / climate change through radiative warming and the depletion of stratospheric ozone. According to the IPCC, the concentration of N2O atmospheric increases at rates of 0.2 to 0.3% annually, and increased had risen from the pre-industrial period from 270 ppb to 324 ppb by 2011. Its emission from soils results mainly from denitrification and nitrification process. A better knowledge of the contribution of each process should help to predict and mitigate N2O emissions by soils. Current methods for investigation of gross nitrification and denitrification rates involve N tracers and acetylene inhibition techniques These methods have the disadvantage of introducing labeled material into soil or changing the composition of soil atmosphere. In this work, the barometric process separation technique (BaPS) was applied to quantify gross nitrification and denitrification rates by measuring air pressure variations in a hermetic and isothermal system without the application of chemical inhibitors or markers. Soil incubation chambers equipped with pressure, temperature, O2 and CO2 sensors were constructed and soil samples from a region known to emit high nitrous oxide flows located in Jardim Catarina, São Gonçalo (RJ) were selected for this study. In situ flow was measured and the mean result resulted in 25 ngN2O-Ncm-2h-1. The high N2O emission in situ was observed after a period of flooding in the polluted waters of the Alcântara River. The BaPS method was used to determine the rates of soil respiration, gross nitrification and denitrification. The results showed that the gross denitrification rate was always greater than nitrification and that the higher N2O fluxes generated are associated with the denitrification process
445

Biogrânulos aeróbicos em reator seqüencial em batelada para o tratamento de efluente de biodigestor proveniente da suinocultura / Aerobic biogranules in sequential batch reactor for the treatment of anaerobic digester effluent from the piggish

Pujol, Stefen Barbosa 17 March 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The fermentation of pig slurry into anaerobic digesters has been a recommended practice for the energetic utilization of the produced methane (CH4), thus reducing the emission of this greenhouse gas into the atmosphere. However, the wastewater (effluent of the digester), if dumped in the current water, can cause pollution because it has Chemical Oxygen Demand (COD) and ammoniacal N levels higher than the slurries in natura, besides the phosphorus, presence of odor and pathogens. This study had as objective to evaluate the efficiency of a sequential batch reactor (SBR) of aerobic biogranules in the treatment of anaerobic digester effluents fed with pigs slurry. For that, a study was done in the Soil and Environmental Microbiology Laboratory, in Universidade Federal de Santa Maria, Santa Maria RS, Brazil. The SBR was operated for 88 days, with three daily cycles of 8 h, with different sequential stages: without air supply, with air supply and without air supply. During this period the efficiency of the process in the removal of the COD, Total Kjeldahl Nitrogen (TKN), nitric N and ammoniacal N, total Phosphorus (total P), Total Solids (TS), pH and odor were evaluated. The removal efficiency was of 52% for COD, 37% for total P and approximately 72% for TKN, ammoniacal N and TS. The effluent of the reactor did not show noticeable odor. The nitrification was the major process in the removal of the ammoniacal N during the treatment in aerobic granules reactor of the wastewater from anaerobic digestion of pigs slurries. Although the resulting effluent still needs a post-treatment to be dumped in the environmental, the use of aerobic biogranules in SBR showed to be a promising biotechnology for the pollutant removal of the evaluated wastewater. / A fermentação dos dejetos de suínos em biodigestores vem sendo recomendada para o aproveitamento energético do metano (CH4) produzido, diminuindo assim a emissão desse gás de efeito estufa para a atmosfera. Entretanto, a água residual (efluente de biodigestor), se despejada em cursos d água, pode causar poluição pois apresenta, ainda, Demanda Química de Oxigênio (DQO) e teores de N amoniacal mais elevados do que os dejetos in natura, além da concentração residual de fósforo e presença de odores e patógenos. Este trabalho teve como objetivo avaliar a eficiência de um reator seqüencial em batelada (RSB), de biogrânulos aeróbicos, no tratamento de efluente de biodigestor anaeróbico alimentado com dejetos de suínos. Para isso, foi conduzido um experimento no Laboratório de Microbiologia do Solo e do Ambiente, na Universidade Federal de Santa Maria (UFSM), Santa Maria RS, Brasil. O RSB foi operado por 88 dias, com três ciclos diários de oito horas, sendo que em cada ciclo havia fases seqüenciais distintas: sem aeração, com aeração e sem aeração. Durante esse período avaliou-se a eficiência do processo na remoção de DQO, Nitrogênio Total Kjeldahl (NTK), N amoniacal e N nítrico, Fósforo Total (P total), Sólidos Totais (ST) e odor. A eficiência de remoção foi de 52% para DQO, 37% para P total e próxima a 72% para NTK, N amoniacal e ST. O efluente do reator não apresentou odor perceptível. A nitrificação constituiu-se no principal processo de remoção de N amoniacal durante o tratamento, em reator aeróbico de biogrânulos, da água residual proveniente da biodigestão anaeróbica de dejetos de suínos. Embora o efluente resultante ainda necessite de tratamento complementar para ser despejado no ambiente, o uso de biogrânulos aeróbicos em RSB mostrou ser uma biotecnologia promissora para a remoção de poluentes da água residual avaliada.
446

