Spelling suggestions: "subject:"[een] SOLAR CELL"" "subject:"[enn] SOLAR CELL""
151 |
Adsorption of molecular thin films on metal and metal oxide surfacesBesharat, Zahra January 2016 (has links)
Metal and metal oxides are widely used in industry, and to optimize their performance their surfaces are commonly functionalized by the formation of thin films. Self-assembled monolayers (SAMs) are deposited on metals or metal oxides either from solution or by gas deposition. Thiols with polar terminal groups are utilized for creating the responsive surfaces which can interact electrostatically with other adsorbates. Surface charge effects wetting and adhesion, and many other surface properties. Polar terminal groups in thiols could be used to modify these factors. Mixed SAMs can provide more flexible surfaces, and could change the resulting surface properties under the influence of factors such as pH, temperature, and photo-illumination. Therefore, in order to control these phenomena by mixed polar-terminated thiols, it is necessary to understand the composition and conformation of the mixed SAMs and their response to these factors. In this work, mixtures of thiols with carboxylic and amino terminal groups were studied. Carboxylic and amino terminal groups of thiol interact with each other via hydrogen bonding in solution and form a complex. Complexes adsorb to the surface in non-conventional orientations. Unmixed SAMs from each type, either carboxylic terminated thiols or amino terminated thiols are in standing up orientation while SAMs from complexes are in an axially in-plane orientation. Selenol is an alternative to replace thiols for particular applications such as contact with biological matter which has a better compatibility with selenol than sulfur. However, the Se-C bond is weaker than the S-C bond which limits the application of selenol. Understanding the selenol adsorption mechanism on gold surfaces could shed some light on Se-C cleavage and so is investigated in this work. Se-C cleavage happens in the low coverage areas on the step since atoms at steps have lower coordination making them more reactive than atoms on the terraces. Another area where the self-assembly of molecules is of importance is for dye sensitized solar cells, which are based on the adsorption of the dye onto metal oxides surfaces such as TiO2.The interface between the SAM of dye and the substrate is an important factor to consider when designing dyes and surfaces in dye sensitized solar cells (DSSCs). The quality of the self-assembled monolayers of the dye on the TiO2 surface has a critical influence on the efficiency of the DSSCs. Creation of just a monolayer of dye on the surface could lead to an efficient current of photo-excited electrons to the TiO2 and degeneration of the dye by redox. This work, T-PAC dye showed island growth with some ad-layer that is not in contact with the surface, whereas the MP13 dye adsorption is laminar growth. Cuprite (Cu2O) is the initial and most common corrosion product for copper under atmospheric conditions. Copper could be a good replacement for noble metal as catalysts for methanol dehydrogenation. Knowledge about the structure of Cu2O(100) and Cu2O(111) surfaces could be used to obtain a deeper understanding of methanol dehydrogenation mechanisms with respect to adsorption sites on the surfaces. In this work, a detailed study was done of Cu2O(100) surface which revealed the possible surface structures as the result of different preparation conditions. Studies of the structure of Cu2O(100) and Cu2O(111) surfaces show that Cu2O(100) has a comparatively stable surface and reduces surface reactivity. As a consequence, dehydrogenation of methanol is more efficient on the Cu2O(111) surface. The hydrogen produced from methanol dehydrogenation is stored in oxygen adatom sites on both surfaces. / <p>QC 20161107</p>
|
152 |
Annealing of Cu2ZnSn(S,Se)4 Thin Films : A Study of Secondary Compounds and Their Effects on Solar CellsRen, Yi January 2017 (has links)
Kesterite Cu2ZnSnS4 (CZTS) is interesting as a sustainable photovoltaic technology due to its earth-abundant elements and suitable semiconducting properties. To date, a record efficiency of 12.6% has been achieved but further improvements are required to reach high efficiency for industrial implementation. Among the limiting issues is the understanding of the annealing process, which is crucial in promoting high material quality. In particular, the knowledge of the effects of segregated secondary compounds on solar cell performance is lacking. In contrast to formation of ZnS particles throughout CZTS film, it is notable that SnS forms and usually segregates on the CZTS top and rear surfaces. The influence of SnS on CZTS solar cells was studied by electron beam induced current measurements. It is found that SnS presence on the CZTS surfacecan introduce “dead area”, whereas it seems beneficial for solar cell current when accumulates on the CZTS rear. For SnS passivation and from investigation of the passivation effect from an Al2O3 thin layer at the CZTS rear, improvement in overall device performance could not be demonstrated, due to either poor CZTS bulk or non-optimal device structure. The limitation in CZTS bulk quality was shown from a thickness study where carrier collection saturated already about 700-1000 nm CZTS thickness. Formation of SnS alongside CZTS implies the anneal is limited by a deficient sulfur partial pressure (PS2). By looking into Sn-S phase transformations in SnS2 films after annealing, we find that PS2 drops rapidly over the annealing time, which could be well-correlated to a series of changes in CZTS material quality including secondary phase formations and defect modifications. It is shown that annealing CZTS under sufficiently high PS2 is critical for CZTS solar cells with high open circuit voltage (upto 783mV was reached), possibly due to the defect modification. Besides SnS, it is observed that NaxS compounds are also readily formed on CZTS surfaces, due to Na diffusion from the glass substrate during annealing. NaxS negatively affects the formation of the CdS/CZTS interface during chemical bath deposition. It can be removed by an oxidation process or wet chemical etching.
