• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 4
  • Tagged with
  • 35
  • 35
  • 35
  • 11
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

RMN de matériaux paramagnétiques : mesures et modélisation / Multinuclear NMR of paramagnetic compounds : measurements and modelling

Castets, Aurore 18 November 2011 (has links)
Ce travail consiste en l’étude par RMN multinoyaux de matériaux paramagnétiques d’électrodes positives pour batteries au Li. La RMN du solide permet une caractérisation de l’environnement local du noyau sondé grâce à l’exploitation des interactions hyperfines dues à la présence d’une certaine densité d’électrons célibataires (déplacement de contact de Fermi) ou de conduction (déplacement de Knight) sur ce noyau (densité transférée selon des mécanismes plus ou moins complexes). Les matériaux étudiés sont des phosphates de métaux de transition tels que Li3M2(PO4)3 (M = Fe, V), la famille des tavorites LiMPO4X (M = Fe, Mn; X = OH, F) ou encore les phases homéotypiques MPO4.H2O (M = Fe, Mn, V). Pour tous ces matériaux, caractérisés par RMN du 7Li, 31P et 1H, l’environnement local de ces noyaux a été étudié afin d’envisager les mécanismes de transfert de spin possibles. Des calculs ab initio ont été effectués pour reproduir les déplacements de RMN, puis établir des cartes de densité de spin afin d’étayer ou compléter la compréhension de ces mécanismes. / Paramagnetic materials for positive electrodes for Li batteries have been studied by multinuclear NMR. The local environment of the probed nucleus can be characterized by solid state NMR making use of hyperfine interactions due to transfer of some electron spin density (Fermi contact shift) on this nucleus, via more or less complex mechanisms. We studied a series of transition metal phosphates as Li3M2(PO4)3 (M = Fe, V) with anti-NASICON structure, LiMPO4X (M = Fe, Mn; X = OH, F) belonging to the tavorite family and the homeotypic phases MPO4.H2O (M = Fe, Mn, V). All these materials have been characterized by 7Li, 31P and 1H NMR, and the local environments of these nuclei have been analyzed to propose possible spin transfer mechanisms. First principles DFT calculations have been carried out to, first of all, reproduce the experimental NMR shifts, and then to confirm or complement the understanding of these mechanisms, in particular by plotting spin density maps.
32

Transições de fase em ligas substitucionais e líquidos polimórficos através de simulações atomísticas / Phase transitions in substitutional alloys and polymorphic liquids through atomistic simulations

