• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 228
  • 47
  • 33
  • 20
  • 12
  • 10
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 430
  • 72
  • 64
  • 63
  • 59
  • 50
  • 44
  • 43
  • 39
  • 39
  • 39
  • 37
  • 36
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Étude et optimisation de l'absorption optique et du transport électronique dans les cellules photovoltaïques à base de nanofils / Study and optimization of the optical absorptance and electrical transport in photovoltaic nanowire based solar cells

Michallon, Jérôme 26 January 2015 (has links)
La conversion photovoltaïque est un procédé très attractif pour la fourniture d’énergie propre et renouvelable. Cette filière est en plein essor grâce à une réduction constante des coûts de revient et des politiques incitatives de nombreux pays. Pourtant, l’ensemble des panneaux photovoltaïques installés ne produit qu’une faible part de la consommation mondiale en électricité. Les récents développements technologiques dans l’industrie photovoltaïque se sont surtout concentrés sur les cellules dites de seconde génération, à savoir les couches minces à base de CIGS, CdTe, a-Si, a-SiGe. Cette filière permet la fourniture d’électricité à coût inférieur à la technologie standard silicium, mais les rendements de conversion demeurent encore faibles, ce qui nécessite de larges surfaces disponibles. Il est à noter notamment que les cellules couches minces à base de matériaux semiconducteurs à gap direct comme le CIGS et le CdTe sont en plein essor puisqu’ils profitent en particulier d’une absorption accrue par rapport au silicium ; toutefois, ces matériaux sont présents en quantité limitée à la surface de la planète (In, Te). Dans ce contexte, les cellules à base de nanofils constituent une solution intéressante aux problèmes de l’absorption de la lumière, du transport et de la séparation des porteurs de charge photo-générés mais aussi de la quantité de matière utilisée. En effet, en utilisant une jonction radiale (i.e. entourant le nanofil), il est possible de séparer l’absorption de la lumière ( liée notamment à la longueur du nanofil) de la collecte des porteurs de charge (qui dépend du diamètre des nanofils). L’intérêt de ces structures réside également dans les propriétés de base des nanofils : la relaxation élastique favorable sur leur surface latérale ouvre le champ au dépôt de nanofils par hétéro-épitaxie sur tout type de substrat alors que la faible densité de défauts étendus en leur sein est propice à un transport efficace des porteurs de charges. Ainsi, la possibilité de réaliser des nanofils sur substrat souple en réduisant de manière importante la quantité de matière utilisée par rapport à une cellule en silicium cristallin massif peut être envisagée. Plusieurs laboratoires grenoblois ont déjà une expertise dans le domaine de la croissance des nanofils. Cette thèse a pour but de réaliser une analyse expérimentale approfondie des propriétés optoélectroniques des nanofils (par des mesures de réflectivité, de durée de vie des porteurs minoritaires et de recombinaisons en surface et aux interfaces) combinée à des simulations optiques (de type RCWA ou FDTD) et électriques (TCAD). L’objectif ultime étant de concevoir et de développer des cellules à base de nanofils de silicium et de ZnO/CdTe. Des démonstrateurs seront réalisés sur la base des simulations électro-optiques. Pour cela, les moyens d’élaboration, de caractérisation et de technologie des différents laboratoires et entités, ainsi que les compétences associées, seront mis en commun pour accompagner les travaux du doctorant. / Photovoltaic energy is a very attractive way to produce renewable energy. The current increase in the photovoltaic energy production mainly takes advantage of the continuous decrease in the solar cell cost as well as to incentive policy. However, installed photovoltaic panels only contribute to a very small part of the global electricity production. Therefore, important technological developments are dedicated to the second generation of solar cells (i.e. thin film solar cells) in order to reduce more their manufacturing cost despite the resulting lower conversion efficiency owing to a weaker structural and optical material quality. One alternative way to increase the solar cell efficiency is to fabricate nanowire-based solar cells since they may benefit from a higher light absorption and carrier collection efficiency. The light absorption is actually increased thanks to the high surface/volume ratio of nanowires but also to light trapping related to the nanowire length. Furthermore, the collection of minority charge carriers is more efficient in radial structures (i.e. core-shell structures) since the nanowire diameter is very small. This PhD thesis aims at investigating the optoelectronic properties of silicon and ZnO/CdTe nanowires (absorption, lifetime of minority charge carriers, bulk and surface recombination…) in order to design an optimised nanowire-based solar cell structure. Electromagnetic simulations will be first performed to define the best nanowire geometry for the absorbance, and then compared to experimental measurements of the absorption coefficient. Electrical characterisations (lifetime measurements, surface recombination…) will be also achieved to analyse the structural quality and to simulate the solar cell electrical properties. Some prototypes of optimised solar cells will eventually be fabricated.
322

