• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 67
  • 5
  • Tagged with
  • 72
  • 72
  • 72
  • 72
  • 34
  • 33
  • 20
  • 19
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

應用資料採礦技術於壽險產業客戶行為之探討

謝晴伃 Unknown Date (has links)
近年來壽險產業競爭激烈,各壽險公司莫不希望對其顧客有更進一步的了解。事實上,壽險公司所累積的完善資料庫中蘊藏著相當豐富的資訊,若能從中萃取出壽險產業客戶行為訊息,則可提供壽險業者作為行銷決策依據,以增加利潤,減少損失。 以往文獻在壽險產業客戶消費現象的探討上,鮮少採用資料採礦作為發掘工具。因此本研究將嘗試利用資料採礦技巧,先為壽險公司分析客戶不正常解約的失效行為發生原因,進一步探索顧客群中會購買附加保險的群體其行為特徵,並輔以實際保險觀念相互驗證。最後針對有購買附約之傾向的客戶,為其找出主約附約搭配銷售的各種最佳設計,並且對該公司附約產品的推銷方案提出建議,企盼所找出的訊息對於壽險產業實質上的行銷活動設計有所助益。
22

應用資料採礦技術於保險公司附加保單之增售

李家旭 Unknown Date (has links)
摘 要 本研究主是利用資料採礦技術,應用於人身保險公司,試圖尋找出購買附加保單的保戶之模式,以提高保戶購買附加保單之比例。資料來源為我國某人身保險業所提供之客戶資料,原始資料共計1,500,943筆,經過資料清理後分析資料為92,581筆,隨後進行基本敘述統計分析,與決策樹、類神經網路、關聯規則等資料採礦技術,其分析結果如下: 一、主保單的險種類型分為三種:死亡險、生死合險、健康險;不同的保單類型的保戶,有著不同的附加保單購買習慣。主保單為死亡險的保戶,主要因為保險需求而購買該主保單;保單為生死合險的保戶,主要因為儲蓄需求而購買保單;保單為健康險的保戶,是比較特別的族群,因為以往健康險是以附加保單形式出售,但保險公司因應潮流將健康險調整成也可以主保單形式出售,使得健康險中不會購買附加保單。 二、新保戶購買主保單為死亡險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。新保戶購買主保單為生死合險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。 三、保險公司可依照關聯規則結果產生出的8條關聯規則,針對舊有客戶進行保險商品再推銷策略。 / Abstract The main purpose of this research is to apply data mining techniques, namely decision tree, neural network, and association on insurance company’s database in modeling the behaviors of customers who bought the policies. Data source is provided by the insurance company in Taiwan. 1、There are 3 type of main insurance policies:death insurance、endowment insurance、health insurance. Insurance buyers behave differently based upon the type of insurance they have. Death insurance buyers are in for the sole purpose of being insured. Endowment insurance buyers are in for the purpose of savings. Health insurance buyers usually buy the policies as the add-on products, However as consumers in a recent trend have become more health conscious, the health insurance that used to be as consumers in a recent trend have become more health conscious, the health insurance that used to be bought as the add-on products have become the main drive and being sold as main policy for the insurance company. 2、With the above information at hand, we use CART model to predict whether the death and endowment insurance buyers will have any potential in getting the add-on policies thereby opening the window of opportunities for the insurance issuers to come up and be able to promote the new line of products to their existing customers based on the research findings. 3、The insurance company can re-promote their insurance merchandises to old customers according to the 8 rules constructed by the association rules.
23

利用函數映射進行資料庫增值於資料採礦中

林建言 Unknown Date (has links)
人口的增長、現代化的生活環境,讓人們必須去面對隨時不斷產生的巨量資料;不過值得慶幸的是,電腦設備的運算、儲存能力一直在改進,所以人類所能處理的資料量也隨之提升,資料採礦技術的發展便是人類嘗試在大量資料中進行分析,以解決生活中所遇到的難題。 許多實際個案的結果顯示,資料採礦工作確實能替分析者帶來更好的績效,然而仍是有不少的失敗案例。如果深入去分析失敗原因,問題並不是出於資料採礦技術無法使用,而是資料品質不良或是資料內涵資訊不足所導致的。 資料庫中有用的變數不足的問題可以藉由重新收集資料解決,然而這勢必需要花費龐大的經費並且缺乏時效性。如何利用其他的外部資料來提昇資料庫的資訊含量便是本研究的目的。在實證過程中,利用工商業與服務業普查資料庫和技術創新資料庫做為分析所使用的資料庫;並且控制資料庫連結變數個數、建模資料比例和各類模型三個因子,採用函數映設方式,進行資料庫增值的工作。 從研究結果可以發現,確實可以藉由其他資料或是資料庫的內容,來增加資料庫的內含欄位和訊息,希望能夠替資料採礦工作者提供一個節省精力的方向,而且做為未來更多研究的基礎。 關鍵字:資料採礦、函數映射、資料庫加值。
24

