• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 22
  • 17
  • 1
  • Tagged with
  • 217
  • 119
  • 65
  • 50
  • 31
  • 29
  • 29
  • 28
  • 28
  • 28
  • 28
  • 26
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Elaboration de multimatériaux multifonctionnels par métallurgie des poudres Mécanismes de frittage de bimatériaux

Thomazic, A. 11 January 2010 (has links) (PDF)
Le procédé d'élaboration de multimatériaux par métallurgie des poudres est employé pour combiner des propriétés complémentaires en minimisant le nombre d'étapes. Afin de comprendre les phénomènes mis en jeu et d'établir une méthodologie d'étude, un bimatériau modèle base Fe/base WC, comportant uniquement trois éléments, a été étudié. La méthodologie est basée sur une approche physicochimique, l'étude du frittage de chaque monomatériau puis du bimatériau. Ces résultats ont été appliqués au frittage du bimatériau acier X120Mn12/carbure, associant ténacité et dureté. La même méthodologie a été mise en oeuvre pour réaliser le frittage d'un bimatériau acier 1.4313/Stellite 6, associant résistance mécanique et résistance à la corrosion. Ces études ont montré l'importance des interactions chimiques et mécaniques à l'interface des deux couches au cours du frittage de bimatériaux.
92

Développement de nouvelles biocéramiques par consolidation à basse température d'apatites nanocristallines biomimétiques

Rollin-Martinet, Sabrina 10 November 2011 (has links) (PDF)
Des apatites nanocristallines biomimétiques (ANB), de formule Ca10-x-Z(PO4)6-x(HPO4)x(OH)2-x-2Z, (H2O)n, ont été synthétisées par précipitation en milieu aqueux puis consolidées par frittage flash (Spark Plasma Sintering, SPS). Elles sont composées de nanocristaux munis d'un coeur apatitique entouré d'une couche phosphocalcique hydratée de surface contenant des ions phosphate, hydrogénophosphate et calcium "non-apatitiques" mobiles et facilement échangeables, qui leur confère une forte réactivité. La composition chimique, la structure et la morphologie des nanocristaux synthétisés évoluent avec le vieillissement en solution et ils tendent vers une plus grande stabilité thermodynamique. Bien que la teneur en espèces chimiques non-apatitiques diminue dans la couche hydratée, leur présence reste importante même après une longue maturation. Le procédé de frittage par SPS à basse température (150°C) de ces ANB a permis d'élaborer des céramiques poreuses fortement cohésives. Le phénomène de frittage ainsi observé suggère une consolidation de type "fusion cristalline" qui met à contribution la forte réactivité de surface des nanocristaux via leur couche hydratée de surface. Le module d'élasticité (12 à 35 GPa) et la résistance à la rupture en flexion (environ 10 MPa) de ces céramiques sont voisins de ceux du minéral osseux. De plus, la taille nanométrique des cristaux, bénéfique à la biorésorption après implantation en site osseux, et la présence d'espèces ioniques nonapatitiques mobiles favorable à la bioactivité sont préservées après SPS. Ces propriétés offrent aux céramiques d'ANB un potentiel particulièrement intéressant pour des applications en ingénierie tissulaire osseuse.
93

