• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 8
  • 8
  • 8
  • 8
  • 8
  • 5
  • 4
  • 3
  • Tagged with
  • 93
  • 35
  • 29
  • 19
  • 19
  • 18
  • 17
  • 17
  • 13
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Ciclos limite para a equação de Abel generalizada / Limit cycles for generalized Abel equation

Belisário, Hugo Leonardo da Silva 30 October 2009 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-08-06T10:24:20Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) ciclos_limites_para_a_equacao_de_abel_generalizada.pdf: 641062 bytes, checksum: e4be39606562d4f6805c21c2cceb451c (MD5) / Made available in DSpace on 2014-08-06T10:24:20Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) ciclos_limites_para_a_equacao_de_abel_generalizada.pdf: 641062 bytes, checksum: e4be39606562d4f6805c21c2cceb451c (MD5) Previous issue date: 2009-10-30 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we conducted a study on the equations of the type dx dt = nå i=0 ai(t)xi; (A) where ai 2 C1, i = 0; ;n and 0 t 1. An equation of the form (A) is called a generalized Abel equation. Our study refers to the problem proposed by C. Pugh: There is a natural number N depending only on n, such that the equation (A) has at most N limit cycles? Initially we study the problem of C. Pugh for n = 1 and n = 2, for which the equation (A) has at most one and two limit cycles, respectively. For n = 3, A. Lins Neto shows that if a3(t) does not change sign on [0;1], then the equation (A) has at most three limit cycles. Also A. Lins Neto shows that, given a natural number l, it is possible to construct an equation of the form (A) with n = 3 that has at least l limit cycles. Still for n = 3, A. Gasull and J. Llibre study the problem of C. Pugh considering that a2(t) does not change sign on [0;1], and M. J. Alvarez, A. Gasull and H. Giacomini also study the problem of C. Pugh considering that there are real numbers a and b such that aa3(t)+ba2(t) does not change sign on [0;1] and a1(t) = a0(t) = 0. Besides this, we study some more general results studied by A. Gasull and A. Guillamon. / Neste trabalho realizamos um estudo sobre as equações do tipo dx dt = nå i=0 ai(t)xi; (A) onde ai 2 C1, i = 0; ;n e 0 t 1. Uma equação da forma (A) é denominada equação de Abel generalizada. Nosso estudo se refere ao problema proposto por C. Pugh: existe um número natural N dependendo apenas de n, tal que a equação (A) possui no máximo N ciclos limites? Inicialmente estudamos o problema de C. Pugh para n=1 e n=2, para os quais a equação (A) possui, no máximo, um e dois ciclos limite, respectivamente. Para n = 3, A. Lins Neto mostra que, se a3(t) não muda de sinal em [0;1], então a equação (A) possui no máximo três ciclos limite. Além disso A. Lins Neto mostra que, dado um número natural l, é possível construir uma equação da forma (A) com n = 3 que possui no mínimo l ciclos limites. Ainda para n = 3, A. Gasull e J. Llibre estudam o problema de C. Pugh considerando que a2(t) não muda de sinal em [0;1], e M. J. Álvarez, A. Gasull e H. Giacomini também estudam o problema de C. Pugh considerando que existem números reais a e b tais que aa3(t)+ba2(t) não muda de sinal em [0;1] e a1(t) = a0(t) = 0. Além destes resultados, estudamos alguns resultados mais gerais estudados por A. Gasull e A. Guillamon.
82

Existência e estabilidade de órbitas periódicas da Equação de Van der Pol-Mathieu / Existence and stability of periodic orbits of van der Pol-Mathieu equation

Pereira, Franciele Alves da Silveira Gonzaga 28 February 2012 (has links)
In this work some existence and stability results of periodic orbits of van der Pol-Mathieu Equation are studied. By using the Averaging Theorem we are able to prove, under mild conditions, the existence of two asymptotically stable periodic orbits of this equation. Moreover, the existence of invariant quadrics can be settled in plane phase of this equation. / Neste trabalho alguns resultados sobre existência e estabilidade de soluções periódicas da equação de van der Pol-Mathieu são estudados. Por meio do Teorema da Média é provado, sob condições adequadas, que esta equação possui duas órbitas periódicas assintóticamente estáveis. Além disso é obtida a existência de cônicas invariantes no plano de fase desta equação. / Mestre em Matemática
83