From Synthesis To Applications Of Pristine And Nitrogen-Doped Carbon Nanotubes

Goswami, Gopal Krishna 07 1900 (has links) (PDF)
Carbon nanotubes (CNTs) are well known as excellent electrical conductors. However, their transport properties are limited by electrical breakdown in ambient. Moreover, the electronic properties can further be modulated by doping. Devices such as Schottky diodes, transistors and logic gates based on un-doped and doped CNT junctions have been realized. Recently, nitrogen doped CNTs show potential application in replacing platinum cathode catalyst in fuel cell technology. We synthesize pristine, nitrogen-doped and nitrogen-doped:pristine CNT intratubular junctions by one-step co-pyrolysis and explore them for different applications. We show that the position of electrical breakdown can be predicted which is essential to know for high current applications. Among other applications, we show that individual CNT intratubular junction exhibits rectifying characteristics. Further investigation indicates the intratubular junction behaves like Schottky diode. Lastly, the potential replacement of platinum by nitrogen doped CNTs in direct methanol fuel cell has been explored.
323

Theoretical investigation of photonic crystal and metal cladding for waveguides and lasers

Krishnamurthy, Vivek 03 February 2009 (has links)
An efficient numerical analysis method for wavelength-scale and sub-wavelength-scale photonic structures is developed. It is applied to metal-clad nano-lasers and photonic crystal-based DBRs to calculate intrinsic losses (from open boundaries), and to photonic crystal-based waveguides to calculate intrinsic and extrinsic losses (due to fabrication errors). Our results show that a metal-clad surface plasmon-based laser in a cylindrical configuration requires more gain to lase than is available from a semiconductor gain region. However, the lowest order TE and HE guided modes exhibit less loss than the other modes, and hold the most promise for lasing. For photonic crystal-based structures, our matrix-free implementation of the planewave expansion method for calculating layer modes combined with mode-matching between layers using a few lower order modes is shown to be a computationally efficient and reliable method. This method is then used to introduce robust design concepts for designing photonic crystal-based structures in the presence of fabrication uncertainties. Accounting for fabrication uncertainties is shown to be particularly important in the regions of the device where the light exhibits very low group velocity (`slow light'). Finally, the modal discrimination properties of photonic crystal-based DBRs (Distributed Bragg Reflectors) are compared with the properties of conventional oxide-DBR combinations to analyze the contribution of out-of-plane diffraction losses to modal discrimination.
324

Current-driven Domain Wall Dynamics And Its Electric Signature In Ferromagnetic Nanowires

Liu, Yang 2011 August 1900 (has links)
We study current-induced domain wall dynamics in a thin ferromagnetic nanowire. We derive the effective equations of domain wall motion, which depend on the wire geometry and material parameters. We describe the procedure to determine these parameters by all-electric measurements of the time-dependent voltage induced by the domain wall motion. We provide an analytical expression for the time variation of this voltage. Furthermore, we show that the measurement of the proposed effects is within reach with current experimental techniques. We also show that a certain resonant time-dependent current moving a domain wall can significantly reduce the Joule heating in the wire, and thus it can lead to a novel proposal for the most energy efficient memory devices. We discuss how Gilbert damping, non-adiabatic spin transfer torque, and the presence of Dzyaloshinskii-Moriya interaction can effect this power optimization. Furthermore, we propose a new nanodot magnetic device. We derive a specific time-dependent current that is needed to switch the magnetization of the nanodot the most efficiently.
325