Modélisation numérique du procédé de frittage flash

Mondalek, Pamela 07 December 2012 (has links) (PDF)
Le SPS (Spark plasma sintering) ou frittage flash est une technique innovante de compaction de poudre. Ce procédé fait intervenir le courant électrique pour chauffer l'échantillon en appliquant simultanément une pression. Grâce à la vitesse de chauffage, le procédé SPS apparaît comme étant une technologie prometteuse dans le secteur aéronautique servant à produire des matériaux denses à microstructure fine, composés par des intermétalliques difficiles à fondre, à former et à usiner avec les procédés conventionnels. Cependant, la fabrication de formes complexes est problématique à cause des hétérogénéités en densité qui peuvent apparaître lors de la compaction et qui proviennent de la distribution de la température et des contraintes dans la poudre compactée. La distribution du courant, de la température et des contraintes, ainsi que leurs différents effets, font l'objet d'une large étude, étant responsables de l'homogénéité de la microstructure. Une modélisation numérique 3D du procédé est réalisée, dans le cadre de la librairie CimLib. Elle englobe trois problèmes physiques fortement couplés : électrique, thermique et mécanique. Nous utilisons une approche monolithique qui consiste à résoudre une équation pour chaque problème sur un maillage unique représentant outils et poudre. Tout d'abord le couplage électrique-thermique est modélisé et les simulations numériques sont validées. Une loi de comportement viscoplastique compressible s'appuyant sur un modèle d'Abouaf est utilisée pour modéliser la densification de la poudre de TiAl. Ce modèle est validé par plusieurs cas tests de compaction de poudre dans un contexte lagrangien puis eulérien avant de passer à une simulation complète de couplage électrique-thermique-mécanique. Dans ce contexte monolithique, nous développons un modèle pour prendre en compte les effets du frottement entre la poudre et le moule. Enfin, la loi de comportement utilisée est identifiée pour la poudre intermétallique de TiAl. Le frittage par SPS d'échantillons de différentes tailles est simulé. Les résultats en termes de distribution de densité et déplacement sont validés grâce à une comparaison avec l'expérience.
94

Impression de silicium par procédé jet d'encre : des nanoparticules aux couches minces fonctionnelles pour applications photovoltaïques

Drahi, Etienne 21 March 2013 (has links) (PDF)
Cette étude prend place dans le cadre du projet ANR Inxilicium visant à la réalisation de cellules solaires en couches minces de silicium par jet d'encre. Les nanoparticules de silicium sont des matériaux à fort potentiel pour la levée de verrous technologiques grâce à leurs propriétés spécifiques. Des encres de nanoparticules de Si issues de diverses méthodes de synthèse ont été imprimées par jet d'encre sur différents substrats : quartz, électrodes métalliques (aluminium, molybdène) et transparente conductrice (ZnO:Al). L'optimisation du procédé d'impression, de l'interaction encre/substrat (via la modulation de l'énergie de surface des substrats) et de l'étape de séchage a permis l'obtention de couches minces homogènes et continues (plusieurs centaines de nm à quelques µm d'épaisseur)A posteriori, une étape de recuit est nécessaire pour recouvrer des propriétés fonctionnelles. L'utilisation de nanoparticules à la physico-chimie de surface contrôlée fait décroître les températures de frittage de 1100 °C à environ 600 °C. En complément, des recuits sélectifs (micro-ondes et photonique) ont été évalués pour leur application sur des substrats flexibles et bas coûts.Les propriétés optiques et les interfaces électrode/silicium ont été examinées afin d'intégrer ces couches dans des dispositifs (cellule solaire...). La formation de transitions métallurgiques Al-Si et Mo-Si a été étudiées par DRX-in situ. L'ensemble de ces travaux a permis la réalisation d'une jonction PN montrant un comportement photovoltaïque à fort champ grâce aussi à la mise au point d'une méthode innovante de collage ouvrant la voie à une réduction du bilan thermique des procédés de fabrication.
95

Évolution thermique des alumines de transition. Modélisation

Dauzat, Marc 13 October 1989 (has links) (PDF)
Le traitement thermique à 1378 K d'une alumine gamma de haute surface spécifique met en évidence plusieurs phénomènes qui modifient considérablement les caractéristiques structurales et texturales du matériau: une importante chute et surface spécifique connue sous le nom de frittage initial des poudres qui se produit lors de la transformation de l'alumine gamma en alumine delta. Expérimentalement, ce phénomène est fortement influence par la présence de vapeur d'eau, ou, dans certains cas par la pression partielle d'oxygène gazeux; une réorganisation du sous-réseau cationique assimilée a un saut des cations aluminium des sites divalents de la structure spinelle vers les sites trivalents des alumines de transition. Cette transformation permet d'obtenir la phase thêta; une précipitation de la seule forme stable à haute température, la phase alpha ou corindon. Cette transformation survient après des hydroxylation complète du matériau. Ces trois phénomènes sont fortement influences par l'addition de cations étrangers: en fonction de la concentration et des caractéristiques de ces cations ces différents phénomènes peuvent être soit ralentis soit accélérés.
96