Design and Implementation of Degenerate qPCR/qRT-PCR Primers to Detect Microbial Nitrogen Metabolism in Wastewater and Wastewater-Related Samples

Keeley, Ryan F. 22 August 2019 (has links)
Nitrogen cycling processes can be tracked using quantitative Polymerase Chain Reaction (qPCR) to determine the presence and qReverse Transcriptase-PCR (qRT-PCR) to determine expression of key genes, or ‘biological markers’, for nitrogen metabolism. Nitrification is catalyzed in part, by two enzymes: ammonia monooxygenase (AMO; NH3 NH2OH) and nitrite oxidoreductase (NXR; NO2- NO3-). For denitrification, four enzymes act sequentially: nitrate reductase (NAR/NAP; NO3- NO2-), nitrite reductase (NIR; NO2- NO), nitric oxide reductase (NOR; NO  N2O), and nitrous oxide reductase (NOS; N2O  N2). A principle of wastewater treatment (WWT) is to remove excess nitrogen by taking advantage of natural nitrogen cycling or biological nitrogen removal (BNR). This process involves using microorganisms to bring influent ammonia through nitrification and denitrification to release nitrogen gas, which does not contribute to eutrophication. A novel shortcut nitrogen removal configuration could increase nitrogen removal efficiency by promoting nitritation/denitritation, reducing the classic nitrogen cycle by removing the redundant oxidation/reduction step to nitrate (NO3-). Here, three nitrogen transformations were used to track the three main phases in the nitrogen cycle; ammonia monooxygenase for nitrification, nitrite oxidoreductase for shortcut, and nitrous oxide reductase for denitrification. Primers for qPCR and qRT-PCR were designed to capture as much sequence diversity as possible for each step. Genes from bacteria known to perform the nitrogen transformations of interest (amoA, nxrB, nosZ) were used to BLAST-query the Integrated Microbial Genomes & Microbiomes database (img.jgi.doe.gov) to find homologs from organisms commonly found in WWT. These sequences were then aligned to find regions sufficiently conserved for primer design. These PCR primers were tested against standards for each gene and used to track nitrogen transformation potential and expression in a novel lab-scale algal photo-sequencing batch reactor which promotes shortcut nitrogen removal from wastewater across three solids retention times (SRT, or mean cell residence time); 5, 10 and 15 days. SRT 15 had the greatest total nitrogen removal with nitritation and denitritation observed. Nitrate was not detected in the first cycle and shortcut nitrogen removal was supported by low levels of nxrB genes and transcripts. Simultaneous nitrification/denitrification was supported by elevated concentrations of nosZ during the light period and less nitrite produced than ammonium consumed. Nitritation was predominantly performed by Betaproteobacteria amoA and nitrous oxide reduction was predominantly from nosZ group I (Proteobacteria-type).
447

Mainstream deammonification reac-tor at low DO values and employing granular biomass.