Fabrication, characterization, and modeling of metallic source/drain MOSFETs

Gudmundsson, Valur January 2011 (has links)
As scaling of CMOS technology continues, the control of parasitic source/drain (S/D) resistance (RSD) is becoming increasingly challenging. In order to control RSD, metallic source/drain MOSFETs have attracted significant attention, due to their low resistivity, abrupt junction and low temperature processing (≤700 °C). A key issue is reducing the contact resistance between metal and channel, since small Schottky barrier height (SBH) is needed to outperform doped S/D devices. A promising method to decrease the effective barrier height is dopant segregation (DS). In this work several relevant aspects of Schottky barrier (SB) contacts are investigated, both by simulation and experiment, with the goal of improving performance and understanding of SB-MOSFET technology:First, measurements of low contact resistivity are challenging, since systematic error correction is needed for extraction. In this thesis, a method is presented to determine the accuracy of extracted contact resistivity due to propagation of random measurement error.Second, using Schottky diodes, the effect of dopant segregation of beryllium (Be), bismuth (Bi), and tellurium (Te) on the SBH of NiSi is demonstrated. Further study of Be is used to analyze the mechanism of Schottky barrier lowering.Third, in order to fabricate short gate length MOSFETs, the sidewall transfer lithography process was optimized for achieving low sidewall roughness lines down to 15 nm. Ultra-thin-body (UTB) and tri-gate SB-MOSFET using PtSi S/D and As DS were demonstrated. A simulation study was conducted showing DS can be modeled by a combination of barrier lowering and doped Si extension.Finally, a new Schottky contact model was implemented in a multi-subband Monte Carlo simulator for the first time, and was used to compare doped-S/D to SB-S/D for a 17 nm gate length double gate MOSFET. The results show that a barrier of ≤ 0.15 eV is needed to comply with the specifications given by the International Technology Roadmap for Semiconductors (ITRS). / QC 20111206
326

Réalisation et étude des propriétés électriques d'un transistor à effet tunnel 'T-FET' à nanofil Si/SiGe / Design and electrical properties's study of the tunnel field effect transistor ('T-FET' ) based on Si/SiGe nanowires

Brouzet, Virginie 16 December 2015 (has links)
La demande d’objets connectés dans notre société est très importante, au vu du marché florissant des smartphones. Ces nouveaux objets technologiques ont pour avantage de regrouper plusieurs fonctions en un seul objet ultra compact. Cette diversité est possible grâce à l’avènement des systèmes-sur-puce (SoC, System-on-Chip) et à la miniaturisation extrême des composants. Les SoC s’intègrent dans l’approche « More than Moore » et demande une superficie importante des puces. Celle-ci peut-être réduite par l’utilisation d’une autre approche appelée « More Moore » qui fut largement utilisée ces dernières années pour miniaturiser la taille des transistors. Cependant cette approche tend vers ses limites physiques puisque la réduction drastique de la taille des MOSFETs (« Metal Oxide Semicondutor Field Effect Transistor ») ne pourra pas être poursuivie à long terme. En outre, les transistors de taille réduite présentent des effets parasites, liés aux effets de canaux courts et à une mauvaise dissipation de la chaleur dégagée lors du fonctionnement des MOSFETs miniaturisés. Les effets de canaux courts peuvent-être minimisés grâce à de nouvelles architectures, telles que l’utilisation de nanofils, qui permettent d’obtenir une grille totalement enrobante du canal. Mais le problème de la puissance de consommation reste un frein pour le passage au prochain nœud technologique et pour l’augmentation des fonctions dans les appareils nomades. En effet, la puissance de consommation des MOSFETs ne fait qu’augmenter à chaque nouvelle génération, ce qui est en partie dû à l’accroissement des pertes énergétiques induites par la puissance statique de ces transistors. Pour diminuer celle-ci, la communauté scientifique a proposée plusieurs solutions, dont une des plus prometteuses est le transistor à effet tunnel (TFET). Car ce dispositif est peu sensible aux effets de canaux courts, et il peut fonctionner à de faibles tensions de drain et avoir un inverse de pente sous le seuil inférieur à 60mV/dec. L’objectif de la thèse est donc de fabriquer et de caractériser des transistors à effet tunnel à base de nanofil unique en silicium et silicium germanium. Nous présenterons la croissance et l’intégration des nanofils p-i-n en TFET. Puis nous avons étudié l’influence de certains paramètres sur les performances de ces transistors, et en particulier, l’effet du niveau de dopage de la source et du contrôle électrostatique de la grille sera discuté. Ensuite, l’augmentation des performances des TFETs sera montrée grâce à l’utilisation de semiconducteur à petit gap. En effet, nous insérons du germanium dans la matrice de silicium pour en diminuer le gap et garder un matériau compatible avec les techniques de fabrication de l’industrie de la microélectronique. Un modèle de simulation du courant tunnel bande à bande a été réalisé, se basant sur le modèle de Klaassen. Les mesures électriques des dispositifs seront comparées aux résultats obtenus par la simulation, afin d’extraire le paramètre B de la transition tunnel pour chacun des matériaux utilisés. Enfin nous présenterons les améliorations possibles des performances par une intégration verticale des nanofils. / The connected objects demand in our society is very important , given the successfull smartphone market. These newtechnological objects have the advantage to combine several functions in one ultra compact object. This diversity is possibledue to the advent of system-on-chip (SoC) and the components scaling down. The SoCs are into the More than Mooreapproach and require a large chips area, which can be reduced by the use of "More Moore" approach which was widelyused in recent years to scale down the transistors. However, this approach tends to physical limitations since the drasticscaling down of the MOSFETs ("Metal Oxide Field Efect Transistor Semicondutor") can not be continued in the future. Inaddition, the nanoŰMOSFET have parasitic efects, related to short-channel efects and a low heating dissipation. Theshort channel efects can be minimized thanks to new architectures, such as the use of nanowires, which enable a gate allaround of the channel. But the power consumption problem still drag on the transition to the next technology node and theaddition of new functions in mobile devices. Indeed, the MOSFETŠs consumed power increases with each new generation,which is mainly due to the static power increase of these transistors. To reduce it, the scientiĄc community has proposedseveral solutions, and one of the most promising is a tunnel efect transistor (TFET). Because this device exhibit lessshort-channel efects compared to the conventional MOSFET, it can operate at low drain voltages and their subthresholdslope could be lower than 60 mV/dec. The thesis aims are to fabricate and characterize tunneling transistors based onsingle silicon nanowire and silicon germanium. We will present the growth and integration of pŰiŰn nanowires TFET. Thenwe investigated the inĆuence of some parameters on the electrical performance of these transistors, in particular, the efectof the source doping level and the electrostatic gate control will be discussed. In the next part, the increase of TFETsperformance will be shown thanks to the small band-gap semiconductor use. Indeed, we insert germanium in the silicon dieto reduce the bandgap and keep a material compatible with the CMOS manufacturing. A band to band tunneling modelwas used to calculate the device current, based on the model Klaassen. Electrical measurements will be compared to thesimulated results, in order to extract the B parameter of tunnel transition for each materials used. Finally we will presentthe possible performance improvements thanks to the vertical nanowires integration.
327

