Spelling suggestions: "subject:"[een] SUBSIDENCE"" "subject:"[enn] SUBSIDENCE""
161 |
Hydrologic Factors Affecting Groundwater Management for the City of Tucson, ArizonaJohnson, R. B. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Assessment of the basic hydrologic and geologic parameters controlling the occurrence and availability of local groundwater is one of the first steps in formulating any comprehensive water management plan. Each of several parameters must be carefully evaluated both individually and in relation to the other factors which together describe the occurrence and movement of the subsurface water resources. These evaluations are fundamental to the legal and political decision- making framework within which the Water Utility must operate for both short and long-range water management planning. Recent changes in several hydrologic parameters have been observed throughout much of the groundwater reservoir tapped by numerous users in the Tucson Basin. Accelerated water level decline rates, decreasing production capacities of existing wells, increased hydrologic interference and increased demand for water are all having an impact on our water resource. These conditions must be evaluated before basin -wide groundwater management alternatives can be implemented.
|
162 |
Statické zajištění barokního kostela / Static provision of baroque churchKadlec, Jaroslav January 2012 (has links)
The master´s thesis solves a static provision of the Baroque church of Saint James in Městečko Trnávka. The church was built in 1752 in Baroque style on the place of the original Romanesque church. It is a single-nave building with dimensions of about 46 × 20 m. The nave is followed by a massive square tower with a height of about 34 m. The reason for the restoration of the church are cracks in the external masonry and arch due to small space stiffness. The building will be reinforced by horizontal and transverse prestressing. They are designed prestressing tendons, called monostrands, using method of alternative cable channels. It will help to avoid other derformations and it will increase a stiffness of the structure.
|
163 |
Geodetic and Oceanographic Aspects of Absolute versus Relative Sea-Level ChangeCaccamise, Dana John, II 29 August 2019 (has links)
No description available.
|
164 |
Surface movement due to coal mining and abandoned mine floodingZhao, Jian 12 July 2022 (has links)
To better understand the issues about the surface movements in the coal mining region Lugau-Oelsnitz, Germany, small-scale numerical models are firstly utilized for verifications via analytical solutions, to explore the simulation schemes, and for parameter sensitivity analysis. 1D rock column numerical models shows that simulated surface movements are consistent with analytical solutions. The investigations via 2.5D profile numerical models also show that uplift is linear related to water level rise under confined mine water conditions, while a quadratic function is valid for unconfined mine water. Geodetic survey in the Lugau-Oelsnitz district shows that at the end of the active mining period (1844 to 1971), general subsidence is about 5 - 10 m, with a maximum of 17 m in the southern mining area. General uplift velocity after abandoned mine flooding between 1972 and 2014 is about 0.5 - 2.0 mm/year. Based on numerical simulation results, predicted general uplift velocity vary between 0.5 - 3.0 mm/year, while maximum uplift position is moving toward south.:1 Introduction
2 State of the art
2.1 Overview
2.1.1 Coal mining induced settlements
2.1.2 Flooding induced uplift
2.2 Approaches to predict subsidence
2.2.1 Empirical approaches
2.2.2 Influence function methods
2.2.3 Physical models
2.2.4 Numerical simulation methods
2.3 Approaches to predict uplift
2.3.1 Empirical approaches
2.3.2 Numerical simulation methods
2.4 Comparison and conclusions
2.4.1 Comparison of research methods
2.4.2 Conclusions
3 Numerical simulation approaches
3.1 Continuum mechanical simulations with FLAC3D
3.1.1 Mining induced subsidence
3.1.2 Flooding induced uplift
3.2 Discontinuum mechanical simulations with 3DEC
3.2.1 Self-weight induced settlement in jointed rock column model
3.2.2 Uplift for jointed and fully saturated rock column
3.3 Parameter sensitivity study
3.3.1 Parameter effect on subsidence
3.3.2 Parameter effect on uplift
3.4 Interface and volume element representation of faults
3.4.1 Simulation schemes
3.4.2 Parameter sensitivity analysis of fault
3.4.3 Discussion
3.5 Conclusions
4 Case study: Coal mining region Lugau-Oelsnitz
4.1 Background information
4.1.1 Mining background