Salmistraro, Marco January 2015 (has links)
Nitrogen removal from wastewater has been exstensively addressed by scientific literature in recent years; one of the most widely implemented technologies consists of the combination of partial nitritation and anaerobic ammonium oxidation (ANAMMOX). Compared to traditional nitrification and denitrification techniques such solution eliminates the requirement for an external carbon source and allows for a reduced production of excess sludge; furthermore, it brings down the costs associated to aeration by 60-90% and the emissions of CO2 by 90%. Similar techniques can turn out to be particularly interesting when stringent environmental regulations have to be met. At present, most of the dedicated research dwells on wastewater at high temperatures, high nitrogen loads and low organic content, as it is typical of sidestream effluents; this project, instead, is focused on mainstream wastewater, characterized by lower temperatures and nitrogen content, but higher COD values. At the center of the thesis is the application of a one-stage reactor treating synthetic mainstream municipal wastewater. The chosen approach consisted in maintaining low DO values, allowing for both for the establishment of a proper reaction environment and for the out-selection of nitrite oxidizers; granular biomass was employed for the experiment, aiming at effective biomass retention. The HRT value was gradually decreased, with a minimum at 6 hours. Resulting nitrogen removal rates proved to be satisfactory, with a maximum TN removal efficiency of 54%. Retention of biomass was also positively enhanced throughout the experiment, and yielded a final SRT value of 15.6 days. The whole process was then inserted into a more complete framework, accounting for possible energetic optimizations of similar treatment plants. Employing COD fractionation as a primary step paves the way for anaerobic digestion side processes, which can produce methane and ultimately provide energy for the main nitrogen removal step. Therefore, envisioning energy-sufficient water treatment processes seems a more and more feasible and realistic possibility.
448

Nitrifying Moving Bed Biofilm Reactors at Low Temperatures and Cold Shock Conditions: A Kinetic, Biofilm and Microbiome Study

Ahmed, Warsama 07 October 2020 (has links)
The nitrification process, the biologically mediated process of ammonia treatment in water resources recovery facilities (WRRF), remains the most common treatment process to mitigate the adverse effects of effluent ammonia discharges in surface water. However, it is well established that the temperature-sensitive process of nitrification remains hindered at low temperatures in conventional suspended growth technologies; specifically, passive treatment systems such as the lagoons, representing over 50% of Canadian treatment facilities in operation. As such, nitrification in lagoon facilities remains unreliable during the cold seasons with no nitrification occurring at 1°C. In contrast to suspended growth systems, attached growth technologies such as the moving bed biofilm reactors (MBBR) have recently been proven capable of achieving significant nitrification rates at temperatures as low as 1°C and are proposed as suitable upgrade systems to the common lagoon facility to reach year-long ammonia treatment targets. As such, the main objective of this research is to investigate and expand the current knowledge by investigating the key research questions lacking in the current literature on post-carbon, low temperature nitrifying MBBR systems. With this aim, a temperature-controlled study of attached growth nitrification kinetics was conducted to isolate the effects of low temperatures on nitrifying MBBR system performance down to 1°C. A removal rate of 98.44 ± 4.69 gN/m³d is identified as the 1°C intrinsic removal rate and the design removal rate for nitrifying MBBR systems at low temperatures. Considering this intrinsic rate at 1°C, an assessment of reactor efficiency at elevated TAN concentrations typical of non-combined sewer systems indicates that a two reactor in-series MBBR system configuration is recommended for retrofitting lagoon facilities connected to sanitary sewers. The study of the reactor performance to temperatures as low as 1°C demonstrates a non-linear decline in removal efficiency between 10°C and 1°C, with the existence of a kinetic threshold temperature delineated between 4°C and 2°C. As such, this delineated temperature range accounts for a significant decline in the performance of low carbon nitrifying MBBR systems during the onset of the cold seasons. This research identifies new recommended Arrhenius correction coefficient values taking into account this kinetic threshold temperature, with a coefficient of 1.049 being recommended above the kinetic threshold (≥4°C) and 1.149 below the threshold temperature at 1°C. Moreover, since the elapsed time to low temperature was identified as a key factor of attached growth nitrification kinetics, a modified theta model accounting for temperature and time is proposed in this research to accurately model the rate of nitrifying MBBR systems between 4°C and 1°C. Finally, with the severe adverse effects of sudden decreases in temperature, or cold shocks, on nitrification kinetics being previously demonstrated but not well understood, this research compares acclimatized and cold shocked MBBR reactors down to 1°C. The findings indicate 21% lower kinetics in the cold shocked reactor with reactor efficiencies never reaching those of the acclimatized reactor despite extended operation at 1°C. Thus, the research delineates the potentially lasting effects of extreme weather events such as cold air outbreaks and snowmelt periods on nitrifying MBBR system performance. On the other hand, these same findings demonstrate the resiliency of nitrifying MBBR reactors as nitrification was maintained within these systems despite being cold-shocked down from 10°C and 1°C. This study of attached growth kinetics was coupled with an investigation of the nitrifying biofilms, biomass, and microbiome responses to low temperatures and cold shock down to 1°C to provide an understanding of the changes occurring in these systems down to the cellular level. Comparisons of acclimatized and cold shocked nitrifying biofilms responses down to 1°C were characterized by increases in biofilm thickness, increases in biomass viability; and, greater shifts in microbiome communities occurring above 4°C in the acclimatized biofilm. Considering these observations, results also indicated a significant increase in nitrifiers per carrier above 4°C. As such, these findings suggested that the bulk of nitrifying biofilm adaptation to cold temperatures occurs above 4°C, a crucial adaptation phase in acclimatized systems. This adaptation phase is shown to be lacking in cold-shocked systems, with the cold shocked biofilm and microbiome demonstrating significant differences with the acclimatized systems’ biofilm and microbiome. This research was performed to answer the critical research questions relating to the design and operation of the post-carbon, low temperature nitrifying MBBR systems, with the first low temperature MBBR systems being scheduled to begin operation in the fall of 2020. This research expands the current knowledge on low temperature attached growth nitrification kinetics as well as cold shocked attached growth nitrification kinetics in MBBR systems down to 1°C. In addition, this research delineates the effects of low temperatures and cold shocks on the nitrifying MBBR system’s biofilms and their embedded cells.
449