|
153 |
Green Organic Solar Cells from a Water Soluble Polymer and Nancrystalline TiO2Qiao, Qiquan 01 January 2006 (has links)
The cost of the present generation of inorganic silicon solar cells is very high and further breakthroughs in cost and efficiency using traditional materials are becoming less and less likely after over 50 years of development. Next generation organic solar cells offer a solution to the limitations of silicon through the vision of low-cost, liquid-based, large area fabrication technology based on polymer and nanomaterials at room temperature. However, most polymers used in solar cells are dissolved in organic solvents such as xylene, toluene, chloroform, and chlorobenzene. Such solvents are harmful to people and environments, leading to higher costs due to complicated waste disposal processing. This is in conflict with the low cost, green, and renewable energy for which we are aiming. To realize a green organic solar cell, a novel solar cell has been created using an environmentally friendly water-soluble thiophene polymer [(Sodium poly[2-(3-thienyl)-ethoxy-4-butylsulfonate])] (PTEBS) and nanocrystalline TiO2. This novel system has shown great potential in photovoltaics the work has garnered the attention of the international community.In our innovative solar cells, the water-soluble polythiophene (PTEBS) is used as electron donor. Nanoparticle TiO2 acts as electron acceptor. PTEBS/TiO2 solar cells with various structures including bilayer heterojunctions, bulk heterojunctions and a hybrid of bilayer and bulk heterojunctions have been developed and explored. These results are comparable to the best polymer/metal-oxide solar cells reported by other groups using organic solvents.In summary, this is the first time that green solar cells have been fabricated from environmentally friendly water-soluble polymers. By using water as the solvent and utilizing liquid-based processing, the cost of the energy generated by this type of solar cell will be further lowered. In addition, the flexible polymer offers the ease of fabrication and integration into different devices.
|
154 |
Diagnostické metody plošného rozložení defektů solárních článků / Diagnostic Method Used to a Location of Solar Cells DefectsJandová, Kristýna January 2009 (has links)
This doctoral thesis deals with analysis of existing area defect detection methods in solar cells and with concept of its innovation and of the development of faster detection method. Results of measurement is analyzing in practical and theoretical part. The most important is LBIC (Light Beam Induced Current) method innovated of different wavelength light source usage and Electroluminescence method. On the bases of this knowledge is created Fast LBIC method and then is created catalog of defects in monocrystalline silicon solar cells.
|
155 |
Light trapping substrates and electrodes for flexible organic photovoltaicsPark, Yoonseok 28 February 2017 (has links) (PDF)
Organic solar cells are one of the most promising candidates for future solar power generation. They are thin and lightweight with several additional advantages such as scalability, environmental sustainability and low cost for processing and installation. However, the low charge carrier mobility of the absorbing material for organic solar cells requires thin absorber layers, limiting photon harvesting and the overall power conversion efficiency. Several attempts, e.g., periodically patterned structures and scattering layers have been tried to enhance the absorption of thin-film solar cells as light trapping elements. However, much effort is required to introduce light trapping structures to conventional rigid metal oxide electrodes and glass substrate. For instance, almost 13 hours are required to fabricate micro structures of 1 m2 area on glass, in contrast, 1 minute on PET using a same laser set-up and an additional scattering layers are demanded for providing light trapping effects to solar cells.