Étude et optimisation de l'absorption optique et du transport électronique dans les cellules photovoltaïques à base de nanofils / Study and optimization of the optical absorptance and electrical transport in photovoltaic nanowire based solar cells

Michallon, Jérôme 26 January 2015 (has links)
La conversion photovoltaïque est un procédé très attractif pour la fourniture d’énergie propre et renouvelable. Cette filière est en plein essor grâce à une réduction constante des coûts de revient et des politiques incitatives de nombreux pays. Pourtant, l’ensemble des panneaux photovoltaïques installés ne produit qu’une faible part de la consommation mondiale en électricité. Les récents développements technologiques dans l’industrie photovoltaïque se sont surtout concentrés sur les cellules dites de seconde génération, à savoir les couches minces à base de CIGS, CdTe, a-Si, a-SiGe. Cette filière permet la fourniture d’électricité à coût inférieur à la technologie standard silicium, mais les rendements de conversion demeurent encore faibles, ce qui nécessite de larges surfaces disponibles. Il est à noter notamment que les cellules couches minces à base de matériaux semiconducteurs à gap direct comme le CIGS et le CdTe sont en plein essor puisqu’ils profitent en particulier d’une absorption accrue par rapport au silicium ; toutefois, ces matériaux sont présents en quantité limitée à la surface de la planète (In, Te). Dans ce contexte, les cellules à base de nanofils constituent une solution intéressante aux problèmes de l’absorption de la lumière, du transport et de la séparation des porteurs de charge photo-générés mais aussi de la quantité de matière utilisée. En effet, en utilisant une jonction radiale (i.e. entourant le nanofil), il est possible de séparer l’absorption de la lumière ( liée notamment à la longueur du nanofil) de la collecte des porteurs de charge (qui dépend du diamètre des nanofils). L’intérêt de ces structures réside également dans les propriétés de base des nanofils : la relaxation élastique favorable sur leur surface latérale ouvre le champ au dépôt de nanofils par hétéro-épitaxie sur tout type de substrat alors que la faible densité de défauts étendus en leur sein est propice à un transport efficace des porteurs de charges. Ainsi, la possibilité de réaliser des nanofils sur substrat souple en réduisant de manière importante la quantité de matière utilisée par rapport à une cellule en silicium cristallin massif peut être envisagée. Plusieurs laboratoires grenoblois ont déjà une expertise dans le domaine de la croissance des nanofils. Cette thèse a pour but de réaliser une analyse expérimentale approfondie des propriétés optoélectroniques des nanofils (par des mesures de réflectivité, de durée de vie des porteurs minoritaires et de recombinaisons en surface et aux interfaces) combinée à des simulations optiques (de type RCWA ou FDTD) et électriques (TCAD). L’objectif ultime étant de concevoir et de développer des cellules à base de nanofils de silicium et de ZnO/CdTe. Des démonstrateurs seront réalisés sur la base des simulations électro-optiques. Pour cela, les moyens d’élaboration, de caractérisation et de technologie des différents laboratoires et entités, ainsi que les compétences associées, seront mis en commun pour accompagner les travaux du doctorant. / Photovoltaic energy is a very attractive way to produce renewable energy. The current increase in the photovoltaic energy production mainly takes advantage of the continuous decrease in the solar cell cost as well as to incentive policy. However, installed photovoltaic panels only contribute to a very small part of the global electricity production. Therefore, important technological developments are dedicated to the second generation of solar cells (i.e. thin film solar cells) in order to reduce more their manufacturing cost despite the resulting lower conversion efficiency owing to a weaker structural and optical material quality. One alternative way to increase the solar cell efficiency is to fabricate nanowire-based solar cells since they may benefit from a higher light absorption and carrier collection efficiency. The light absorption is actually increased thanks to the high surface/volume ratio of nanowires but also to light trapping related to the nanowire length. Furthermore, the collection of minority charge carriers is more efficient in radial structures (i.e. core-shell structures) since the nanowire diameter is very small. This PhD thesis aims at investigating the optoelectronic properties of silicon and ZnO/CdTe nanowires (absorption, lifetime of minority charge carriers, bulk and surface recombination…) in order to design an optimised nanowire-based solar cell structure. Electromagnetic simulations will be first performed to define the best nanowire geometry for the absorbance, and then compared to experimental measurements of the absorption coefficient. Electrical characterisations (lifetime measurements, surface recombination…) will be also achieved to analyse the structural quality and to simulate the solar cell electrical properties. Some prototypes of optimised solar cells will eventually be fabricated.
328

