• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 19
  • 4
  • Tagged with
  • 23
  • 23
  • 23
  • 23
  • 23
  • 23
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

不同單因子結構模型下合成型擔保債權憑證定價之研究 / Comparison between different one-factor copula models of synthetic CDOs pricing

黃繼緯, Huang, Chi Wei Unknown Date (has links)
1990年代中期信用衍生信商品開始發展,隨著時代變遷,演化出信用違約交換(Credit Default Swaps, CDS)、擔保債權憑證(Collateralized Debt Obligation, CDO)、合成型擔保債權憑證(Synthetic CDO)等商品,其可以分散風險的特性廣受歡迎,並且成為完備金融市場中重要的一環。在2007年金融海嘯中,信用衍生性商品扮演相當關鍵的角色,所以如何合理定價各類信用衍生性商品就變成相當重要的議題 以往在定價合成型擔保債權憑證時,多採取單因子結構模型來做為報酬函數的主要架構,並假設模型分配為常態分配、t分配、NIG分配等,但單因子結構模型的隱含相關係數具有波動性微笑現象,所以容易造成定價偏誤。 為了解決此問題,本文將引用常態分配假設與NIG分配假設下的隨機風險因子負荷模型(Random Factor Loading Model),觀察隨機風險因子負荷模型是否對於定價偏誤較其他模型有所改善,並且比較各模型在最佳化參數與定價時的效率,藉此歸納出較佳的合成型擔保債權憑證定價模型。 / During the mid-1990s, credit-derivatives began to be popular and evolved into credit default swaps (CDS), collateralized debt obligation (CDO), and synthetic collateralized debt obligation (Synthetic CDO). Because of the feature of risk sharing, credit-derivatives became an important part of financial market and played the key role in the financial crisis of 2007. So how to price credit-derivatives is a very important issue. When pricing Synthetic CDO, most people use the one-factor coupla model as the structure of reward function, and suppose the distribution of model is Normal distribution, t- distribution or Normal Inverse Gaussian distribution(NIG). But the volatility smile of implied volatility always causes the pricing inaccurate. For solving the problem, I use the random factor loading model under Normal distribution and NIG distribution in this study to test whether the random factor loading model is better than one-factor coupla model in pricing, and compare the efficience of optimization parameters. In conclusion, I will induct the best model of Synthetic CDO pricing.
12

因子相關性結構模型之下合成型擔保債權憑證之評價與避險 / The Pricing and Hedging of Synthetic CDO Under Factor Copula Models

林恩平 Unknown Date (has links)
近年全球市場出現一些以信用違約交換(CDS)為基礎來編列之信用指數(credit indices),如DJ iTraxx Europe與DJ CDX.NA等,而以這些信用指數為參考資產組合之合成型擔保債權憑證(Synthetic CDO)契約也定期被推出,由於其為標準化契約,故次級市場相當具有流動性,使得全球合成型擔保債權憑證無論在交易量或發行量皆成長快速。   本研究在單因子相關性結構模型之架構下,利用Hull & White (2004)所提出之機率杓斗法則(Probability Bucketing Method)建立合成型擔保債權憑證之評價模型,並於評價之外增加分券(Tranche)風險衡量指標之計算,我們發現額外得到分券之風險衡量指標僅需增加約4%的程式運算時間。本研究之評價模型同時可用於分券避險參數之求算,且不會有蒙地卡羅模擬法(Monte Carlo Simulation)之下避險參數不穩定的情形。 我們發現分券已實現之損失會使分券所面對之風險下降,而分券的信用增強(Credit Enhancement)遭受損耗則使分券所面對之風險上升,故權益分券(Equity Tranche)於契約前期所面對之信用風險大於契約後期,次償分券(Mezzanine Tranche)則是於契約後期面對較大之信用風險。關於分券避險,我們可選擇利用標的信用指數或單一資產信用違約(Single-name CDS)交換來進行避險。最後我們對分券進行違約相關性(Correlation)與違約回復率(Recovery Rate)之敏感度分析,發現權益分券的信用價差與資產違約相關性呈反向關係,而與違約回復率呈正向關係;相反的,先償分券(Senior Tranche)的信用價差則與相關係數呈正向關係,與違約回復率呈反向關係;兩參數對次償分券信用價差之影響則沒有一定的趨勢。
13