In the last years, flexibility is emerging as the one of the major advantages of organic solar cells. To realize flexibility of solar cells, the classically used glass substrates and ITO electrodes are too brittle. Therefore, polymer materials are promising candidates to replace them as flexible electrodes and substrates. In this thesis, the highly transparent conducting polymer, PEDOT:PSS and PET equipped with an AlOx encapsulation layer are used as electrode and substrate, respectively. Besides the flexibility, additional light trapping elements, e.g. scattering particles, nano- and microstructures can be easily applied to the polymer materials since they have the potential for easier shaping and processing.
In this study, we apply different light trapping and in-coupling approaches to organic solar cells. First, PET substrates are structured with a direct laser interference patterning system, which is a powerful and scalable one-step technique for patterning polymers. Almost 80 % of the light is diffracted by these patterned PET substrates and thereby the light path in the absorption layer is increased. Optical display films, commercially developed to be used as back light units of liquid crystal displays are also examined as light trapping substrates and exhibit similar enhancement as patterned PET.
Moreover, since PEDOT:PSS is prepared by a solution-based process, TiO2 nanoparticles are added as light scattering elements to the PEDOT:PSS electrodes. Consequently, those electrodes provide a dual function as electrical contact and light trapping element. Finally, 2- or 3-dimensional nanostructures are printed by a nano-imprinting technique onto the surface of PEDOT:PSS with PDMS stamps. By controlling the temperature and the time of PEDOT:PSS during an annealing step, nanostructures are transferred from PDMS masks to PEDOT:PSS.
To evaluate the effects of light trapping for all above mentioned approaches, flexible organic solar cells are produced by vacuum evaporation using blends of DCV5T-Me and C60 as absorber layer. The substrates are optically characterized using UV-vis spectrometer and goniometer measurements. The topography of the samples is measured by atomic force microscopy, scanning microscopy and optical microscopy. Bending tests with various radii are performed to test the flexibility of the substrates.
In summary, light trapping effects are successfully implemented in the electrodes and substrates for OPVs, giving efficiency improvements of up to 16 %. The light trapping mechanisms in our approaches are extensively discussed in this thesis. / Organische Photovoltaik ist einer der vielversprechendsten Kandidaten für die zukünftige Solarstromgewinnung auf flexiblen Substraten. Um diese Flexibilität zu ermöglichen, sind herkömliche Glassubstrate mit ITO-Elektroden zu spröde. Ein vielversprechender Kandidat, um sowohl flexible Elektroden als auch flexible Substrate herzustellen, sind Polymere, da diese sehr biegsam und leicht zu verarbeiten sind. Deshalb wird in dieser Arbeit das hoch transparente, leitfähige Polymer PEDOT:PSS als Elektrode und PET (mit einer AlOx Verkapselungsschicht) als Substrat untersucht. Aufgrund der guten Prozessierbarkeit der Polymere konnten wir zusätzlich zu den eigentlichen Funktionen des Substrates und der Elektrode noch den Mechanismus des Lichteinfangs hinzufügen.
Zusätzlich zu ihrer Flexibilität haben organische Solarzellen noch weitere Vorteile: sie sind dünn, leicht, skalierbar und verursachen vergleichsweise geringe Kosten für Herstellung und Installation. Ein Nachteil organischer Solarzellen ist die vergleichsweise geringe Ladungsträgerbeweglichkeit der Absorbermaterialien, welche oft die Schichtdicke der Absorbermaterialien begrenzt. Dies hat weniger absorbierte Photonen, weniger Stromdichte und somit einen geringeren Wirkungsgrad zur Folge. In den letzten Jahren wurden periodisch strukturierte Substrate und streuende Schichten als Lichteinfangelemente eingesetzt, um den Wirkungsgrad organischer Solarzellen mit dünnen Absorberschichten zu erhöhen. Gestaltungsregeln für solche Lichteinfangelemente sind noch weitestgehend unbekannt. Im Rahmen dieser Arbeit strukturieren wir PET Substrate mit einem direkten Laserinterferenzsystem, welches ein leistungsfähiges, skalierbares Einschrittverfahren zur Polymerstrukturierung ist. Da PEDOT:PSS aus der Lösung prozessiert wird, können wir weiterhin Nanopartikel hinzufügen, die der Elektrode zusätzlich noch lichtstreuende Eigenschaften geben. Außerdem können 2- bzw. 3-dimensionale Nanostrukturen leicht mithilfe einer Stempeltechnik eingeprägt werden.
