• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 89
  • 24
  • 18
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 389
  • 389
  • 97
  • 95
  • 88
  • 87
  • 63
  • 47
  • 47
  • 42
  • 38
  • 37
  • 37
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Vertical annular gas-liquid two-phase flow in large diameter pipes

Aliyu, A. M. January 2015 (has links)
Gas-liquid annular two phase flow in pipes is important in the oil and gas, nuclear and the process industries. It has been identified as one of the most frequently encountered flow regimes and many models (empirical and theoretical) for the film flow and droplet behaviour for example have been developed since the 1950s. However, the behaviour in large pipes (those with diameter greater than 100 mm) has not been fully explored. As a result, the two- phase flow characteristics, data, and models specifically for such pipes are scarce or non-existent such that those from smaller pipes are extrapolated for use in design and operation. Many authors have cautioned against this approach since multiphase pipe flow behaviour is different between small and large pipes. For instance the typical slug flows seem not to occur in vertical upwards flows when the pipe diameter exceeds 100 mm. It is therefore imperative that theoretical models and empirical correlations for such large diameter pipes are specifically developed.
242

[en] ANALYSIS OF GAS BUBBLE FLOW THROUGH A VISCOPLASTIC FLUID. / [pt] ANÁLISE DO DESLOCAMENTO DE BOLHAS DE GÁS EM FLUIDO VISCOPLÁSTICO

CRISTIANA DUARTE RANGEL DE ABREU 07 March 2017 (has links)
[pt] O escoamento de bolhas de gás em fluidos não-newtonianos é muito importante em diversas aplicações, tais como biorreatores, processamento de alimentos e operações de perfuração e cimentação de poços de petróleo, contudo poucos estudos abordam este tema. No presente trabalho é analisado o escoamento ascendente de bolhas de gás em fluido viscoplástico, modelado aqui como fluido Herschel-Bulkley. Utilizou-se uma abordagem bidimensional, aproximada por placas paralela. O escoamento multifásico foi numericamente simulado fazendo uso do método de volumes finitos VOF (volume of fluid), o qual resolve as equações de conservação de massa e momento aclopado a uma equação para a fração volumétrica dos fluidos. A influência de fatores tais como tensão limite de escoamento, dimensão da bolha, número de bolhas e distância entre as bolhas escoando em um fluido viscoplástico foram investigadas. Os resultados indicaram que a tensão limite de escoamento tem grande impacto na velocidade de deslocamento da bolha. No caso de mais de uma bolha escoando foi também observado que o deslocamento de uma bolha altera a velocidade de ascenção das outras, fazendo com que elas se unam, e a medida em que a distância entre as bolhas aumenta a interferência é eliminada e as mesmas escoam como bolhas individuais. Além disso, foi verificado que, dependendo do tamanho da bolha escoando, a parede interfere na sua velocidade de ascenção. Por fim foi analisada a mudança no formato da bolha, podendo-se observar que em número de Reynolds menores a mesma apresenta um formato esférico e a medida em que este parâmetro aumenta, a bolha vai se deformando e adquire uma forma elipsoidal. Os resultados qualitativos do presente estudo numérico foram comparados com alguns trabalhos experimentais encontrados na literatura e corresponderam relativamente bem. / [en] The gas bubble displacement in non-Newtonian fluids is important in many applications, including bioreactors, food processing and drilling and cementing of oil wells however a few studies have investigated this issue. The motion of gas bubbles in a viscoplastic fluid, modeled as a Herschel-Bulkley fluid, is analysed in the present work. A bidimensional approach was used, approximated by parallel plates. The multiphase flow was numerically simulated using the finite volume technique VOF (volume of fluid), which solves the conservation equations of mass and momentum coupled to an equation for the volume fraction of the fluids. Is was investigated the influence of factors such as fluid yield stress, bubble size, number of bubbles rising in the viscoplastic fluid and also the distance between them. The results indicated that the yield stress has great impact on the bubble rising velocity. In the case of multiple bubbles flowing it was also observed that the displacement of one bubble influences the rising velocity of the others, causing them to join together. As the distance between the bubbles increase the interference is eliminated and the bubbles flow separately. Furthermore, it was found that there was an wall interference depending on the size of the bubble. Lastly, it was analysed the change in the shape of the bubble. It could be observed that for lower Reynolds number the bubbles presented an spherical shape and as this parameter increases it turns into an elipsoidal shape. The qualitative results of the present study agreed relatively well with experimental works found in the literature.
243