Surface Water-Groundwater Exchange and its Effect on Nitrogen Transformation in the Tidal Freshwater Zone

Wallace, Corey D. 17 October 2019 (has links)
No description available.
450

Microbial Responses to Coarse Woody Debris in <em>Juniperus</em> and <em>Pinus</em> Woodlands

Rigby, Deborah Monique 14 March 2013 (has links) (PDF)
The ecological significance of coarse woody debris (CWD) is usually highlighted in forests where CWD constitutes much of an ecosystem's carbon (C) source and stores. However, a unique addition of CWD is occurring in semi-deserts for which there is no ecological analog. To stem catastrophic wildfires and create firebreaks, whole Juniperus osteosperma (Torr.) and Pinus edulis (Engelm.) trees are being mechanically shredded into CWD fragments and deposited on soils previously exposed to decades of tree-induced changes that encourage "tree islands of fertility." To investigate consequences of CWD on C and nitrogen (N) cycling, we evaluated microbial metabolic activity and N transformation rates in Juniperus and Pinus surface and subsurface soils that were either shredded or left untreated. We sampled three categories of tree cover on over 40 tree cover encroachment sites. Tree cover categories (LOW = 0-15%, MID ≥ 15-45%, HIGH ≥ 45%) were used to indicate tree island development at time of treatment. In conjunction with our microbial measurements, we evaluated the frequency of three exotic grasses, and thirty-five native perennial grasses to identify links between belowground and aboveground processes. The addition of CWD increased microbial biomass by almost two-fold and increased microbial efficiency, measured as the microbial quotient, at LOW Juniperus cover. C mineralization was enhanced by CWD only in Pinus soils at the edge of tree canopies. The addition of CWD had little impact on microbial activity in subsurface soils. CWD enhanced the availability of dissolved organic C (DOC) and phosphorus (P) but tended to decrease the overall quality of labile DOC, measured as the ratio of soil microbial biomass to DOC. This suggested that the increase in DOC alone or other environmental factors novel to CWD additions lead to the increase in biomass and efficiency. P concentrations were consistently higher following CWD additions for all encroachment levels. The CWD additions decreased N mineralization and nitrification in Juniperus and Pinus soils at LOW and MID tree cover but only in surface soils, suggesting that less inorganic N was available to establishing or residual plants. The frequency of native perennial grasses, especially Elymus elymoides (Raf.), was at least 65% higher under CWD additions for all categories of tree cover, while the frequencies of exotic annual and perennial grasses were not impacted by CWD. The frequency of all perennial grasses ranged from 10-27%. Our results suggest that CWD enhanced microbial activity even when the quality of C substrates declined requiring microbes to immobilize more N. The reduction in inorganic N may promote the establishment and growth of native perennial grasses. Ultimately, the addition of CWD improved soil conditions for microbes in tree islands of fertility.

Page generated in 0.2479 seconds