信用衍生性商品-擔保債權憑證之評價與分析

呂建霖 Unknown Date (has links)
在近年來陸續發生大公司違約與倒閉事件後,信用違約風險即逐漸被金融業及學術界所重視。理論上,當多個標的資產之信用衍生性商品用來衡量標的資產之信用風險時,需考慮多個標的資產間的違約相關性,才能準確地衡量信用風險。故在信用風險管理與信用衍生性商品的評價中,違約相關性的估計與衡量顯得特別重要。 本研究為信用衍生性商品之擔保債權憑證評價,採用Li(2000)之Copula方法與Hull and White(2004)之Probability Bucketing方法做為評價擔保債權憑證之模型,透過個別資產之邊際違約機率與Copula函數之選擇,及其相關參數之估算,即可求算出具違約相關性之多變數聯合機率函數,以利擔保債權憑證之評價,並模擬出可能損失分配,進而求出各個分券的信用價差及預期損失。 本研究評價的個案商品為玉山銀行債權資產證券化2005-2,在使用上述的兩種評價模型及相關的替代變數,可以求出此商品理論的信用價差及預期損失,再與實際的發行價格比較,做出合理的評價及解釋。隨著國內目前證券化腳步的發展,在未來的信用評等資料庫、各家公司歷史違約機率資料與相關違約資訊均完整下,並加以考慮實務與總體經濟情況,以本研究所使用的兩個評價模型完整的評價已發行之擔保債權憑證,可以更精準的衡量出擔保債權憑證各個分券的信用價差與預期損失。所以本研究提供了實務界一個可行之擔保債權憑證評價方法,可以衡量出各個分券的信用價差與預期損失,做為投資標的與風險規避之用,使得擔保債權憑證的發展趨於完整。
14

雙重保護之羅網-雙層擔保債權憑證之評價與避險

李蕙君 Unknown Date (has links)
雙層擔保債權憑證(CDO-squared)是目前全球資產證券化商品市場相當熱門之商品,回顧國內對信用風險之研究,極少有相關文獻或研究被提出。本研究乃以合成型雙層擔保債權憑證(synthetic CDO-squared)為主體,試圖以一套毋須進行蒙地卡羅模擬之半解析式評價模型為基礎,目的旨在探討雙層擔保債權憑證具有高投資收益的背後,所隱含之風險程度為何?廣泛探索各種不同分券(tranches)之風險特徵,透過比較分析使各個分券間之相互關係能環環相扣,進而對此商品之風險/報酬特性有全面性之瞭解並規劃合適避險策略。本研究在違約事件為條件式獨立的假設下,運用遞迴法則(recursive algorithm)及一個多維超立方體結構(hyper-cube)建構出雙層擔保債權憑證之損失分配,並以求得之評價模型為風險分析之基礎,得到下列發現與避險涵義:(1)雙層擔保債權憑證雖然標榜具有雙重的信用違約保護且能達到更大程度的投資組合分散,同時兼顧利潤與風險的平衡,但實際上卻是高槓桿程度的商品。(2)名目本金數額及分券信用評等之揭露無法反映分券風險本質,市場參與者需要仔細區分風險金額移轉數目與內含風險移轉程度之差異。(3)應用delta避險策略可以規避分券所面臨之市場風險,而使避險組合價值不受標的資產市場價差波動之影響,繼而經由避險成本之求算,可適當選用數個單一信用違約交換(single name CDS)或信用違約交換指數來進行有效之避險。
15