糖尿病之藥物交互作用與用藥分析

廖彗嵐 Unknown Date (has links)
隨著國人之生活習慣改變與社會進步,糖尿病逐年上升,並成為國人十大死因之一,此外,糖尿病易引發其他疾病而產生併發症,當患者同時患有多種疾病,進而接受多重藥物治療,在使用多種藥物情況下易導致藥物產生交互作用,而中央健保局之「全民健康保險資料庫」囊括全體國人珍貴的醫療資料,其中包含詳細的糖尿病病患相關資料,本研究藉由分析中央健保局之糖尿病資料,目的在於分析糖尿病用藥中產生藥物交互作用之情形,希望能發掘有用資訊。 糖尿病資料中具有藥物交互作用處方佔有29%,藉由不同變數來探討糖尿病之藥物交互作用情形,譬如從年齡、性別、用藥藥品數、就醫科別等,進而得知資訊,諸如病患年齡與處方用藥數會影響是否有無藥物交互作用之產生;此外,藥物交互作用組合中,最多為口服低血糖用藥,這是糖尿病用藥,但產生最嚴重之藥物交互作用為心血管疾病用藥,並利用資料採礦技術挖掘有意義之規則。 / Incidence of diabetes mellitus is on the rise year over year in today’s modern living life style. It has been ranked as the tenth leading cause of death in Taiwan. When a patient suffers from more than a single cause of illness, he is treated by multiple medications which in turn could trigger drug interactions side effect. National health insurance research database has kept information containing data of patients with diabetes mellitus from which this research has based its data on. The purpose of this research is to analyze the side effects of drug interactions from diabetes mellitus medications. Of all prescriptions given for diabetes mellitus, 29% were resulted in having drug side effects. This research attempts to isolate the factor causing side effects of drug interaction of diabetes mellitus medications by difference variables, such as patient’s age, sex (male or female) and numbers of medicines. The techniques we employed in reaching our attempts is data mining.
25

應用商業智慧技術於生技產品市場

陳信君 Unknown Date (has links)
21世紀公認影響人類生活的兩大科技,就是「資訊科技」與「生物科技」。能為生物科技分析出最佳競爭優勢、尋求利基的產業,便是商業智慧(business intelligence, BI)。 雖然生技業具有極高的附加價值,但也必須投入極高的研發成本。為了讓生技產品能獲取利潤,我們必須要在適當的時機推出適合消費者的產品;藉由資料採礦技術萃取大量的資訊、可以事先洞察預測消費者的潛在需求,並且幫忙分析生技產業可應用推廣的領域、採取的行銷方式以及道德倫理問題…等,這些都須仰賴商業智慧的力量;唯有以商業智慧為整合平台來發展生物科技,才能確保生技產業向未來前進的步伐走得穩當。 除了想了解生物科技目前的前景之外,也加上商業智慧(business intelligence, BI)的應用,希望藉由本研究可以在未來對於欲加入生物科技產業之公司尋找一些經營依歸,以期台灣能在邁入高科技產業時將順利無阻礙。 首先,先以三種資料採礦的分類法(決策樹、類神經及羅吉斯迴歸)來做比較,並決定最後使用那種分析方法。比較過後,決定運用決策樹方法建立出一般民眾的基本特性(性別、血型、年齡等)對於生物科技產業(基因改造食品、生物醫療科技、生技美容保養)的使用意願程度之決策樹模型。 最後,對三種生物科技產業各別做出宣傳策略。並對後續研究者提出一些建議。
26

以企業財務資訊為基礎建構股票投資決策支援系統 / Decision Support System of Stocks Investment under Financial Information

黃加輝, Huang,Chia Hui Unknown Date (has links)
本研究採用統計分析與資料採礦的方法搭配企業生命週期理論與企業財務資訊做為股票投資決策的準則。其步驟順序為先將公司分群,並且按照生命週期理論命名各群為成長、成熟、老年期;再對各群分別使用決策樹與區別分析找出優秀股票的特徵;最後,按照特徵挑選出未來的報酬率有機會表現優秀的股票。期望在此方法下取得比台灣加權指數更高的報酬率。 / This paper adopted multivariate analysis and data mining to choose stock as a member of portfolio with financial indicators. The first, the public companies are divided into three periods according to life cycle by clustering; then, the rules are founded by decision tree and discriminant analysis; and the stocks are chosen as a member of portfolio. The result is that we can get higher return than TSEC weighted non-financial index.
27