Sistemas dinamicos em espaços metricos fuzzy : aplicações em biomatematica / Dynamical systems in fuzzy metric spaces : applications in biomathematics

Cecconello, Moiseis dos Santos 15 August 2018 (has links)
Orientadores: Rodney Carlos Bassanezi, Adilson Jose Vieira Brandão / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-15T01:52:00Z (GMT). No. of bitstreams: 1 Cecconello_MoiseisdosSantos_D.pdf: 62393038 bytes, checksum: b7f0d1f9138d8e787749532bf661d026 (MD5) Previous issue date: 2010 / Resumo: Neste trabalho desenvolvemos ferramentas de análise qualitativa para sistemas dinâmicos definidos sobre o espaço formado pelos conjuntos fuzzy com a níveis compactos e não vazios. São propostas condições para existência de pontos de equilíbrio para o fluxo fuzzy cuja função de pertinência é sobrejetiva, generalizando alguns resultados já conhecidos. Os fluxos fuzzy considerados aqui são determinados pela extensão de Zadeh aplicada em soluções de equações diferenciais autônomas. São obtidos também condições para a existência de pontos e órbitas periódicas para o fluxo fuzzy. Em particular, demonstramos um teorema tipo Poincaré-Bendixson para tais fluxos gerados por equações autônomas bidimensionais. A análise qualitativa desenvolvida é aplicada em sistemas dinâmicos fuzzy provenientes de modelos significativos da Biomatemática. / Abstract: In this work we develop some tools for qualitative analysis of dynamical systems defined on the metric space of fuzzy sets with compact and nonempty a cuts. Conditions are offered for the existence of equilibrium points for the flow whose fuzzy membership function is surjective, generalizing some results already known. Fuzzy flows considered here are determined by Zadeh's extension applied in solutions of autonomous differential equations. We also obtained conditions for the existence of periodic points and periodic orbits for the fuzzy flow. In particular, we demonstrate a theorem like Poincaré-Bendixson for such flows generated by two-dimensional autonomous equations. The qualitative analysis results are applied to fuzzy dynamic systems from meaningful models of Biomathematics. / Doutorado / Biomatematica / Doutor em Matemática Aplicada
84

Campos descontínuos com chaveamento no Rn / Relay systems in Rn

Silva , Tharsis Souza 13 May 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-09T12:27:04Z No. of bitstreams: 2 Tese - Tharsis Souza Silva - 2016.pdf: 3242823 bytes, checksum: 4cdf7de6c7ba7cfe6f4fc07cc9501592 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-09T12:27:26Z (GMT) No. of bitstreams: 2 Tese - Tharsis Souza Silva - 2016.pdf: 3242823 bytes, checksum: 4cdf7de6c7ba7cfe6f4fc07cc9501592 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-09T12:27:26Z (GMT). No. of bitstreams: 2 Tese - Tharsis Souza Silva - 2016.pdf: 3242823 bytes, checksum: 4cdf7de6c7ba7cfe6f4fc07cc9501592 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-13 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / In this work we _rstly study a relay system X on the Rn that, under certain conditions, it has a one parameter family of 1-periodic orbits that arises in the origin and increase inde_nitely. We study yet another relay system class X_, that it is formed from the initial relay system by aditions of nilpotent parameters that, under certain conditions, it has the same result of the previous, and yet family of periodic orbits that arises in the origin and ends in a loop, or family that bifurcate of a loop and arise inde_nitelly. Furthermore the periodic solutions are explicitely given by Euler polynomials. Finally we study a third order di_erential equation with relay looking for periodic orbits of di_erent degrre of di_erentiability and this is done by the associated vector _eld with jump. / Neste trabalho estudamos primeiramente um campo vetorial descontínuo com chaveamento X atuando no Rn que, sob certas condições, possui uma família a um parâmetro de órbitas 1-periódicas que surge na origem e cresce indenidamente. Estudamos também uma classe de campos vetoriais descontínuos com chaveamento (relay systems) X, que se diferencía do campo inicial pela adição de parâmetros i;j de forma linear Nilpotente que, sob certas condições, possui o mesmo resultado que o caso anterior, e ainda famílias que surgem na origem e termina em um Laço ou mesmo que bifurcam de um laço e crescem indenidamente. Além disso as soluções periódicas são dadas explicitamente através dos polinômios de Euler. Ainda estudamos uma equação diferencial de terceira ordem com chaveamento a m de buscar órbitas periódicas de diferentes graus de diferenciabilidade e esse estudo é feito através do campo vetorial associado com impulso.
85