Michelon, Mateus Fontana 10 May 2009 (has links)
Orientador: Alex Antonelli / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-14T11:09:53Z (GMT). No. of bitstreams: 1 Michelon_MateusFontana_D.pdf: 2538667 bytes, checksum: 7cf68d701030ed6e318c7312b4f25a03 (MD5) Previous issue date: 2009 / Resumo: Um dos objetivos da simulação atomística na ciência dos materiais é calcular as propriedades de um material virtual e propor rotas para sua fabricação em laboratório. Uma das principais propriedades que o material deve apresentar antes de ser sintetizado é a estabilidade termodinâmica. Como a estabilidade é determinada pela energia livre, o cálculo preciso desta quantidade é de fundamental importância na construção de um laboratório virtual. Neste contexto, desenvolvemos uma metodologia alternativa para a determinação da energia livre de ligas substitucionais, que leva em conta os graus de liberdade vibracionais e configuracionais com precisão controlada. A metodologia utiliza o método de Monte Carlo para simular a dinâmica de trocas e vibrações atômicas e determina a energia livre através dos métodos de ligação adiabática e escalamento reversível. Além disso, a metodologia é capaz de avaliar a influência de mecanismos associados à entropia vibracional, através da relaxação sucessiva de vínculos na dinâmica. Especificamente, permite quantificar os mecanismos de a) proporção de ligações entre átomos distintos, b) discrepância entre volumes atômicos e c) relaxação volumétrica, e identificar a origem da diferença de entropia vibracional na transição ordem-desordem. Testamos e aplicamos a metodologia para estudar um modelo semiempírico da liga Ni3Al. Observamos um aumento da entropia vibracional na transição ordem-desordem comparável com o aumento da entropia configuracional e explicado pelo aumento de volume na transição. Outra característica de um laboratório virtual é possuir modelos que descrevam satisfatoriamente os sistemas de interesse. Investigamos um potencial do tipo tight-binding e descobrimos que não é transferível para descrever fenômenos de ordem-desordem em diversas ligas. Além de investigar o fenômeno ordem-desordem em ligas, estudamos transições de fase líquido-líquido em substâncias puras. Apresentamos uma evidência teórica de transição líquido-líquido de primeira ordem em um modelo semiempírico do gálio, fornecendo suporte a uma recente evidência experimental de transição líquido-líquido no regime super-resfriado deste elemento. Além disso, as simulações atomísticas sugerem um mecanismo microscópico para esta transição. Outras características de um laboratório virtual são a possibilidade de estudar sistemas em condições experimentais inacessíveis e a capacidade de propor novos experimentos. Neste contexto, apresentamos uma evidência teórica de transição líquido-líquido em um modelo ab initio para o dióxido de carbono. A transição ocorre entre um líquido molecular e um líquido polimérico em uma região do diagrama de fases atualmente inacessível experimentalmente. Em um futuro próximo, esperamos que seja possível testar esta previsão teórica e sintetizar fases poliméricas por meios físicos. / Abstract: One of the goals of atomistic simulation in materials science is to calculate properties of a virtual material and suggest routes for its fabrication in laboratory. One of the main properties that the material must have before being synthesized is the thermodynamical stability. As the thermodynamical stability is determined by the free energy, its accurate calculation is of fundamental importance for the construction of a virtual laboratory. In this context, we developed an alternative methodology to determine the free energy of substitutional alloys, which takes into account both the vibrational and configurational degrees of freedom with controlled accuracy. The methodology uses the Monte Carlo method to simulate both the vibrational and exchange dynamics and uses the adiabatic switching and reversible scaling methods to calculate the free energy efficiently. In addition, the methodology is able to evaluate the effect of three mechanisms in the vibrational entropy, through successive relaxations of constraints associated with the dynamics. Specifically, it allows to quantify the mechanisms of a) bond proportion, b) atomic size mismatch and c) bulk volume, and thus identify the origin of the vibrational entropy difference at the order-disorder transition. We tested and applied the methodology to study a semiempirical model of the Ni3Al alloy. We observed an increasing of the vibrational entropy at the order-disorder transition comparable to the configurational entropy increasing and explained by an increasing of the bulk volume. Another expected feature of a virtual laboratory is to offer models that describe satisfactorily the systems of interest. We investigated a tight-binding potential and found out that it is not transferable to describe the order-disorder phenomena in several alloys. In addition to the study of the order-disorder phenomena in alloys, we investigated phase transitions between two liquids of a pure substance. We present a theoretical evidence of a first-order liquid-liquid phase transition in a semiempirical model of gallium, which lend support to the recent experimental evidence of a first-order liquid-liquid transition in the supercooled regime of this element. Moreover, the atomistic simulations suggest a microscopic mechanism for this phase transition. Another expected features of a virtual laboratory are the possibility to investigate systems in unreachable experimental conditions and the capacity to suggest new experiments. In this context, we present an ab initio theoretical evidence of a liquid-liquid phase transition in carbon dioxide. We predict a transition between a molecular liquid and a polymeric liquid at a temperature and pressure which are presently unreachable experimentally. We hope that in the near future it will be possible to test this theoretical prediction and synthesize polymeric phases through physical means. / Doutorado / Física da Matéria Condensada / Doutor em Ciências
33

Investigations of the atomic order and molar volume in the binary sigma phase by DFT and CALPHAD approaches / Etude de l'ordre atomique et du volume molaire dans la phase binaire sigma par approches DFT et CALPHAD