Nanofils de GaN/AlGaN pour les composants quantiques / GaN/AlGaN nanowires for quantum devices

Ajay, Akhil 25 September 2018 (has links)
Ce travail se concentre sur l'ingénierie Intersubband (ISB) des nanofils où nous avons conçu des hétérostructures de GaN / (Al, Ga) N intégrées dans un nanofil GaN pour le rendre optiquement actif dans la région spectrale infrarouge (IR), en utilisant un faisceau moléculaire assisté par plasma épitaxie comme méthode de synthèse. Les transitions ISB se réfèrent aux transitions d'énergie entre les niveaux confinés quantiques dans la bande de conduction de la nanostructure.Un contrôle précis des niveaux élevés de dopage est crucial pour les dispositifs ISB. Par conséquent, nous explorons Ge comme un dopant alternatif pour GaN et AlGaN, pour remplacer le Si couramment utilisé. Nous avons cultivé des couches minces de GaN dopé Ge avec des concentrations de porteurs atteignant 6,7 × 1020 cm-3 à 300 K, bien au-delà de la densité de Mott, et nous avons obtenu des couches minces conductrices AlxGa1-xN dopées Ge avec une fraction molaire Al jusqu'à x = 0,64. Dans le cas de GaN, la présence de Ge n'affecte pas la cinétique de croissance ou les propriétés structurales des échantillons. Cependant, dans des échantillons AlxGa1-xN dopés par Ge avec x> 0,4, la formation de grappes riches en Ge a été observée, avec une baisse de la concentration du porteur.Ensuite, nous avons réalisé une étude comparative du dopage Si vs Ge dans des hétérostructures GaN / AlN pour des dispositifs ISB dans la gamme IR à courte longueur d'onde. Nous considérons les architectures planaire et nanofils avec des niveaux de dopage et des dimensions de puits identiques. Sur la base de cette étude, nous pouvons conclure que les deux Si et Ge sont des dopants appropriés pour la fabrication d'hétérostructures GaN / AlN pour l'étude des phénomènes optoélectroniques ISB, à la fois dans les hétérostructures planaires et nanofils. Dans cette étude, nous rapportons la première observation de l'absorption d'ISB dans des puits quantiques GaN / AlN dopés au Ge et dans des hétérostructures de nanofils GaN / AlN dopés au Si. Dans le cas des nanofils, nous avons obtenu une largeur de ligne d'absorption ISB record de l'ordre de 200 meV. Cependant, cette valeur est encore plus grande que celle observée dans les structures planaires, en raison des inhomogénéités associées au processus de croissance auto-assemblé.En essayant de réduire les inhomogénéités tout en gardant les avantages de la géométrie des nanofils, nous présentons également une analyse systématique de l'absorption de l'ISB dans les micro et nanopillars résultant d'un traitement top-down des hétérostructures planaires GaN / AlN. Nous montrons que lorsque l'espacement du réseau de piliers est comparable aux longueurs d'onde sondées, les résonances des cristaux photoniques dominent les spectres d'absorption. Cependant, lorsque ces résonances sont à des longueurs d'onde beaucoup plus courtes que l'absorption ISB, l'absorption est clairement observée, sans aucune dégradation de son amplitude ou de sa largeur de raie.Nous explorons également la possibilité d'étendre cette technologie de nanofils à des longueurs d'onde plus longues, pour les absorber dans la région IR à mi-longueur d'onde. En utilisant des hétérostructures de nanofils GaN / AlN, nous avons fait varier la largeur du puits GaN de 1,5 à 5,7 nm, ce qui a conduit à un décalage rouge de l'absorption ISB de 1,4 à 3,4 μm. Remplaçant les barrières AlN par Al0.4Ga0.6N, le composé ternaire représente une réduction de la polarisation, ce qui conduit à un nouveau décalage rouge des transitions ISB à 4,5-6,4 um.L'observation de l'absorption de