Demonstrações assistidas por computador para equações diferenciais ordinárias / Computer assisted proof for ordinary differential equations

Mário César Monteiro do Prado 23 February 2015 (has links)
Neste trabalho, apresentamos um método computacional rigoroso para a demonstração de existência de órbitas periódicas de alguns sistemas de equações diferenciais ordinárias com campo autônomo do tipo polinomial. Mostraremos que o problema de encontrar órbitas periódicas para esses sistemas de equações é equivalente a buscar por raízes de certas funções definidas no espaço de Banach das sequências com decaimento algébrico. O método pode ser dividido em duas etapas. Na primeira, buscamos numericamente por soluções periódicas aproximadas. Na segunda, mostraremos a existência de uma órbita periódica numa vizinhança da curva encontrada numericamente. O rigor das verificações computacionais é garantido pelo uso de aritimética intervalar. / In this work, we present a rigorous computational method for proving the existence of periodic orbits of some systems of ordinary differential equations with autonomous vector field of polynomial type. We show that the problem of finding periodic orbits for these systems is equivalent to check for roots of certain functions defined in the Banach space of sequences with algebraic decay. The method can be divided into two steps. First, we seek, numerically, to approximated periodic solutions. Then, we show the existence of a periodic orbit in a neighborhood of the curve numerically found in the previous stage. The accuracy of the computational verifications is guaranteed by the use of interval arithmetic.
86

Duality on 5-dimensional S1-Seifert bundles / Duality on 5-dimensional S1-Seifert bundles

Cuadros Valle, Jaime 25 September 2017 (has links)
We describe a correspondence between two different links associated to the same K3 orbifold. This duality is produced when two elements, one inside and the other on the boundary of the Kähler cone, are identified. We call this correspondence ∂-duality. We also discuss the consequences of ∂-duality at the level of metrics. / Describimos una correspondencia entre dos enlaces asociados a un mismo espacio K3 que soporta a lo más, singularidades cíclicas de tipo orbifold. Esta dualidad se hace evidente cuando dos elementos, uno en el interior y el otro en la frontera del cono de Kähler, son identificados. Denominamos a esta correspondencia ∂-dualidad. También discutimos las consecuencias de ∂-dualidad al nivel de estructuras riemaniannas.
87

O anel de cohomologia do espaço de órbitas de Zp -ações livres sobre produtos de esferas / The cohomology rings of the orbit spaces of Zp-free transformation groups of the product of two spheres

Mercado, Henry José Gullo 03 June 2011 (has links)
Denotemos por X ~ p \'S POT. m\' x \'S POT. n\' um espaço finitístico com anel de cohomologia módulo p isomorfo ao anel de cohomologia de um produto de esferas \'S POT. m\' x \'S POT. n\', o qual admite ação livre do grupo cíclico G = Zp, com p um primo ímpar. Nosso objetivo neste trabalho é determinar o anel de cohomologia do espaço de órbitas X / G, usando como ferramenta principal a seqüência espectral de Leray-Serre associada à fibração de Borel X \'SETA\' \'imath\' X G \'SETA\' \'pi\' B G, onde BG é o espaço classificante do G-fibrado universal wG = (EG;BG; pG; G;G) e XG = EG x G X é o espaço de Borel. Este resultado foi provado por R. M. Dotzel, T. B. Singh and S. P. Tripathi em [14] / Let denote by X ~ p \'S POT. m\' x \'S POT. n\' finitistic space with mod p cohomology ring isomorphic to the cohomology ring of a product of spheres \'S POT. m\' x \'S POT. n\' , which admits a free action of the cyclic group G = Zp, with p an odd prime. Our goal in this work is to determine the cohomology ring of the orbit space X / G, using as main tool the Leray-Serre spectral sequence associated to the Borel fibration X \'SETA\" \'imath\' \'X G \'SETA\' \'pi\' BG, where BG is the classifying space of the G-universal bundle wG = (EG;BG; pG; G;G) and XG = EG x G X is the Borel space. This result was proved by R. M. Dotzel, T. B. Singh and S. P. Tripathi in [14]
88