Liu, Wei 11 December 2017 (has links)
La phase sigma peut servir de prototype de phases topologiquement compactes, car la phase sigma possède une large gamme d'homogénéité et il existe de nombreuses données expérimentales disponibles pour la phase sigma. Dans le présent travail, les propriétés physiques, comprenant l'ordre atomique, le volume molaire, l'enthalpie de formation et le module d’élasticité isostatique, de la phase sigma binaire ont été étudiées en utilisant les calculs de premiers principes et la méthode CALPHAD combinée aux données expérimentales de la littérature.Tout d'abord, nous avons constaté que l'ordre atomique (c'est-à-dire la distribution du constituant atomique ou la préférence d'occupation du site sur les sites non équivalents d'une structure cristalline) de la phase sigma est affecté par le facteur de taille et la configuration électronique des éléments constitutifs. En outre, nous avons dissocié les effets de ces facteurs d'influence sur l'ordre atomique. Ensuite, nous avons mis en évidence un effet de l'ordre atomique sur l'enthalpie de formation, le module d’élasticité isostatique et le volume molaire. A l'état ordonné à 0K, la phase sigma a une faible enthalpie de formation et un grand module d’élasticité isostatique. L'influence de l'ordre atomique sur le volume molaire de la phase sigma dépend de la configuration électronique des deux éléments constitutifs. Par ailleurs, la base de données des volumes molaires des phases sigma binaires a été construite, ce qui devrait grandement faciliter la conception du matériau. Enfin, nous avons discuté de la prédiction de l'occupation du site de la phase sigma en utilisant la méthode CALPHAD combinée aux calculs de premiers principes. / The sigma phase can serve as a prototype of topologically close-packed (TCP) phases, as the sigma phase bears a broad homogeneity range and there are numerous experimental data available for the sigma phase. In the present work, physical properties, including atomic order, molar volume, enthalpy of formation and bulk modulus, of the binary sigma phase were investigated by using first principles calculations and CALPHAD method combining with the experimental data from the literature. Firstly, we found that the atomic order (i.e. atomic constituent distribution or site occupancy preference on nonequivalent sites of a crystal structure) of the sigma phase is affected by the size factor and electron configuration of the constituent elements. Furthermore, we have dissociated the effect of the individual influencing factor on atomic order. Secondly, the atomic order is found affecting physical properties, such as enthalpy of formation, bulk modulus and molar volume. When in the ordered state at 0K, the sigma phase shows a low enthalpy of formation and a large bulk modulus. The influence of atomic order on the molar volume of the sigma phase depends on the electron configuration of the two constituent elements. Thirdly, the molar volume database of the binary sigma phase has been built up within the CALPHAD framework, which can greatly facilitate material design. Finally, we tentatively discussed the site occupancy prediction of the sigma phase by using the CALPHAD method combined with first-principles calculations.
34

Etude de nouveaux matériaux phosphates de lithium et d'élément de transition comme électrode positive pour batteries LI-ION / Iron phosphates with original structures used as positive electrode materials in lithium and sodium batteries

Trad, Khiem 30 September 2010 (has links)
Depuis la mise en évidence des potentialités du phosphate LiFePO4 comme électrode positive de batteries lithium-ion, un très fort regain d’intérêt pour les phosphates de fer est actuellement observé. Dans cette optique de recherche de nouveaux matériaux, notre intérêt s’est porté sur la phase Na3Fe3(PO4)4 et sur des monophosphates de fer et de manganèse de type alluaudite LiXNa1-XMnFe2(PO4)3. Leurs structures, respectivement en couche et en chaines, en font de bons candidats pour des applications en tant que matériau d’électrode pour des batteries au lithium ou au sodium. Notre étude porte donc, d’une part, sur la synthèse et la caractérisation structurale de ces phases, et d’autre part sur leurs propriétés physiques et électrochimiques. / Since the discovery of highly interesting properties for LiFePO4 as a positive electrode material in lithium ion batteries, the search for novel polyanion-based insertion hosts is intense. Actually, cathodic materials based on iron phosphates exhibit high stability and economical and environmental interests. In this context, we were interested in Na3Fe3(PO4)4 with a lamellar structure and in alluaudite-like iron and manganese phosphates LiXNa1-XMnFe2(PO4)3 which structure exhibits tunnels. This work deals, in one hand, on the synthesis and the structural characterisation of these materials and in the other hand on their physical and electrochemical properties as positive electrode for lithium and sodium batteries.
35

[en] ATOMICALLY THIN SEMICONDUCTING TRANSITION-METAL DICHALCOGENIDES: FROM SYNTHESIS TO ELECTRO-OPTICAL PROPERTIES / [pt] DICHALCOGENETOS DE METAL DE TRANSIÇÃO SEMICONDUTORES ATOMICAMENTE FINOS: DA SÍNTESE ÀS PROPRIEDADES ELETRO-ÓPTICAS