l'ISB dans des ensembles de nanofils nous a motivés pour le développement d'un photodétecteur infrarouge à puits quantiques à base de nanofils. La première démonstration d'un tel dispositif, incorporant une hétérostructure de nanofils GaN / AlN qui absorbe à 1,55 μm, est présentée dans ce manuscrit. / Due to its novel properties nanowires have emerged as promising building blocks for various advanced device applications. This work focuses on Intersubband (ISB) engineering of nanowires where we custom design GaN/(Al,Ga)N heterostructures to be inserted in a GaN nanowire to render it optically active in the infrared (IR) spectral region. ISB transitions refer to energy transitions between quantum confined levels in the conduction band of the nanostructure. All the structures analised in this thesis were synthesized by plasma-assisted molecular beam epitaxy.Precise control of high doping levels is crucial for ISB devices. Therefore, we explored Ge as an alternative dopant for GaN and AlGaN, to replace commonly-used Si. We grew Ge-doped GaN thin films with carrier concentrations of up to 6.7 × 1020 cm−3 at 300 K, well beyond the Mott density, and we obtained conductive Ge-doped AlxGa1-xN thin films with an Al mole fraction up to x = 0.66. In the case of GaN, the presence of Ge does not affect the growth kinetics or structural properties of the samples. However, in Ge doped AlxGa1-xN samples with x > 0.4 the formation of Ge rich clusters was observed, together with a drop in the carrier concentration.Then, we performed a comparative study of Si vs. Ge doping in GaN/AlN heterostructures for ISB devices in the short-wavelength IR range. We considered both planar and nanowire architectures with identical doping levels and well dimensions. Based on this study, we concluded that both Si and Ge are suitable dopants for the fabrication of GaN/AlN heterostructures for the study of ISB optoelectronic phenomena, both in planar and nanowire heterostructures. Within this study, we reported the first observation of ISB absorption in Ge-doped GaN/AlN quantum wells and in Si-doped GaN/AlN nanowire heterostructures. In the case of nanowires, we obtained a record ISB absorption linewidth in the order of 200 meV. However, this value is still larger than that observed in planar structures, due to the inhomogeneities associated to the self-assembled growth process.Trying to reduce the inhomogeneities while keeping the advantages of the nanowire geometry, we also presented a systematic analysis of ISB absorption in micro- and nanopillars resulting from top-down processing GaN/AlN planar heterostructures. We showed that, when the spacing of the pillar array is comparable to the probed wavelengths, photonic crystal resonances dominate the absorption spectra. However, when these resonances are at much shorter wavelengths than the ISB absorption, the absorption is clearly observed, without any degradation of its magnitude or linewidth.We also explore the possibility to extend this nanowire technology towards longer wavelengths, to absorb in the mid-wavelength IR region. Using GaN/AlN nanowire heterostructures, we varied the GaN well width from 1.5 to 5.7 nm, which led to a red shift of the ISB absorption from 1.4 to 3.4 µm. Replacing the AlN barriers by Al0.4Ga0.6N, the reduction of polarization led to a further red shift of the ISB transitions to 4.5-6.4 µm.The observation of ISB absorption in nanowire ensembles motivated us for the development of a nanowire-based quantum well infrared photodetector (NW-QWIP). The first demonstration of such a device, incorporating a GaN/AlN nanowire heterostructure that absorbs at 1.55 µm, is presented in this manuscript.
329