Perturbações em sistemas com variabilidade da dimensão instável transversal

Pereira, Rodrigo Frehse 01 March 2013 (has links)
Made available in DSpace on 2017-07-21T19:26:04Z (GMT). No. of bitstreams: 1 Rodrigo Frehse Pereira.pdf: 4666622 bytes, checksum: b2dcf2959eef9f7fd82301c2e45ac87f (MD5) Previous issue date: 2013-03-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Unstable dimension variability (UDV) is an extreme form of nonhyperbolicity. It is a structurally stable phenomenon, typical for high dimensional chaotic systems, which implies severe restrictions to shadowing of perturbed solutions. Perturbations are unavoidable in modelling Physical phenomena, since no system can be made completely isolated, states and parameters cannot be determined without uncertainties and any numeric approach to such models is affected by truncation and/or roundoff errors. Thus, the lack of shadowability in systems exhibiting UDV presents a challenge for modelling. Aiming to unveil the effect of perturbations a class of nonhyperbolic systems is studied. These systems present transversal unstable dimension variability (TUDV), which means the dynamics can be split in a skew direct product form, i. e. the phase space is decomposed in two components: a hyperbolic chaotic one, called longitudinal, and a nonhyperbolic transversal one. Moreover, in the absence of perturbations, the longitudinal component is a global attractor of the system. A prototype composed of two coupled piecewise-linear chaotic maps is presented in order to study the TUDV effects. This system has an invariant subspace S which characterizes the complete chaos synchronization and UDV, when present, is transversal to it. Taking advantage of (piecewise) linearity of the equations, an analytical method for unstable periodic orbits’ computation is presented. The set of all unstable periodic orbits (UPOs) is one of the building block of chaotic dynamics and its properties provide valuable informations about the asymptotic behaviour of the system as, for instance, the invariant natural measure. Therefore, the TUDV’s intensity is analytically studied by computing the contrast measure, which quantifies the difference between the statistical weights associated to UPOs with different unstable dimension. The effect of perturbations is modelled by the introduction of a small parameter mismatch, instead of noise addition, in order to keep the model’s determinism. Consequently, the characterization of dynamics by means of UPOs is still possible. It is shown the existence of a dense set G of UPOs outside the invariant subspace consistent with a chaotic repeller. When perturbation takes place, G merges with the set H of UPOs previously in S, given rise to a new nonhyperbolic stationary state. The analysis of G ∪H provides a topological explanation to the behaviour of systems with TUDV under perturbations. Moreover, the relation between the set of UPOs embedded in a chaotic attractor and its natural measure, proven only for hyperbolic systems, is successfully applied to this system: the error between the natural measure estimated both numerically and by means of UPOs is shown to be decreasing with p, the considered UPOs’ period. It is conjectured the coincidence between both in limit. Hence, a positive answer to reliability of numerical estimation to natural measure in nonhyperbolic systems via unstable dimension variability is presented. / A variabilidade da dimensão instável (VDI) é uma forma extrema de não-hiperbolicidade. É um fenômeno estruturalmente estável, típico para sistemas caóticos de alta dimensionalidade, que implica restrições severas ao sombreamento de soluções perturbadas. As perturbações¸ s são inevitáveis na modelagem de fenômenos fíısicos, uma vez que nenhum sistema pode ser isolado completamente, os estados e os parâmetros não podem ser determinados sem incertezas e qualquer abordagem numérica dos modelos é afetada por erros de arredondamento e/ou truncamento. Portanto, a falta da sombreabilidade em sistemas exibindo VDI apresenta um desafio à modelagem. Visando revelar os efeitos das perturbações, uma classe desses sistemas não hiperbó licos é estudada. Esses sistemas apresentam variabilidade da dimensão instável transversal (VDIT), significando que a dinâmica pode ser decomposta na forma de um produto direto assimétrico, i. e. o espação de fase é dividido em dois componentes: um hiperbólico e caótico, dito longitudinal, e um transversal e não-hiperbólico. Mais ainda, na ausência de perturbações, o componente longitudinal é um atrator global do sistema. Um protótipo composto de dois mapas ca´oticos lineares por partes acoplados é apresentado para o estudo dos efeitos da VDIT. Esse sistema possui um subespaço invariante S que caracteriza a sincronização completa de caos e a VDI, quando presente, é transversal a esse subespaço. Valendo-se da linearidade (por partes) das equações, um método analítico para o cálculo das órbitas periódicas instáveis é apresentado. O conjunto de todas as órbitas periódicas instáveis (OPIs) é um dos fundamentos da dinâmica caótica e suas propriedades fornecem informaões, valiosas sobre o comportamento assintótico do sistema como, por exemplo, a medida natural invariante. Assim, a intensidade da VDIT é estudada analiticamente pelo cálculo da medida de contraste, que quantifica a diferença entre o peso estatístico associado às OPIs com dimensão instável distintas. O efeito das perturbações é modelado pela introdução de um pequeno desvio nos parâmetros, ao invés da adição de ruído, a fim de manter o determinismo do modelo. Consequentemente, a caracterização da dinâmica em termos das OPIs ainda é possível. Demonstra-se a existência de um conjunto denso G de OPIs fora do subespaço invariante consistente com um repulsor caótico. Na presença de perturbações, G se funde com o conjunto H das OPIs previamente em S, dando origem a um novo estado estacionario não-hiperbólico. A análise de G ∪H fornece uma explicação topológica ao comportamento de sistemas com variabilidade da dimensão instável sob a açãoo de perturbações. Mais ainda, a relação entre o conjunto de OPIs imersas em um atrator caótico e sua medida natural, provada apenas para sistemas hiperbólicos, é aplicada com sucesso nesse sistema: mostra-se que o erro entre as medidas naturais estimadas numericamente e pelas OPIs é decrescente com p, o período das OPIs consideradas. Conjectura-se, portanto, a coincidência entre ambas no limite . Logo, apresenta-se uma resposta positiva à estimativa numérica da medida natural em sistemas não-hiperbólicos via variabilidade da dimensão instável.
89