Detailed analyses and numerical modeling of a new multi-staged fluidized-bed gasifier

Laugwitz, Alexander 10 January 2018 (has links) (PDF)
In der vorliegenden Arbeit werden verschiedene Simulationsansätze angewandt um die Hydrodynamik in einem neu entwickelten Wirbelschichtvergaser zu untersuchen. Die Ansätze umfassen a) entdimensionalisierter Ähnlichkeitskennzahlen und empirischer Gleichungen, b) 1D Simulationen mittels ASPEN Plus®, c) 3D CFD Simulationen mittels Ansys Fluent® zur detaillierten Abbildung der zu erwartenden Hydrodynamik. Vor- und Nachteile der jeweiligen Ansätze sowie Klassen von ermittelbaren Simulationsdaten werden diskutiert. Ein Schwerpunkt der Arbeit liegt in der Identifizierung geeigneter Experimente aus der Literatur, auf Basis von Ähnlichkeitskennzahlen, um die Simulationen zu validieren. Die Vergasersimulationen zeigen, dass sich erwartungsgemäß ein aus hydrodynamischer Sicht gestufter Prozess ausbildet. Die entstehenden Zonen lassen sich als Festbett, blasenbildende Wirbelschicht, Jet-Wirbelschicht mit Rezirkulationszelle und strähnenbildende, zirkulierende Wirbelschicht identifizieren und entsprechen demnach dem Verfahrensanspruch.
244

Modelling of two-phase flow in porous media with volume-of-fluid method / Modélisation de l'écoulement diphasique en milieu poreux par méthode volume de fluide

Lagree, Bertrand 17 September 2014 (has links)
La compréhension des écoulements multiphasiques en milieu poreux revêt une importance capitale dans de nombreuses applications industrielles et environnementales, à des échelles spatiales et temporelles variées. Par conséquent, la présente étude propose une modélisation des écoulements multiphasiques en milieu poreux par le biais de la méthode Volume de Fluide, et présente des simulations de digitations de Saffman-Taylor, motivées par l'analyse d'expériences de balayage dans des blocs de grès de Bentheimer quasi bidimensionnels initialement saturés en huile extra-lourde par de l'eau. Le code Gerris, permettant des calculs parallèles efficaces à l'aide d'un maillage de type octree, est utilisé. Des tests de précision et de rapidité de calcul sont réalisés à l'aide de divers niveaux de raffinement, ainsi qu'une comparaison avec des simulations de référence dans la littérature. Des simulations 3D dans des milieux réels numérisés sont réalisés avec des résultats encourageants. Même s'il n'est pas encore possible d'atteindre des nombres capillaires réalistes, des écoulements dans des domaines cubiques de 1 mm de côté sont simulés, avec un temps de calcul raisonnable. Des simulations 2D de digitations visqueuses avec injection centrale ou latérale sont également présentées, basées sur la loi de Darcy. L'aspect fractal des digitations est étudié aussi bien à l'aide de la dimension fractale que de la variation de l'aire des motifs obtenus par rapport à leur périmètre. Enfin, des balayages à l'aide de polymères suivant des balayages à l'eau dans un processus en deux temps sont simulés à partir d'une modélisation darcéenne. / Understanding multiphase flow in porous media is of tremendous importance for many industrial and environmental applications at various spatial and temporal scales. The present study consequently focuses on modelling multiphase flows by the Volume-of-Fluid method in porous media and shows simulations of Saffman-Taylor fingering motivated by the analysis of waterflooding experiments of extra-heavy oils in quasi-2D square slab geometries of Bentheimer sandstone. The Gerris code which allows efficient parallel computations with octree mesh refinement is used. It is tested for accuracy and computational speed using several levels of refinement and comparing to reference simulations in the literature. Simulations of real rocks are realised in three dimensions with very promising results. Though it is not yet possible to attain realistic capillary numbers, it is possible to simulate flows in domains of physical size up to 1 mm3 in reasonable CPU time. 2D simulations of viscous fingering with both central and lateral injection are also presented in this study, based on Darcy's law. The fractal aspect of this fingering is studied by considering both its fractal dimension and the variation of the area of the resulting pattern with respect to its arclength. Finally, polymer flooding following waterflooding in a two-step process is simulated with Darcy modelling.
245

Image based characterisation of structural heterogeneity within clastic reservoir analogues