以不同關聯結構模型對合成型抵押擔保債券憑證評價之研究 / Pricing Synthetic CDOs with different copula models

蘇煒融 Unknown Date (has links)
在合成型抵押擔保債券憑證評價上,Kalemanova et al. (2007) 提出應用大樣本一致性資產組合(large homogeneous portfolio ; LHP)假設之單因子NIG關聯結構模型,配適比常態分配好。林聖航(民101)分析結果顯示NIG(2)模型優於MIX模型、NIG(1)模型、Gaussian模型與CSN模型。本文透過Lee and Hu(1996)提出的F分配線性組合之近似方法模擬出穩定摺積性質和封閉性以縮短計算時間。導出新的單因子F關聯結構模型與過去的模型做比較,並且會使用26期報價資料。文中將常態分配、F自由度10、、F自由度200、F自由度100000四種單因子關聯結構模型作模型比較分析。最後實證分析結果顯示F分配模型大部分資料配適都不佳,但是2008/11/25以及2009/3/31中配適比高斯分配還佳,2009/3/31甚至配適的比單因子NIG(2)模型、MIX模型以及、NIG(1)模型、高斯模型與CSN模型更佳,2008/11/25以及2009/3/31中市場報價的特色為0-3%分券的報價分別為64.03%及66.83% 而其他時期的0-3%分券報價均未超過50% 。各期當3-6%分券報價有負值時,單因子F(10, 10)關聯結構模型雖然表現不佳尤其在但0-3%分券表現很差,但3-6%分券都配適的很理想,顯示單因子F關聯結構模型在某些特殊狀況時可以表現出良好配適。
16

二次擔保債權憑證之評價及其風險衡量-條件機率獨立模型 / The Valuation and Risk Measure of CDO-Squared under Conditional Independence

陳嘉祺 Unknown Date (has links)
本文的主旨在評價二次擔保債權憑證。在條件獨立機率的假設下,我們使用factor copula的方法去刻劃違約事件間的相關係數,並提供了一個有效率的迴圈演算法去建構損失分配。本方法同時考慮違約數目及違約位置,同時亦可解決重疊性的問題。本文所建構的是Hull and White(2004)的延申模型。我們也對各參數作敏感度分析,以求得其對分券價差的影響。文中亦主張一些風險衝量指標,以量化重疊性的程度等風險議題。 / In this paper we address the pricing issues of CDO of CDOs. Underlying the conditional indepdence assumption we use the factor copula approach to characterize the correlation of defaults events. We provide an efficient recursive algorithm that constructs the loss distribution. Our algorithm accounts for the number of defaults, the location of defaults among inner CDOs, and in addition the degree of overlapping between inner CDOs. Our algorithm is a natural extension of the probability bucketing method of Hull and White (2004). We analyze the sensitivity of different parameters on the tranche spreads of a CDO-squared, and in order to characterize the risk-reward profiles of CDO-squared tranches, we introduces appropriate risk measures that quantify the degree of overlapping among the inner CDOs. Hull and White (2004) presents a recursive scheme known as probability bucketing approach to construct conditional loss distribution of CDO. However, this approach is insufficient to capture the complexities of CDO². In the case of the modeling of CDO, we are concerned for the probabilities of different number of defaults upon a time horizon t, e.g., the probabilities of 3 defaults happened within a year. With the mentioned probabilities, we can then calculate the expected loss within the time horizon, which enables us to figure out the spreads of CDO. However, in the modeling of CDO², an appropriate valuation should be able to overcome two more difficulties: (1) the overlapping structure of the underlying CDOs, and (2) the location where defaults happened, in order to get the fair spreads of CDO².
17

複合型保護層信用擔保債權憑證之評價與風險分析:機率杓斗法則之延伸 / On the valuation and risk characteristic of synthetic CDOs with compound protection layers: extending probability bucketing algrithm