O anel de cohomologia do espaço de órbitas de Zp -ações livres sobre produtos de esferas / The cohomology rings of the orbit spaces of Zp-free transformation groups of the product of two spheres

Henry José Gullo Mercado 03 June 2011 (has links)
Denotemos por X ~ p \'S POT. m\' x \'S POT. n\' um espaço finitístico com anel de cohomologia módulo p isomorfo ao anel de cohomologia de um produto de esferas \'S POT. m\' x \'S POT. n\', o qual admite ação livre do grupo cíclico G = Zp, com p um primo ímpar. Nosso objetivo neste trabalho é determinar o anel de cohomologia do espaço de órbitas X / G, usando como ferramenta principal a seqüência espectral de Leray-Serre associada à fibração de Borel X \'SETA\' \'imath\' X G \'SETA\' \'pi\' B G, onde BG é o espaço classificante do G-fibrado universal wG = (EG;BG; pG; G;G) e XG = EG x G X é o espaço de Borel. Este resultado foi provado por R. M. Dotzel, T. B. Singh and S. P. Tripathi em [14] / Let denote by X ~ p \'S POT. m\' x \'S POT. n\' finitistic space with mod p cohomology ring isomorphic to the cohomology ring of a product of spheres \'S POT. m\' x \'S POT. n\' , which admits a free action of the cyclic group G = Zp, with p an odd prime. Our goal in this work is to determine the cohomology ring of the orbit space X / G, using as main tool the Leray-Serre spectral sequence associated to the Borel fibration X \'SETA\" \'imath\' \'X G \'SETA\' \'pi\' BG, where BG is the classifying space of the G-universal bundle wG = (EG;BG; pG; G;G) and XG = EG x G X is the Borel space. This result was proved by R. M. Dotzel, T. B. Singh and S. P. Tripathi in [14]
90

Study of the dynamics around celestial bodies using analytical and semi-analytical techniques / Estudo da dinâmica ao redor de corpos celestes utilizando técnicas analíticas e semianalíticas