Etude fondamentale de la transformation du polyamide 12 par frittage laser : mécanismes physico-chimiques et relations microstructures/propriétés

Dupin, Stéphane 05 July 2012 (has links) (PDF)
Les procédés de fabrication additive permettent, à partir d'un fichier de CAO, la fabrication de pièces complexes sans outillage, dans des délais de développement très courts et avec une grande flexibilité. Parmi les procédés de fabrication additive employés avec les polymères, le frittage laser de poudre est le plus utilisé. Ces travaux de thèse sont consacrés à l'étude et la compréhension des mécanismes fondamentaux impliqués lors du procédé de frittage laser de poudres de polyamide 12. Au cours du procédé de frittage laser de nombreux paramètres interviennent. Ainsi l'énergie fournie à la poudre par l'intermédiaire du rayon laser dépend de la puissance de celui-ci, de la vitesse de balayage et de l'espacement entre deux balayages successifs. De plus, le matériau subit un cycle thermique sévère : avant d'être frittée, la poudre est préchauffée. Puis, dans le bac de fabrication, la poudre non frittée ainsi que les pièces séjournent pendant toute la durée de la fabrication à des températures élevées. Cette histoire thermique entraîne un vieillissement et donc une modification des propriétés de la poudre ce qui complique sa réutilisation. L'influence de ces différents paramètres sur la microstructure et les propriétés mécaniques des pièces finales a été mise en évidence. De plus l'utilisation de différentes poudres de polyamide 12 a permis l'identification des paramètres-clés de la matière.Le frittage laser des polymères semi-cristallins est régi par plusieurs mécanismes fondamentaux : la fusion des particules de poudre, l'interdiffusion des chaînes macromoléculaires aux interfaces, la coalescence des particules fondues, la densification et enfin la cristallisation. L'étude et la modélisation de la cristallisation ont été effectuées pour l'un des polyamides 12 employés au cours de cette thèse. De ce traitement théorique ont pu être déduits les temps de maintien du polymère à l'état fondu au cours du procédé. Dans une seconde phase, des analyses rhéologiques menées dans le cadre de la viscoélasticité linéaires des polymères à l'état fondu ont permis de déduire les temps d'interdiffusion des chaînes macromoléculaires. Par ailleurs, le processus de coalescence des particules de poudres à l'état fondu a été suivi expérimentalement et modélisé pour différentes températures. Ces temps ont été confrontés à la durée de maintien du polymère à l'état fondu, confirmant ainsi la bonne consolidation obtenue lors du frittage du polyamide 12. En conclusion, ce travail contribue à la compréhension des différents mécanismes physico-chimiques intervenant au cours du frittage laser : il permet d'expliciter de façon assez approfondie les relations entre les propriétés des poudres, les paramètres du procédé et les propriétés finales des pièces. De nombreuses préconisations relatives à l'optimisation des propriétés des poudres pourront être déduites de ce travail et aideront au développement de nouveaux matériaux adaptés à ce procédé.
97

Obtention d'alumines α dopées polycristallines transparentes par Spark Plasma Sintering