謝伊婷, Hsieh, Yi-Ting Unknown Date (has links)
以往投資人認為透過『附加保護層』的保護機制,損失不易流通至主擔保債權憑證,潛在損失較低;又因包含龐大之標的債權,投資人也認為該投資風險分散程度較高,風險暴露程度較低。然而,2007年7月發生次級房貸風暴,導致複合型保護層信用擔保債權憑證各分券投資人產生鉅額損失,方了解於保護層的面紗之下,隱含了不為人知的風險。   因此,本研究目的發展合成型複合型保護層信用擔保債權憑證之評價模型,以雙層信用擔保債權為例,『由下而上』依序建構標的債權群組,至主擔保債權憑證之總損失機率分配;並透過直觀的考慮所有損失的可能組合,使估計之合理信用價差更為精確,不僅解決以往評價雙層擔保債權憑證的維度限制,計算子分券數目為二以上的情形,更能將此模型推廣至所有複合型保護層信用擔保債權憑證之評價,適合實務應用。   除此之外,本研究亦希望透過實務界常用之風險衡量指標,揭開保護層之厚重面紗,探討複合型保護層信用擔保債權憑證所隱含之風險,提供投資人參考。透過與一般信用擔保債權憑證之風險特性,探討『附加保護層』機制是否真能提升風險分散程度,抑或反而有損失累積的效果。最後,本研究也藉由風險衡量指標,分析資產重疊程度由低至高時,對對雙層信用擔保債權憑證風險的影響,了解風險是否會隨其資產重疊度增加而增加。
18

離散型動態回復率模型之建構與應用 / Discrete dynamic recovery rate modeling and its application

邵惠敏, Shao, Hui Min Unknown Date (has links)
本文主要研究動態回復率之建構。並搭配使用機率勺斗法,將資產之離散損失分配建構出合成型擔保債權憑證分劵損失分配。歸納出離散動態回復率對合成型擔保憑證分劵之風險承擔與信用價差變化。本文發現在動態回復率中,即使在相同條件下有一樣預期損失,能使其債權群組損失分配之標準差較固定回復率小,且可使投資組合巨額損失部份產生厚尾分配現象。動態回復率對各分劵面臨共同存活與違約機率具有緩和或增強分劵承擔風險之作用。在單因子高斯連繫結構靜態違約下,透過隨機回復率能增加動態系統性風險因子之描繪。類似於將系統風險因子分配由標準常態分配改成t分配或是債權群組間違約相關係提高。
19

狀態轉換漸進極值因子模型下擔保債權憑證之評價與避險 / Pricing and Hedging of CDOs under a Regime Switching Asymptotic Single Factor Model

賴冠宇, Lai, Kuan Yu Unknown Date (has links)
本篇論文使用了LHP的近似方法去評價擔保債權憑證,並推導出漸進極值因子模型,又稱單因子copula模型,單因子copula模型被廣泛運用在CDO之風險管理與一些風險因子模擬之應用,但由於2008年之金融海嘯造成市場標準模型Gaussian copula model會有評價上的誤差,所以為了能在市場不穩定時能更精確的求算出分券價差,我們必須找到一個更簡單且快速捕捉到市場不穩定性的模型。在這篇論文中,我們引用了Anna Schloesser在2009年所提出以NIG copula model為基礎的兩個延伸,讓模型更穩健和且擁有良好的性質去進行模擬,NIG Regime-Switch 模型有兩大特色: (i)可以用一致的方法去評價不同到期日的分券,放寬了同一分券必須是相同到期日的假設,和(ii)有不同的相關係數狀態,對於金融風暴來說,狀態轉換可以有效地降低市場不穩定所帶來的評價誤差。本文也對不同模型下的CDO進行風險分析與避險,分券的期望損失廣泛被信評公司視為一項審定信用評等重要的風險衡量指標,但是並無法真實反映出擔保債權憑證分券之間相對風險之大小,因此本文採用期望損失率的觀念,利用期望損失佔本金的比例來比較各分券之相對風險,且本文也求算出CDO之避險參數,讓投資人了解對合成行擔保債權憑證分券避險時所需之避險部位,分券持有人也可依據所要規避的風險類型,選擇市場上現有的信用違約交換指數或是單一資產之信用違約交換(single-name credit default swap)來進行避險。 / This paper presents the Large Homogeneous Portfolio (LHP) approach to the pricing of CDOs and we derive the one-factor copula model. It is popular that the one-factor copula models are very useful for risk management and measurement applications involving the generation of scenarios for the complete universe of risk factors. However, since the financial crisis in 2008 induces some errors in the valuation by Gaussian copula model, which is originally adopted by credit rating firms, it is necessary to have a simple and fast model that can capture the market unstableness. In this paper we apply two extensions of the NIG copula model, which are first present by Anna Schloesser (2009), since they make the model well defined and powerful for scenario simulation. The NIG Regime-Switch copula model allows for two important features: (i) tranches with different maturities modeled in a consistent way, and (ii) different correlation regimes. The regime-switching component of the NIG copula model is especially important in view of the financial crisis. This paper also targets on different models to conduct risk analysis and hedging strategy. The expected loss of tranches is widely used by credit rating organizations as one of the important indicators for risk measurement. However, it can’t reflect the relative risk level between CDO’s tranches. Therefore, our research adopts the concept of expected loss rate, which use the proportion of expected loss to total principal amount to compare the relative risk of each tranche. Moreover, when we want to hedge the spread risk of synthetic CDO tranches, the holders of tranches can choose the existing CDS index or the single-name CDS based on different risks types to hedge. The employment of the NIG Regime-Switch copula model not only has more precise estimation for the spread of tranches but also possess more stable hedge ratio to hedge.
20