Seers, Thomas Daniel January 2015 (has links)
The presence of subseismic scale faulting within high porosity sandstone reservoirs and aquifers represents a significant source of uncertainty for activities such as hydrocarbon production and the geologic sequestration of carbon dioxide. The inability to resolve geometrical properties of these smaller scale faults, such as size, connectivity and intensity, using conventional subsurface datasets (i.e. seismic reflection tomography, wireline log and core), leads to ambiguous representations within reservoir models and simulators. In addition, more fundamental questions still remain over the role of cataclastic faults in the trapping and transfer of mobile geofluids within the subsurface, particularly when two or more immiscible fluid phases are present, as is the case during hydrocarbon accumulation, waterflood operations and CO2 injection. By harnessing recent developments in 3D digital surface and volume imaging, this study addresses uncertainties pertaining to the geometrical and petrophysical properties of subseismic scale faults within porous sandstone reservoirs. A novel structural feature extraction and modelling framework is developed, which facilitates the restoration of fault and fracture architecture from digital rock surface models. This framework has been used to derive volumetric fault abundance and connectivity from a normal sense array of cataclastic shear bands developed within high porosity sandstones of the Vale of Eden Basin, UK. These spatially resolved measures of discontinuity abundance provide the basis for the geostatistical extrapolation of fracture/fault intensity into reservoir modelling grids, which promises the introduction of a much higher degree of geological realism into discrete fracture network models than can currently be achieved through purely stochastic methods. Moreover, by establishing spatial correspondences between volumetric faulting intensity and larger scale features of deformation observed at the study area (cataclastic shear zones), the work demonstrates the potential to relate reservoir equivalent measures of fault or fracture abundance obtained from outcrop to seismically resolvable structures within the subsurface, aiding the prediction of reservoir structure from oilfield datasets. In addition to the derivation of continuum scale properties of sub-seismic scale fault networks, a further investigation into the pore-scale controls which govern the transfer of fluids within cataclised sandstones has been conducted. Through X-ray tomographic imaging of experimental core flood (scCO2-brine primary drainage) through a cataclastic shear band bearing sandstone, insights into the influence that variations in fault structure exert over the intra-fault drainage pathway of an invading non-wetting fluid have been gained. Drainage across the fault occurs as a highly non-uniform and non-linear process, which calls into question the practice of using continuum methods to model cross fault flow. This work has also provided an improved understanding of the role that high capillary entry pressure cataclised regions play in modifying pore-fluid displacement processes within the surrounding matrix continuum. In particular, the high sweep efficiency and enhanced non-wetting phase pore-wall contact relating to elevated phase pressure observed during drainage points towards favourable conditions for wettability alteration within cataclised sandstones. This is likely to negatively impact upon the effectiveness of oil recovery and CO2 sequestration operations within equivalent reservoir and aquifer settings.
246

Simulação numérica de roll waves em canais fechados / Roll waves numerical simulation in closed channels

Gaspari, Eduardo Ferreira 27 February 2013 (has links)
Orientador: Antonio Carlos Bannwart / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências / Made available in DSpace on 2018-08-22T09:34:42Z (GMT). No. of bitstreams: 1 Gaspari_EduardoFerreira_D.pdf: 3211545 bytes, checksum: 80820e359cf9df0a39b228d34978524f (MD5) Previous issue date: 2013 / Resumo: Utilizando um método numérico especializado em problemas hiperbólicos chamado Riemann Solver, é feito um estudo para avaliar o processo de evolução de roll waves em canais fechados. Todo o estudo se baseia em fenômenos de propagação de ondas hiperbólicas do tipo ondas de gravidade. Foi utilizado um modelo unidimensional para representar a dinâmica das roll waves. Inicialmente foi feita uma análise das velocidades características envolvidas, a qual indicou, para o arranjo estratificado, um fraco acoplamento entre os fenômenos de propagação de onda mais relacionados com a compressibilidade dos fluidos e os fenômenos de propagação de ondas mais relacionados com a variação hidrostática na seção transversal do canal. Os resultados desta análise foram utilizados para justificar uma modelagem de roll wave considerando os fluidos como incompressíveis. Testes numéricos também foram feitos, demonstrando que a hipótese de fluidos incompressíveis não leva a uma perda de qualidade na modelagem de ondas de gravidade em canais fechados. Foi observada a fragilidade da hipótese de perfil hidrostático de pressão nos modelos de dois fluidos e é proposta uma modificação para este perfil de pressão considerando os efeitos dinâmicos devido à forma rugosa da interface em um escoamento estratificado instável. São feitas comparações com resultados experimentais de literatura para o filme de líquido em regime laminar e foram feitos experimentos para o filme de líquido em regime turbulento. As comparações entre as simulações e os resultados experimentais demonstrando que o modelo proposto é consistente / Abstract: Using a Riemann Solver numerical method, a study to evaluate the process of evolution of roll waves in closed channels was implemented. The whole study is based on the phenomena of hyperbolic gravity waves propagation. It was used a one-dimensional model to represent the dynamics of roll waves. Initially an analysis of the propagation wave velocities involved on to the stratified flow was done, a weak coupling between the wave propagation phenomena more closely related to fluid compressibility and wave propagation phenomena more closely related to the change in the void fraction, due the gravity waves, was verified. The results of this analysis were used to justify a roll wave modeling considering the fluids as incompressible. Numerical tests were also performed, showing that the hypothesis of incompressible fluids does not lead to a loss of quality in the modeling of gravity waves in closed channels. It was observed a fragility of the hydrostatic pressure profile assumption to modeling unstable stratified flow. It was proposed a modification to this pressure profile, considering the dynamic effects of the roughness interface. Comparisons were made with experimental results from the literature for the liquid film in laminar and experiments made for the film of liquid in turbulent flow. This comparison between simulations and experimental results demonstrate that the proposed model is consistent / Doutorado / Explotação / Doutor em Ciências e Engenharia de Petróleo
247