Um die Effekte des Lichteinfangs, welcher durch die oben genannten Methoden erzeugt wird, zu untersuchen, werden flexible organische Solarzellen mittels Vakuumverdampfung prozessiert. DCV5T-Me und C60 bilden dabei die photoaktive Schicht. Somit werden die Licht fangenden Eigenschaften dieser flexiblen Solarzellen ausgenutzt und ausführlich in der Arbeit diskutiert.
|
156 |
Investigation of stability, dynamics and scope of application of mycobacterial porin MspA: a highly versatile biomolecular resourcePerera, Jayaweeralage Ayomi Sheamilka January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Stefan H. Bossmann / Porin A from Mycobacterial smegmatis (MspA) is an octameric trans-membrane channel protein and is one of the most stable porins known to date. MspA has been successfully isolated and purified to obtain liquid extracts and crystals using a modified extraction procedure. A full analytical assessment has been carried out to authenticate its’ structure, including gel electrophoresis, spectroscopy (fluorescence, UV, FTIR, NMR), HPLC, Bradford protein assay, dynamic light scattering and X-ray crystallography. Nanoscopic vesicle formation of MspA molecules in aqueous media has been thoughroughly investigated. Temperature dependent dynamic light scattering experiments reveal that size of such vesicles is dependent on temperature but is independent of ionic strength of the medium. Zeta potential measurements reveal a steady build up of positive charge on the vesicle surface with increasing temperature.
For the first time, wild type (WT) MspA has been utilized as a channel forming agent. This phenomenon has future potential in DNA sequencing and the development of antimycobacterial drugs. Channel activity of WT MspA and mutant A96C MspA has been investigated and has shown to form stable channels across DPhPC lipid bilayers. Blocking of the channel current via external molecules (i.e. channel blocking) is an extremely important process, which helps to evaluate the biosensor ability of the pore. In this regard, two Ruthenium based compounds, Ru(QP-C2)38+ (i.e. RuC2) and Ru(bpy)32+have been successfully employed as channel blocking agents. Both compounds show evidence for channel blocking of WT MspA. However, these results are not reproducible.
Three dimensional aggregation behavior of RuC2-MspA vesicles have been thoughroughly investigated. It is evident that addition of RuC2 significantly increases vesicle size and polydispersity of MspA aggregates in solution. The results provide explanations onto the lack of channel blocking ability of MspA by RuC2.
Development of a ‘greener’ dye sensitized solar cell with the use of MspA as an electron carrier is investigated for the first time. A series of Ru(II)-phenanthroline-based dyes have been synthesized as non-toxic dyes in this regard. Chemical binding between the dyes and MspA has been achieved successfully. Two types of solar cell prototypes, i.e. TiO2-based (Grätzel type) and FTO-based have been developed and tested. Significant current generation and conversion efficiencies have been achieved for both cell types. This marks the first development of a protein-based photovoltaic device, which has the potential to be developed as a new class of “hybrid soft solar cells”.
|
157 |
Integration of photosynthetic pigment-protein complexes in dye sensitized solar cells towards plasmonic-enhanced biophotovoltaicsYang, Yiqun January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Jun Li / Solar energy as a sustainable resource is a promising alternative to fossil fuels to solve the tremendous global energy crisis. Development of three generation of solar cells has promoted the best sunlight to electricity conversion efficiency above 40%. However, the most efficient solar cells rely on expensive nonsustainable raw materials in device fabrication. There is a trend to develop cost-effective biophotovoltaics that combines natural photosynthetic systems into artificial energy conversion devices such as dye sensitized solar cells (DSSCs). In this research, a model system employs natural extract light-harvesting complex II (LHCII) as a light-absorbing sensitizer to interface with semiconductive TiO₂ and plasmonic nanoparticles in DSSCs. The goal of this research is to understand the fundamental photon capture, energy transfer and charge separation processes of photosynthetic pigment-protein complexes along with improving biophotovoltaic performance based on this model system through tailoring engineering of TiO₂ nanostructures, attaching of the complexes, and incorporating plasmonic enhancement.