4.1.2 Geological and hydrogeological situation
4.2 In-situ monitoring data
4.2.1 Groundwater level data
4.2.2 Surface movement data
4.2.3 Discussion of data analysis
4.3 Continuum based numerical modelling
4.3.1 Introduction
4.3.2 Model set-up
4.3.3 Calculation results
4.3.4 Surface movement predictions
4.4 Discontinuum based numerical modelling
4.4.1 Model set-up
4.4.2 Calibration results
4.4.3 Surface movement prediction
4.5 Conclusions
5 Conclusions and prospects
5.1 Conclusions
5.2 Main contributions of thesis
5.3 Inadequacies and prospects
|
165 |
Projekt zastřešení výstavní haly / Design of exhibition hall roofNěmec, Petr January 2013 (has links)
The Diploma’s thesis is focused on the design of selected parts of reinforced concrete exhibition hall (prestressed concrete purlin, prestressed concrete girder, reinforced concrete column, reinforced concrete footing, post-tensioned concrete girders). The load calculation (the self weight, the permanent load, the wind load, the snow load and imposed load), the design and the review of selected reinforced concrete items and the drawing documentation are included in this thesis.
|
166 |
Multispectral imaging of Sphagnum canopies: measuring the spectral response of three indicator species to a fluctuating water table at Burns BogElves, Andrew 02 May 2022 (has links)
Northern Canadian peatlands contain vast deposits of carbon. It is with growing urgency that we seek a better understanding of their assimilative capacity. Assimilative capacity and peat accumulation in raised bogs are linked to primary productivity of resident Sphagnum species. Understanding moisture-mediated photosynthesis of Sphagnum spp. is central to understanding peat production rates. The relationship between depth to water table fluctuation and spectral reflectance of Sphagnum moss was investigated using multispectral imaging at a recovering raised bog on the southwest coast of British Columbia, Canada. Burns Bog is a temperate oceanic ombrotrophic bog. Three ecohydrological indicator species of moss were chosen for monitoring: S. capillifolium, S. papillosum, and S. cuspidatum. Three spectral vegetation indices (SVIs) were used to characterize Sphagnum productivity: the normalized difference vegetation index 660, the chlorophyll index, and the photochemical reflectance index.
In terms of spectral sensitivity and the appropriateness of SVIs to species and field setting, we found better performance for the normalized difference vegetation index 660 in the discrimination of moisture mediated species-specific reflectance signals. The role that spatiotemporal scale and spectral mixing can have on reflectance signal fidelity was tested. We were specifically interested in the relationship between changes in the local water table and Sphagnum reflectance response, and whether shifting between close spatial scales can affect the statistical strength of this relationship. We found a loss of statistical significance when shifting from the species-specific cm2 scale to the spectrally mixed dm2 scale. This spatiospectral uncoupling of the moisture mediated reflectance signal has implications for the accuracy and reliability of upscaling from plot based measurements. In terms of species-specific moisture mediated reflectance signals, we were able to effectively discriminate between the three indicator species of Sphagnum along the hummock-to-hollow gradient. We were also able to confirm Sphagnum productivity and growth outside of the vascular growing season, establishing clear patterns of reflectance correlated with changes in the local moisture regime. The strongest relationships for moisture mediated Sphagnum productivity were found in the hummock forming species S. capillifolium. Each indicator Sphagnum spp. of peat has distinct functional traits adapted to its preferred position along the ecohydrological gradient. We also discovered moisture mediated and species-specific reflectance phenologies. These phenospectral characteristics of Sphagnum can inform future monitoring work, including the creation of a regionally specific phenospectral library. It’s recommended that further close scale multispectral monitoring be carried out incorporating more species of moss, as well as invasive and upland species of concern. Pervasive vascular reflectance bias in remote sensing products has implications for the reliability of peatland modelling. Avoiding vascular bias, targeted spectral monitoring of Sphagnum indicator species provides a more reliable measure for the modelling of peatland productivity and carbon assimilation estimates. / Graduate
|
Page generated in 0.0356 seconds