SYED HAMZA SAFEER GARDEZI 29 December 2020 (has links)
[pt] O objetivo deste trabalho foi desenvolver métodos eficientes e reprodutíveis de crescimento de monocamadas de WS2, MoS2 e outras heteroestruturas verticais por deposição química em fase de vapor à pressão atmosférica (APCVD). A monocamada separada destes materiais tem grande importância na fabricação de novos dispositivos óticos e Nano eletrônicos. Dispositivos finos e de baixo custo necessitam temperaturas em torno de 800 graus celsius, o que é um problema para aplicações mencionadas acima. Nesta tese, nós propusemos uma nova rota usando APCVD para crescer monocamadas de MoS2 a 550 graus celsius, usando sódio como catalisador. Nós produzimos monocristais e poli cristais controlando a razão de precursores NaNO3/MoO3 e tempo de crescimento. Usando cálculos de primeiros princípios, mostramos que o sódio atua como centro de nucleação para o processo de síntese. A razão de precursores é crucial para diminuir a energia de formação e a temperatura de síntese. Cálculos de primeiros princípios e experimentos concordam que uma razão ideal é em torno de 0.3, proporcionando uma queda de 250 graus celsius na temperatura de crescimento. Nós investigamos as amostras crescidas por APCVD usando espectroscopia de fotoelétrons induzidos por raios-X, microscopia de força atômica, espectroscopia Raman, fotoluminescência e mediadas de transporte. Dicalcogenetos de metais de transição (TMD) dispostos em poucas camadas permitem-nos criar materiais e estudar novos fenômenos físicos. A sequência de empilhamento dos TMDs pode modificar suas propriedades opticas e elétricas. Também sintetizamos poucas camadas de MoS2 e WS2 usando APCVD. Duas e três camadas de WS2, MoS2 e suas heteroestruturas verticais foram caracterizadas através de geração de segundo harmônico (SHG). SHG mostra que as bicamadas crescidas com ângulos de rotação relativos de 0 grau e 60 graus possuem diferentes fases de empilhamento. O SHG do empilhamento bicamada com ângulo relativo de 0 graus aumentos, enquanto para amostras com empilhamento de 60 graus foi zerado. Este comportamento do SHG sugere que duas camadas de MoS2 ou WS2, quando empilhados a 0 graus não possuem simetria de inversão para 3R(AB) entre as camadas inferiores e superiores, enquanto as camadas de 60 graus possuem simetria de inversão (centrossimétricas) e possuem empilhamento na forma 2H(AA). Finalmente, dispositivos foram fabricados em amostras de boa qualidade para a investigação de sua performance elétrica. Os dispositivos mostram comportamento típico tipo-n e sua mobilidade foi estimada a partir das curvas de transporte. A dependência dos modos Raman das nossas amostras de heteroestruturas também foi estudada. Aplicando uma tensão nos dispositivos, o modo A1 mostrou um desvio para o azul e um novo modo surge em 410 cm-1, atribuídos defeitos (D) no cristal. / [en] The aim of this work was to develop reliable and repeatable methods for growing high-quality monolayer MoS2, WS2, and their vertical heterostructure by atmospheric pressure chemical vapor deposition (APCVD) technique. The monolayer of these materials have vital importance in the fabrication of new optical and nanoelectronic devices. Thin and low-cost devices have increased the demand for new synthesis processes. Usually, the synthesis requires temperatures around 800 Celsius degrees, which is an issue for applications mentioned above. In this thesis, we propose a new route using the APCVD technique to grow monolayers of MoS2 at 550 Celsius degrees mediated by sodium as a catalyst. We have produced single crystals and polycrystals by controlling the NaNO3/MoO3 precursor s ratio and growth time. Using first-principles calculations, we find out that sodium is the nucleation site of the growth process. The precursor s ratio is crucial to decrease the energy formation and the synthesis temperature. Firstprinciples calculations and experiments agree with the ideal precursor s rate of 0.3 and with the decrease of the synthesis temperature of 250 Celsius degrees. We investigated the CVD grown sample with X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, photoluminescence spectroscopy, and transport experiments. Few layers of TMDs allow us to create new materials and find new physical phenomena. The stacking sequence in few-layer TMDs can significantly impact on their electrical and optical properties.We also synthesized few layers of MoS2 and WS2 via APCVD. Two and three layers of MoS2, WS2, and their vertical heterostructures were characterized by second harmonic generation (SHG). The SHG shows that the layers in bilayers grow with 0 degrees or 60 degrees has different phase stacking. The SHG from 0 degrees stacked bilayer has increased when compared to monolayer, while the generated signal from bilayer with 60 degrees stacking is zero. This behavior of SHG suggests that the two layers of MoS2 or WS2 when stacked at 0 degrees have no inversion symmetry to 3R(AB) phase stacking between the top layer and the bottom layer. While when stacked with 60 degrees has inversion symmetry (Centrosymmetric) and have 2H(AA0) phase stacking. Finally, the devices were fabricated on good quality samples to investigate their electrical performance. The fabricated devices show typical n-type behavior and mobility was estimated by measuring transport curves. The dependence of Raman modes of our heterostructure device with electron doping was also studied. By applying a voltage across our device the A1 mode shows blueshift and a new mode emerges at ~ 410 cm-1, which is attributed to the defects (D) in the crystal.

Page generated in 0.0491 seconds