The first study reports a novel approach to linking the spectroscopic properties of nanostructured LHCII with the photovoltaic performance of LHCII-sensitized solar cells (LSSCs). The aggregation allowed reorganization between individual trimers which dramatically increased the photocurrent, correlating well with the formation of charge-transfer (CT) states observed by absorption and fluorescence spectroscopy. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days after LHCII being electrostatically immobilized on amine-functionalized TiO₂ surface.
The motivation of the second study is to get insights into the plasmonic effects on the nature of energy/charge transfer processes at the interface of photosynthetic protein complexes and artificial photovoltaic materials. Three types of core-shell (metal@TiO₂) plasmonic nanoparticles (PNPs) were conjugated with LHCII trimers to form hybrid systems and incorporated into a DSSC platform built on a unique open three-dimensional (3D) photoanode consisting of TiO₂ nanotrees. Enhanced photon harvesting capability, more efficient energy transfer and charge separation at the LHCII/TiO₂ interface were confirmed in the LHCII-PNP hybrids, as revealed by spectroscopic and photovoltaic measurements, demonstrating that interfacing photosynthesis systems with specific artificial materials is a promising approach for high-performance biosolar cells.
Furthermore, the final study reveals the mechanism of hot electron injection by employing a mesoporous core-shell (Au@TiO₂) network as a bridge material on a micro-gap electrode to conduct electricity under illumination and comparing the photoconductance to the photovolatic properties of the same material as photoanodes in DSSCs. Based on the correlation of the enhancements in photoconductance and photovoltaics, the contribution of hot electrons was deconvoluted from the plasmonic near-field effects.
|
158 |
Etude et intégration de matériaux avancés pour la passivation face arrière de cellules photovoltaïques minces / Investigation and integration of advanced materials for back passivation of thin solar cellsBounaas, Lotfi 30 June 2014 (has links)
L'objectif d'amélioration des performances de cellules solaires sur des substrats de silicium cristallin de plus en plus en minces (< 200 µm) est indispensable à la réduction des coûts du module et donc à l'essor du photovoltaïque à l'échelle mondiale. Cette thèse se propose de répondre à la problématique d'amincissement des plaquettes sur substrats monocristallins (Cz) de type p de grande surface (239 cm2 - 180 µm) par le développement d'une structure en face arrière capable de générer un rendement de conversion élevé tout en limitant le degré de complexité du procédé de fabrication de la cellule. La solution explorée est celle des cellules à face arrière passivée et contacts localisés et les schémas de passivation étudiés s'appuient sur l'utilisation d'empilements diélectriques à base d'oxydes de silicium (SiO2) et d'aluminium (Al2O3) couplés au nitrure de silicium (SiNx). Ces travaux ont pour objectif d'optimiser les propriétés de passivation des couches diélectriques tout autant que les briques technologiques nécessaires à leur intégration dans la structure de cellule finale (conditionnement de surface, ablation laser sélective, métallisation par sérigraphie). Le procédé de fabrication résultant a permis d'obtenir des cellules avec un rendement de conversion de 19.1% pour l'empilement SiO2/SiNx. Il est cependant démontré que les limitations des performances de cette structure peuvent être partiellement compensées en introduisant une couche d'alumine, permettant d'atteindre un rendement remarquable de 19.5% (+0.4% par rapport à une structure standard). / Improving the solar cell efficiency on thin wafers (< 200 µm) has become a must in the industry in order to reduce the module cost and enhance the photovoltaics field growth worldwide. This work addresses the issues regarding the thickness reduction of large monocrystalline p-type wafers (239 cm2 - 180 µm) by developing a back side architecture capable of increasing the efficiency while limiting the cell fabrication level of complexity. Thus back passivated and local contacts, also known as PERC-type, solar cells are investigated. Those include passivation schemes relying on the use of dielectric stacks based on silicon oxide (SiO2), aluminum oxide (Al2O3) both coupled with silicon nitride layers (SiNx). This PhD study attempts to carry out an optimization of the passivation properties as well as of the technological steps required for a proper integration in the final cell structure (surface preparation, selective laser ablation, screen-printing metallization). The resulting optimized process led to the fabrication of solar cells displaying an 19.1% conversion efficiency by using SiO2/SiNx layers. Nevertheless it was shown evidence that the limited electrical performances can be overcome by introducing an Al2O3 layer, eventually reaching a remarkable 19.5% efficiency. This represents an absolute gain efficiency of +0.4% compared to the standard full-area Al-BSF solar cell architecture.