資料採礦之簡易系統—以流行病學為例

羅家蓉 Unknown Date (has links)
近年來電腦等高科技的快速成長,進而促進資訊化的過程。資料庫的蓬勃發展,使得資料大量累積,長久之下,卻造成資料過多,資訊不足的嚴重問題。因此資料庫內的知識探索議題也隨之興起,而資料採礦(Data Mining)的過程,更是其中重要的一環。 相同的,預防醫學資訊的發展,流行病學資料庫中亦累積了大量關於死亡統計資料,而這些資料中,隱藏可能存在的知識,能加強我們對疾病進展的瞭解。若將資料採礦的概念應用於流行病學領域,相信必能相輔相成。 本研究的重點在於結合統計軟體 STATISTICA,以Visual Basic 6.0語言開發一個簡易的資料採礦系統之使用者介面,並將資料採礦技術應用於死亡統計資料中。系統中的挖掘方法主要採用敘述統計、交叉分析與多變量分析中的群集分析與區別分析,根據行政院衛生署統計室所提供之民國八十三年至八十八年台灣地區人口死亡原因資料,來發現隱藏在資料中的趨勢與模式。 / For the past decade the development in computer technology has advanced so rapidly that it brings forth the enormous supply of data information. As time passes by the data information has been increasingly accumulated yet little can be inferred from the data thus resulting a loss of information which might be of significant. Bearing with the existence of such issue, this research presents the process of data mining as one of the solution. Similarly, the data base in the field of medical science may have contained a large amount of information. If one can appropriately apply the application of data mining into this huge database then we may be able to extract some valuable findings. The focus of this research is to develop a user friendly operating system using Visual Basic 6.0 and integrates the statistical software-STATISTICA into the operating system. The research applies the application of data mining on the death data provided by Statistics Office, Department of Health from 1994 to 1999. The methods used in this application are descriptive statistics, cross tabulation, cluster analysis, and discriminant analysis of multivariate analysis in an attempt to find out if there is any pattern in the cause of death.
28

導入雲端運算概念於資料採礦之分類系統 / Implement the concept of the cloud computing into the classification system of data mining

林盈方, Lin, Ying Fang Unknown Date (has links)
近幾年來資料採礦及雲端運算的興起,導致許多公司企業紛紛推出有關雲端運算的服務,或利用資料採礦的技術以助於了解客戶行為。而資料採礦的技術不僅是企業所獨享的一個工具,一般非企業的使用者也常常會面臨到決策問題,為了讓一般使用者能夠方便取得軟體工具以及節省時間成本,本研究以雲端運算為概念,利用RExcel軟體和Excel VBA程式語言為研究工具,發展出一個資料採礦分類雲端運算系統。   本研究將欲分類的目標變數分為三種型態:數字連續型、數字類別型以及文字類別型,此分類系統會依照目標變數型態的不同,而採取不同的分類模型來分析使用者之資料,並分別以三個資料檔為例,上傳至此資料採礦之分類系統進行分析後,其分析結果報表將以網頁預覽的方式呈現給使用者,使用者可以針對連續型目標變數的資料分析結果,利用MAPE值評估分類模型之優劣,而類別型目標變數的資料分析結果,則可以正確率來評估分類模型之優劣。   使用者可透過簡易步驟來操作此系統,並選擇可解釋資料之最佳模型,也可從結果報表中獲取資料之特性,更進一步地可以進行所需的決策。 關鍵字:雲端運算、資料採礦、分類模型 / In resent years, the rise of data mining and cloud computing has led many enterprises have been offering services related to cloud computing, or using data mining techniques to understand customer behaviors. Data mining is a tool not only for enterprises, but also for general non-business users who often face making decisions. In order to enable general users to easily assess the software and save time and costs, this study proposes a classification system of data mining constructed by RExcel and Excel VBA, which is based on cloud computing.   In this study, the target variable is divided into three types: digital continuous, digital categorical and literal categorical. The classification system is in accordance with the different types of target variables, taking different classification models to analyze user’s data. Taking three data as examples, respectively, uploading them to the system, then the analysis results will be present to the user in the way of page preview. The user can use MAPE values to evaluate classification models with regard to the results of the data for the continuous target variable, and use correct rate to evaluate classification models with regard to the results of the data for the categorical target variable.   Users can take simple steps to operate the system, select the best model which can explain the data, and obtain the characteristics of the data from the result reports, further to the necessary decision-making. Keyword: cloud computing, data mining, classification models
29

資料採礦在網路消費行為預測模型之應用 / The Application of Data Mining on a Model of Online Consumer Behavior