Nouveaux nanomatériaux pour la fabrication d'électrodes flexibles transparentes / New nanomaterials for manufacturing flexible transparent electrodes

Cabos, Anthony 05 October 2017 (has links)
Les électrodes transparentes sont des éléments essentiels pour de nombreux dispositifs tels que les cellules solaires, les OLEDs, les écrans tactiles ou les films chauffants transparents. Au regard de la croissance forte du marché des dispositifs flexibles, le remplacement de l’ITO, matériau de référence dans l’industrie, s’avère nécessaire. Les réseaux percolants à base de nanofils(NF) métalliques sont une alternative de choix pour ce qui est des performances optoélectroniques, du coût et de la flexibilité. En particulier, les NF d’argent, fortement étudiés ces dernières années, offrent probablement le meilleur potentiel. L’objectif de cette thèse est de développer de nouvelles électrodes transparentes à NF avec un métal de substitution. Le cuivre est un candidat intéressant car à conductivité électrique équivalente, son prix est environ cent fois moins élevé que celui de l’argent. Dans ce manuscrit, différentes voies de synthèse des nanofils de cuivre (CuNF) sont abordées. Des électrodes sont fabriquées à partir de ces nanofils, notamment par impression, et des études sont rapportées sur l’évaluation de leurs performances. L’étude de la stabilité des électrodes à CuNF sous différents stress environnementaux (air sec, soleil, humidité) a été effectuée et met en évidence la stabilité moindre des NF de cuivre par rapport aux NF d’argent. Pour pallier cela, deux stratégies de protection des réseaux de nanofils ont été mises en place à base, soit d’une couche encapsulante sur le réseau, soit d’un système coeur-coquille à l’échelle du NF. La stabilité de ces systèmes a été mesurée lors du fonctionnement de ces électrodes lorsqu’elles sont utilisées pour la fabrication de films chauffants transparents. / Transparent electrodes are implanted in a lot of devices such as solar cell, OLED, touch screen or transparent film heater. Market trends toward flexible devices lead replacement of the well known brittle ITO. Metallic nanowire (NW) based percolative networks are a promising alternative in terms of performances, cost and flexibility. Indeed, the widely reported silver NWs exhibited really high optoelectrical performances. The objective of this thesis is to develop new NW based transparent electrodes with other metal. Among metals, copper is the most promising because of its high conductivity and its price one hundred times cheaper. In that manuscript, we detail different synthesis of copper nanowire (CuNW), their printing to get the related performances. Then ageing under environmental stresses (dry air, sun and humidity) will be studied. Stability of CuNW into networks is very low compared to silver, to improve stability of CuNW two strategies based on capping layer on top of CunW and on core-shell nanostructure will be presented. Operating stability into transparent film heater will also be reported.
330

Supraconductivité et localisation dans des nanofils unidimensionnels d'InSb et d'InAs / Superconductivity and localization in one-dimensional InSb and InAs nanowires