Cardoso dos Santos, Josué 04 July 2018 (has links)
Submitted by Josué Cardoso dos Santos (josuesantosunesp@gmail.com) on 2018-09-10T18:36:37Z No. of bitstreams: 1 Tese_Final_Josue_Cardoso_Santos.pdf: 78449557 bytes, checksum: 4515b9cb7cc346753f7e9682b8e037de (MD5) / Approved for entry into archive by Pamella Benevides Gonçalves null (pamella@feg.unesp.br) on 2018-09-10T18:47:05Z (GMT) No. of bitstreams: 1 santos_jc_dr_guara.pdf: 78449557 bytes, checksum: 4515b9cb7cc346753f7e9682b8e037de (MD5) / Made available in DSpace on 2018-09-10T18:47:05Z (GMT). No. of bitstreams: 1 santos_jc_dr_guara.pdf: 78449557 bytes, checksum: 4515b9cb7cc346753f7e9682b8e037de (MD5) Previous issue date: 2018-07-04 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nowadays, despite the technological development experienced by science in general, a fact especially evident by the available powerful computer machines, the analytical and semi-analytical methods to study different space problems are still of great importance in the fields of astrodynamics and celestial mechanics. From the physical understanding of the motion of celestial bodies to the planing and designing of space missions, the use of mathematical models to deal with a very large number of contemporary problems plays a fundamental role in the progress of human knowledge. In this context, the present thesis presents the use of different mathematical techniques to deal with different various and current problems in astrodynamics and celestial mechanics. The studies developed throughout this work are applicable to both areas. The topics studied are the following ones: (1) The development of disturbing potentials using the double-averaging process, in order to be included in the Lagrange planetary which are numerically integrated to study features of orbits around Mercury and the Galilean moon Callisto; (2) The use of different perturbation integrals, techniques to identify and map different perturbations present in a planetary system, with focus on the analysis of systems of Giant planets with their massive moons; (3) The use of the concept of intermediary Hamiltonian and the use of a canonical transformation called elimination of the parallax, both to deal with binary systems in the context of the roto-orbital dynamics, this one as an approach of the fulltwo body problem; (4) An updated analysis of Gauss variational equations to study quasisatellite orbits around the Martian moon Phobos and with analytical predictions made after obtaining linear and averaged equations of motions. Therefore, this thesis intend not only to provide important analysis and results for each specific problem which it deals with along its pages, but also seeks to highlighting the merit and current relevance of different analytical and semi-analytical methods to be used in the fields of astrodynamics and celestial mechanics. Additionally, the author also hopes to offer an outcome of diverse interesting ideas and methods to be explored in future investigations in these research fields / Na atualidade, a despeito do desenvolvimento tecnológico experimentado pela ciência em geral, algo especialmente evidenciado por poderosas máquinas computacionais disponíveis, os métodos analíticos e semianalíticos para o estudo de diferentes problemas espaciais ainda são de grande importância nos campos de astrodinâmica e mecânica celeste. Desde a compreensão física do movimento de corpos celestes até ao planejamento e projeto de missões espaciais, o uso de modelos matemáticos para lidar com um grande número de problemas contemporâneos desempenha um papel fundamental no progresso do conhecimento humano. Neste contexto, a presente tese apresenta o uso de diferentes técnicas matemáticas para lidar com diversos e atuais problemas em astrodinâmica e mecânica celeste. Os estudos desenvolvidos ao longo deste trabalho são aplicáveis à ambas as áreas. Os tópicos estudados são os seguintes: (1) O desenvolvimento de potenciais perturbadores usando o processo de dupla média, de forma a serem incluídos nas equações planetárias de Lagrange que são integradas numericamente para estudar características de órbitas ao redor de Mercúrio e da lua galileana Calisto; (2) A utilização de diferentes integrais de perturbação, técnicas para identificar e mapear diferentes perturbações presentes em um sistema planetário, com foco na análise de sistemas de planetas gigantes com suas luas massivas; (3) A utilização do conceito de hamiltoniana intermediária e o uso de uma transformação canônica chamada eliminação da paralaxe, ambos para lidar com sistemas binários no contexto da dinâmica roto-orbital, essa sendo uma aproximação do problema completo de dois corpos; (3) Uma análise atualizada de equações variacionais de Gauss para o estudo de órbitas quasi-satélite ao redor da lua marciana Fobos e com predições analíticas realizadas após serem obtidas equações de movimento linearizadas e com média. Portanto, esta tese pretende não somente prover importantes análises e resultados para cada problema específico com os quais a mesma lida ao longo de suas páginas, mas também procura destacar o mérito e relevância atual de diferentes métodos analíticos e semianalíticos a serem utilizados nos campos de astrodinâmica e mecânica celeste. Adicionalmente, o autor também espera oferecer um produto de variadas ideias e métodos a serem explorados em futuras investigações nesses campos de pesquisa / 2013/26652-4 / 2015/18881-9

Page generated in 0.0385 seconds