曾仁人 Unknown Date (has links)
隨著科技進步、經濟演進,現代人生活日趨緊湊,為因應快速之生活步調,網路購物行為孕育而生,其伴隨而來的廣大商機已成近年熱門議題,中央通訊社更曾報導資策會預估2015年台灣網購市場產值可達7,645億元。因此本研究將利用行政院國家科學委員會之傳播調查資料庫,第一期第二次「網路行為調查與偵測」資料,探討網路消費者的個人特質與購買習性、消費力及資訊搜尋習性之關連,並分別建構預測模型。建構模型所採用之技術為羅吉斯迴歸、C&R Tree、Quest、C5.0和CHAID,再經由準確預測率(Overall Accuracy)從中挑選出最適模型。   依據研究結果可知,現實環境人際互動較差之消費者,網購購買習性佳;沒有小孩且平均每月收入6萬元以上至10萬元的消費者,網購消費力大;且網路資訊擷取頻率與網購吸引力對於網購資訊搜尋習性有顯著影響。最後,藉由前述結果建議,販售社交商品,藉以提昇現實環境人際互動較佳之消費者網購購買習性;搶攻高價位單品市場,吸引無經濟負擔者目光;針對潛在客戶,利用論壇網站進行廣告宣傳。
30

應用資料採礦技術於電影市場研究 / Application of Data Mining Techniques to Film Market Research

蔡依庭, Tsai, Yi-Ting Unknown Date (has links)
就當前電影市場的現況來看,電影發行成本的節節升高,顧客需求的複雜多變,再加上電影消費集中化趨勢越趨明顯的事實,不論是從電影發行公司或是電影映演事業的角度來看,如何透過對於市場顧客需求、行為的解讀,清楚分隔市場,並為不同市場區隔設計不同的產品及行銷組合已經成了電影工業刻不容緩的課題。 有鑑於此,本研究透過應用資料採礦之技術,選用四個決策樹(C&RT、QUEST、CHAID、C5.0)、邏輯斯迴歸以及類神經網路等方式進行模型建置,由於決策樹CHAID對於「是否去電影院看外片或國片」及「是否去電影院看電影」兩種不同的目標變數,其不論是在整體預測正確率、準確度、反查率,皆是高於其他模型,故最後兩個目標變數皆選擇CHAID此一模型,而目標變數為「是否去電影院看電影」之CHAID模型表現也較好,故主要以其結果為主。 透過目標變數為「是否去電影院看電影」之CHAID模型,共獲得十三項影響「是否去電影院看電影」之相關變數,並根據分析結果,將電影市場顧客區分為最高貢獻顧客、一般貢獻顧客及低度貢獻顧客三類,將其歸納出並找出三種不同貢獻程度的顧客族群特性,而三種不同貢獻族群在「年齡」、「教育程度」、「娛樂文化支出」、「居住地區」、「是否上網瀏覽資訊網頁」、「是否上網蒐集資訊」、「是否會收看電視外片」、「是否看電視歐美影集」、「是否會說英文」、「是否上網線上觀賞影片」、「經濟富裕」、「即時行樂」均呈現顯著的差異,故本研究以不同貢獻程度族群特性為主,以看外片或國片之族群特性為輔,作為行銷策略建議之依據。 / Considering the current film market, the publication cost of a film is steadily increased. Meanwhile, customers have complicated requirements, and the trend of concentrated film consumption is gradually clear. For the perspective of both film companies and film broadcasting business, clear market segmentation after understanding customers’ needs and interpretation of customer behaviors to design different products and marketing combination for different markets are of great urgency for the general film industry. In view of this, the study aims to using four Decision Trees(C&RT, QUEST, CHAID, C5.0), Logistic Regression, and Artificial Neural Network to construct the model by applying Data Mining technology. Since Decision Tree-CHAID is excellent in the forecast accuracy, precision, and recall rate as compared to other models for response variables of going to the movies and going to foreign movies or Taiwan movies, the CHAID is adopted in this research for both response variables. The CHAID is more excellent for the response variable of going to the movies than the other, so use it as the main result. Through using Decision Tree-CHAID, this study identified thirteen factors that have greater impact on going to the movies. Based on the analysis results, this study induced the characteristics of three customer groups-the highest contribution customers, regular contribution customers and low contribution customers. Three different contribution groups shows significant differences at age, education, entertainment expenditure, living area, internet surfing, collecting information from internet, watch foreign movies, watch foreign drama, speak English, watch on-lines movies, affluent, and seize the day. This study mainly based on the characteristics of the three different groups, and group characteristic of going to foreign movies or Taiwan movies as auxiliary, to provide the marketing portfolio strategy recommendations.

Page generated in 0.2502 seconds