Modelagem e simulação fluidodinâmica de sistemas gás-líquido-sólido em leitos de lama usando CFD : síntese de metanol / Fluid dynamic modelling and simulation of gas-liquid-solid slurry systems using CFD : methanol synthesis

Silva Júnior, João Lameu da, 1986- 17 July 2015 (has links)
Orientador: Milton Mori / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-27T18:43:17Z (GMT). No. of bitstreams: 1 SilvaJunior_JoaoLameuda_D.pdf: 4304757 bytes, checksum: 87ed8cbf9a1722317132a9054fbfd782 (MD5) Previous issue date: 2015 / Resumo: Nesta pesquisa investigou-se numericamente as características fluidodinâmicas de colunas de bolhas em leito de lama operando sob diferentes regimes de escoamento e concentrações de sólido particulado empregando a técnica CFD. A síntese de metanol em duas etapas (carbonilação e hidrogenação catalítica) também foi estudada numericamente em um reator em leito de lama. Na análise fluidodinâmica, o papel das interações entre as diferentes fases, a turbulência induzida pelas bolhas e o balanço populacional destas foram estudados. As predições das simulações foram validadas com dados experimentais obtidos da literatura. Na análise fluidodinâmica e cinética, os fenômenos de transferência de massa e de calor entre fases e as taxas das reações químicas foram avaliadas e os resultados foram comparados a dados experimentais de composição da fase líquida e de conversão do gás de síntese obtidos da literatura. As interações disperso-contínuo (arrastes gás-líquido e sólido-líquido) mostraram ser fundamentais na modelagem correta de sistemas trifásicos. As interações entre as fases dispersas (arraste gás-sólido e interação sólido-sólido) apresentaram influências significativas sob certas condições operacionais. O modelo de balanço populacional não-homogêneo promoveu bons resultados para a condição operacional estudada. A turbulência induzida pelas bolhas também demonstrou ser essencial na modelagem correta do escoamento de sistemas gás-líquido-sólido. Os modelos fluidodinâmicos com expressões cinéticas do tipo Langmuir-Hinshelwood para a síntese de metanol representaram bem o sistema reativo estudado. Em síntese, os modelos CFD propostos e simulados foram capazes de predizer o comportamento do escoamento de colunas de bolhas em leito de lama nas condições estudadas / Abstract: In the present work, numerical simulations using CFD were performed to study the fluid dynamic characteristics of a slurry bubble column operating under different flow regimes and particulate solid concentrations. The two-step methanol synthesis (carbonylation and catalytic hydrogenolysis) was also numerically investigated in a slurry bubble column reactor. In the fluid dynamic analysis, the role of phase interactions, bubble induced turbulence and population balance for bubbles were evaluated. The simulations were validated with experimental data from literature. In the fluid dynamic with chemical reactions analysis, mass and heat transfer between phases and reaction rates were evaluated and the results were compared with experimental data of liquid compositions and syngas conversion. Dispersed-continuous interactions (gas-liquid and solid-liquid drag forces) showed to be fundamental to model correctly three-phase systems. Dispersed-dispersed interactions (gas-solid drag force and solid-solid interactions) exhibited expressive influences under certain operating conditions. The inhomogeneous population balance model promoted good results for the operating conditions studied. Bubble induced turbulence is also an essential feature in the modelling of gas-liquid-solid systems. The fluid dynamic model with Langmuir-Hinshelwood-type rate expressions for the methanol synthesis represented well the reaction system studied. The proposed CFD models were capable to predict flow behaviour of slurry systems in the investigated operating conditions / Doutorado / Engenharia Química / Doutor em Engenharia Química
248