|
159 |
Optimisation numérique de cellules solaires à très haut rendement à base d’InGaN / Numerical optimization of high-efficiency InGaN-based solar cellsAdaine, Abdoulwahab 06 July 2018 (has links)
L’alliage de Nitrure de Gallium et d’Indium (InGaN) est devenu au cours des dernières années un semi-conducteur important pour la réalisation de composants optoélectroniques, du fait de sa bande interdite modulable en fonction de la composition d’indium, entre 0.7 eV à 3.4 eV. Ceci permet l’absorption d’une grande partie du spectre solaire et fait de l’alliage InGaN un excellent candidat pour la réalisation de cellules solaires multijonctions à très haut rendement. Ce travail de thèse a permis une investigation approfondie sur les performances de différentes structures de cellules solaire à base d’InGaN. Il s’inscrit dans le cadre d’un projet visant à associer des méthodes d’optimisation mathématique multivariée à une démarche rigoureuse de simulation s’appuyant autant que possible sur des modèles et résultats expérimentaux. Il s’agit d’une nouvelle approche qui permet d’étudier les performances des cellules solaires en optimisant simultanément plusieurs paramètres (physiques et géométriques) de la cellule solaire. Nous avons étudié pour cette thèse, différentes structures de cellules solaires à simple jonction, notamment de nouvelles structures sans couche P et avons fait également l’étude d’une structure complexe à double jonction. Ces études nous ont permis d’évaluer les performances optimales que pourraient avoir les cellules à base d’InGaN et seront importantes pour la conception et l’élaboration future de cellules solaires InGaN à haut rendement / In recent years, Gallium Indium Nitride (InGaN) alloy has become a semiconductor of choice for the realization of optoelectronic devices, because of its wide spectral coverage, with a bandgap that can be modulated, by changing the indium composition, between 0.7 eV and 3.4 eV. This allows the absorption of a large part of the solar spectrumand makes the InGaN alloy an excellent candidate for the realization of high efficiency multi-junction solar cells. This thesis work led to a further investigation into the performance of different InGaN-based solar cell structures. It is part of a project aiming to associate mathematical optimization methods with a rigorous simulation process based as much as possible on models and experimental results. This is a new optimization approach that optimizes the performance of solar cells by simultaneously optimizing several parameters (physical and geometrical) of the solar cell. We have studied for this thesis, different structures of single junction solar cells, including new structures without P layer and we have also studied a complex structure with double junction. These studies allowed us to evaluate the optimal performance that InGaN-based solar cells can achieve for their design and future development
|
160 |
Development of a Simple and Cheap Equipment for monitoring the solar Irradiance on PV modules.Casanaba, Pablo January 2019 (has links)
Increased use of renewable energies that is taking place all over the world is having a very important impact on the photovoltaic solar energy industry. This means of obtaining electrical energy is one of the most promising ones nowadays, thanks to the fact that it is a technology of easy installation and maintenance. However, the number of hours that a photovoltaic system works at maximum power depends almost entirely on environmental conditions, mainly in terms of solar irradiance.Solar irradiance is a magnitude that measures the power released by sunlight per unit area; the higher it is, the more power the photovoltaic system will generate.Therefore, it is very important to measure this magnitude in order to obtain data that either can give information about which is the best place to install a photovoltaic system or expect the device performance.Unfortunately, sensors used nowadays to measure this magnitude are quite expensive. The most widely used are the so-called pyranometers, with an average cost of between 8000 SEK to 10000 SEK, and solar reference cells, which can be quite cheaper (1000 SEK), but also can be the most expensive devices on the market depending on the features they have (some reference cells cost 20000 SEK).In this thesis, a solar irradiance sensor based on the treatment of a current generated by a silicon photodiode has been designed, built and calibrated. The signal generated by the device is a voltage that has been obtained by means of a current-to-voltage converter amplifier stage. Once the construction of the circuit was completed, it was tested on the roof of Hall 45 located in the University of Gävle. The testing was carried out on 13, 14 and 15 May 2019, and it consisted in the comparison of the signal generated by the new device and the signals generated by a pyranometer and a solar cell.The result is a device priced at 200 SEK, which shows acceptable levels of accuracy during central daylight hours but shows a strong angular dependence on incident light during sunrise and sunset.
|
Page generated in 0.063 seconds