探討合成型抵押擔保債券憑證之評價 / Pricing the Synthetic CDOs

林聖航 Unknown Date (has links)
根據以往探討評價合成型抵押擔保債券之文獻研究,最廣為使用的方法應用大樣本一致性資產組合(large homogeneous portfolio portfolio ; LHP)假設之單因子常態關聯結構模型來評價,但會造成合成型抵押擔保債券憑證與市場報價間的差異過大,且會造成相關性微笑曲線現象。由文獻顯示,單因子關聯結構模型若能加入厚尾度或偏斜性能夠改善以上問題,且對於分券評價時也會有較好的效果,像是Kalemanova et al. (2007) 提出應用LHP假設之單因子Normal Inverse Gaussian(NIG)關聯結構模型以及邱嬿燁(2007)提出NIG及Closed Skew Normal(CSN)複合分配之單因子關聯結構模型(MIX模型)在實證分析中得到極佳的評價結果。自2008年起,合成型抵押擔保債券商品結構開始出現變化,而以往評價合成型抵押擔保債券價格時,商品結構皆為同一種型式。本文將利用常態分配、NIG分配、CSN分配以及NIG與CSN複合分配作為不同的單因子關聯結構模型,藉由絕對誤差極小化方法,針對不同商品結構的合成型抵押擔保債券評價,並進行模型比較分析。由最後實證分析結果顯示,單因子NIG(2)關聯結構模型優於其他模型,也證明NIG分配的第二個參數 β 能夠帶來改善的評價效果,此項證明與過去文獻結論有所不同,但 MIX模型則為唯一一個符合LHP假設的模型。 / Based on the literature of discussing the approach for pricing synthetic CDOs, the most widely used methods used application of Large Homogeneous Portfolio (LHP) assumption of the one factor Gaussian copula model, however , it fails to fit the prices of synthetic CDOs tranches and leads to the implied correlation smile. The literature shows that one factor copula model adding the heavy-tail or skew can improve the above problem, and also has a good effect for pricing tranches such as Kalemanova et al (2007) proposed the application of LHP assumption of one factor NIG copula model and Qiu Yan Ye (2007) proposed the application of LHP assumption of one factor NIG and CSN copula model. This article found that the structure of synthetic CDOs began to change since 2008. The past of pricing synthetic CDOs, the structure of synthetic CDOs are the same type, so this article will use different one factor copula model for pricing different structure of synthetic CDOs by using the absolute error minimization. This article will observe whether the above model can be applied in the new synthetic CDOs and implement of different type model for comparative analysis. The last empirical analysis shows that one factor NIG (2) copula model is superior to other models, more meeting the actual market demand, also proving the second parameter β of the NIG distribution able to bring about improvements in pricing results. This proving is different for the past literature conclusions. However, the MIX model is the only one in line with the LHP assumptions.

Page generated in 0.0288 seconds