Computational Methods for Simulations of Multiphase Compressible Flows for Atomization Applications

January 2020 (has links)
abstract: Compressible fluid flows involving multiple physical states of matter occur in both nature and technical applications such as underwater explosions and implosions, cavitation-induced bubble collapse in naval applications and Richtmyer-Meshkov type instabilities in inertial confinement fusion. Of particular interest is the atomization of fuels that enable shock-induced mixing of fuel and oxidizer in supersonic combustors. Due to low residence times and varying length scales, providing insight through physical experiments is both technically challenging and sometimes unfeasible. Numerical simulations can help provide detailed insight and aid in the engineering design of devices that can harness these physical phenomena. In this research, computational methods were developed to accurately simulate phase interfaces in compressible fluid flows with a focus on targeting primary atomization. Novel numerical methods which treat the phase interface as a discontinuity, and as a smeared region were developed using low-dissipation, high-order schemes. The resulting methods account for the effects of compressibility, surface tension and viscosity. To aid with the varying length scales and high-resolution requirements found in atomization applications, an adaptive mesh refinement (AMR) framework is used to provide high-resolution only in regions of interest. The developed methods were verified with test cases involving strong shocks, high density ratios, surface tension effects and jumps in the equations of state, in one-, two- and three dimensions, obtaining good agreement with theoretical and experimental results. An application case of the primary atomization of a liquid jet injected into a Mach 2 supersonic crossflow of air is performed with the methods developed. / Dissertation/Thesis / Doctoral Dissertation Aerospace Engineering 2020
249

Částice plovoucí na volné hladině vln / Floating particles at water waves free surface

Kupčíková, Laura January 2021 (has links)
This master’s thesis deals with analytical and numerical description of surface gravity waves. Wave theories and their influence on water particle movement is described in the theoretical part of the thesis. Water particle moves in the same direction as wave propagation and this phenomenon is called Stokes drift. It has a significant influence on sediment transport and floating particle movement at water free surface. The experimental part consists of wave profile monitoring and water particle tracking in a wave flume with wave generator and beach model. The experimental results are compared with numerical simulation performed in the ANSYS Fluent software. Finally, the wave profiles obtained from simulation are compared with experimental wave profiles extracted by digital image processing.
250

NUMERICAL SIMULATION OF STEEL DESULFURIZATION PROCESS IN THE GAS-STIRRED LADLE

Congshan Mao (8262324) 05 May 2022 (has links)
<p>  </p> <p>A three-dimensional isothermal multiphase flow transient CFD model simulation of the comprehensive chemical processes, including desulfurization and reoxidation in a gas-stirred ladle during the secondary refinement process, has been investigated. The multiphase interactions and turbulence flow among steel, slag, and gas inside a ladle are simulated based VOF multiphase model and discrete model (DPM) in Fluent commercial software. A widely used theory describing the desulfurization and reoxidation processes, (Al2O3) -[O] equilibrium theory, is introduced into the model. The compositions of both steel and slag are monitored, and the mass fractions of each species in steel and slag are compared with the industrial data. There are two main stages for this study.</p> <p>In the first stage, the CFD model of an 80-ton ladle is developed to simulate both the flow field and reaction rates based on literature work. Then the predicated species contents are validated with industrial measurement, which proves the accuracy of the CFD model.</p> <p>The validated CFD model is applied to a Nucor Decatur two plugs bottom injection ladle in the second stage. There are two different plug separation angle scenarios: 90° and 180°, investigated in this part. Three argon gas flow rate combinations ((5/5 SCFM, 5/20 SCFM, and 20/20 SCFM) were employed. The slag eye size was validated with plant measurement. The results show that the desulfurization rate and reoxidation rate are promoted with a higher argon injection rate. When the argon injection rate is fixed, a larger separation angle improves the reaction rates.</p>

Page generated in 0.0517 seconds