Estrada Saldaña, Juan Carlos 09 June 2017 (has links)
Dans ma thèse, j'ai étudié le transport électronique quantique dans des nanofils semiconducteurs couplés aux supraconducteurs, avec le but de comprendre les conditions nécessaires pour observer des états liés de Majorana. De manière inattendue, au cours de mes expériences j'ai trouvé des exemples notables de l'omniprésence de la localisation spatiale des électrons dans des nanofils apparemment balistiques et unidimensionnels (1D). Ses effets peuvent imiter des signatures d'unidimensionnalité, d’hélicité et des états liés de Majorana, jetant un doute sur leur interprétation.La conductance d’un nanofil 1D est quantifiée et censée montrer des plateaux a des multiples entiers du quantum de conductance. Curieusement, le transport dans un nanofil d'InAs qui hébergeait une boite quantique à un seul niveau a montré qu'il pouvait répliquer les deux premiers plateaux résolus en spin. Une mesure du courant Josephson sous un champ magnétique a révélé les transitions d'état fondamental d'un électron qui occupait ce niveau et confirmé sa nature localisé.Dans le régime hélicoïdal, une chute de la conductance est prédite au milieu de chaque plateau de conductance. De façon étonnante, des dispositifs à base de nanofils uniques d'InSb hébergeant une boite quantique qui conduisait en parallèle avec le canal 1D ont reproduit la même signature.Enfin, la présence des états liés de Majorana, devrait être décelée par un pic à tension de biais nul (ZBP) lors d’une spectroscopie tunnel. Dans un des échantillons à deux canaux mentionnés précédemment, lorsque le canal unidimensionnel était fermé, un ZBP a émergé dans le gap supraconducteur sous un champ magnétique parallèle au nanofil. Ce ZBP a été attribué aux états liés d'Andreev de la boite quantique. Dans une expérience différente faite avec une jonction Josephson à base d'un nanofil d'InAs hébergeant une boite quantique, un ZBP relié au courant Josephson est apparu dans le gap supraconducteur comme le résultat d'une transition de l'état fondamental singlet de la boite quantique vers un état doublet.Malgré la localisation, il a été possible d'extraire des informations significatives sur le régime 1D. Le rôle des grilles a été majeur dans la détermination des dégénérescences sous un champ magnétique des sous-bandes d’un nanofil d'InSb présentant deux canaux de conduction en parallèle. En jouant avec leurs tensions de seuil, effets orbitaux, et facteurs gyromagnétiques, la tension de grille pouvait changer les énergies des sous-bandes appartenant à chaque canal, de manière à les verrouiller ensemble. Grace à ce mécanisme, il a été possible d’observer un plateau à 2e^2/h jusque à de forts champ magnétiques sans aucune apparition d'un plateau à 1e^2/h. La possible existence des deux fils quantiques dans un seul nanofil ouvre la voie à l'observation des états hélicoïdaux et des états liés de Majorana de nature fractionnel.Dans l'ensemble, ces résultats pointent vers la nécessité d'une meilleure compréhension de la physique des dispositifs à base de nanofils d'InAs et d'InSb. Des études supplémentaires dans l'état supraconducteur et normal doivent être réalisées sur des dispositifs plus simples avec un faible nombre de grilles, avant de faire l'étude et manipulations des états liés de Majorana dans des systèmes plus complexes, dont les signatures de localisation pourraient être mieux cachées. Ces résultats originaux vont être publiés dans les mois qui suivent dans quatre articles différents. / In my thesis, I studied low-temperature electronic transport in semiconductor nanowires coupled to superconductors, with the goal of understanding the requirements to observe Majorana bound states. Unexpectedly, I found dramatic examples of the pervasiveness of spatial localization of electrons even in seemingly ballistic one-dimensional (1D) nanowires. Localization could replicate signatures of one-dimensionality, helicity and Majorana bound states, casting a shadow of doubt on their interpretation.1D nanowires are expected to show plateaus of quantized conductance. Curiously, transport through an InAs nanowire hosting a single-level quantum dot showed that it could mimic the first two spin-resolved plateaus. A measurement of the Josephson supercurrent under magnetic field revealed the ground-state transitions of an electron occupying this level, confirming its localized nature.In the helical regime, a conductance dip is predicted to appear in each of the conductance plateaus. Surprisingly, InSb nanowire devices hosting a quantum dot conducting in parallel with a 1D channel reproduced this signature.The presence of Majorana bound states, in turn, should be revealed by a zero-bias peak (ZBP) in tunnel spectroscopy. In one of the two-path devices mentioned above, when the 1D path was closed, a zero-bias peak emerged inside the superconducting gap under a magnetic field parallel to the nanowire. This ZBP was related to trivial Andreev bound states from the quantum dot in parallel to the 1D channel. In a different experiment done in an InAs nanowire Josephson junction device hosting a quantum dot, a ZBP related to a Josephson supercurrent appeared inside of the superconducting gap as a result of a transition of the ground-state of the dot from a singlet to a doublet.In spite of localization, it was possible to extract some meaningful information about the 1D regime. The role of the gates was major in determining the degeneracy of the subbands in an InSb nanowire with two 1D conduction paths in parallel under magnetic field. Through a direct influence on their threshold voltages, orbital effects, and g-factors, the gate voltage could shift the energies of the subbands and lock them together. Via this mechanism, it was possible to observe a 2e^2/h plateau lasting until very large field without the appearance of a 1e^2/h plateau. The possible existence of two quantum wires in a single nanowire opens the door for novel helical and Majorana bound states of fractional nature.Altogether, these results point to the need of a better understanding of the physics of simpler few-gates short-channel InAs and InSb nanowire superconducting and normal-state devices, before committing to the utterly complex devices that should be fabricated to study and manipulate Majorana bound states, in which signatures of localization could be better hidden. These original results will be published in the coming months in four different articles.

Page generated in 0.2788 seconds