Lallemant, Lucile 28 September 2012 (has links) (PDF)
L'élaboration de céramiques polycristallines transparentes constitue un défi technologique important. Les matériaux transparents actuellement utilisés (verres ou monocristaux) possèdent des propriétés mécaniques (dureté, résistance à l'usure) et physico-chimiques (résistance à la corrosion) moins intéressantes que celles des céramiques polycristallines. Par ailleurs, le coût de production de ces dernières est inférieur à celui des monocristaux. Les deux principaux paramètres à contrôler afin d'augmenter les propriétés optiques de l'alumine alpha polycristalline sont sa porosité, comme pour tout matériau transparent, et sa taille de grains, du fait de sa biréfringence. Aussi on cherchera à obtenir après frittage un matériau possédant une très faible porosité (inférieure à 0,05%) avec une distribution fine en taille de pores centrée sur des porosités nanométriques, et une taille de grains très fine (plus grand que 0,5 µm). Actuellement, cette microstructure particulière est obtenue en ~ 15 heures en combinant un frittage naturel suivi d'un traitement par Hot Isostatic Pressing (HIP). La technique de Spark Plasma Sintering (SPS) utilisée dans cette étude permet d'obtenir des céramiques denses possédant une microstructure fine en des temps plus courts. Premièrement, un protocole d'élaboration d'une alumine pure transparente a été mis au point. Il repose sur la préparation de crus à microstructure contrôlée avant l'étape de frittage. Principalement, ils doivent présenter une distribution fine en taille de pores avec un empilement particulaire macroscopique homogène dépourvu d'agglomérats. Le cycle de frittage SPS a également été optimisé afin d'obtenir les meilleures transmissions optiques possibles. Ensuite, un protocole de dopage par des inhibiteurs de croissance de grains a été optimisé. La nature du sel dopant influe au second ordre sur les propriétés optiques des échantillons par rapport à une calcination préalable au frittage. La nature et/ou la quantité de dopant induisent un décalage plus ou moins important de la densification vers les hautes températures. Le cycle de frittage SPS doit donc être adapté en conséquence. Le taux de dopant doit être optimisé afin d'obtenir une microstructure fine après frittage sans présence de particules de seconde phase. Différents dopants ont été comparés (magnésium Mg, lanthane La et zirconium Zr) et l'échantillon possédant les meilleures propriétés optiques a été obtenu grâce à un dopage à 200 cat ppm de lanthane. Des optimisations au niveau de la morphologie des poudres (plus fines et plus sphériques) et de la préparation des suspensions d'alumine alpha dopées au lanthane (lavage par centrifugation) ont permis d'obtenir l'un des meilleurs échantillons d'alumine transparente reporté dans la littérature. Il possède une transmission optique de 68% et une taille de grains de l'ordre de 300 nm. Ses propriétés mécaniques (dureté, résistance à l'abrasion) sont supérieures à celles d'un monocristal de saphir.
98

Combustible nucléaire UO2 à microstructures pilotées : compréhension des mécanismes d'élaboration et du comportement mécanique en température

Ndiaye, Abibatou 26 November 2012 (has links) (PDF)
Cette étude s'inscrit dans le cadre de l'amélioration des performances du combustible nucléaire utilisé dans les centrales actuelles, élaboré par frittage de poudres d'UO2. Elle vise à relier les caractéristiques de la poudre à la microstructure des frittés, et cette dernière aux propriétés mécaniques à des températures représentatives du fonctionnement des réacteurs. Pour l'étude du frittage, nous avons préparé des poudres d'UO2 aux caractéristiques définies et reproductibles, plus simples que les poudres industrielles, par broyage (désagglomération) ou en utilisant des séquences de traitements d'oxydation, de réduction et de broyage. Le frittage a été réalisé sous atmosphère réductrice. Le suivi dilatométrique de la densification de ces poudres " modèles " et la caractérisation des microstructures obtenues par analyse d'images ont montré le rôle prépondérant d'une caractéristique de la poudre, la fraction de fines particules dans la poudre, et d'un paramètre du procédé, la vitesse de chauffage. Des essais mécaniques de compression à vitesse de déformation imposée (DVC) et à contrainte imposée (fluage) ont été réalisés sur des pastilles frittées à partir de poudres industrielles d'UO2 et de poudres légèrement simplifiées (désagglomérées). Ils ont montré l'effet prépondérant des conditions de sollicitation sur les mécanismes de déformation dans le domaine viscoplastique. Les mécanismes mis en jeu ont été identifiés, ainsi que leur domaine de prédominance en fonction de la contrainte (ou de la vitesse de déformation) et de la taille des grains, et de la température d'essai. Les seuils correspondants ont été déterminés.La caractérisation des microstructures déformées (observations macroscopiques, microscopie optique, MEB) a mis en évidence que la seule exploitation des courbes d'essais de compression est insuffisante pour analyser le comportement mécanique à haute température des frittés d'UO2. Un endommagement significatif des microstructures a été observé. Son amorçage et son évolution en fonction du taux de déformation atteint et de la microstructure ont été étudiés.
99

Etude des mécanismes d'oxydation et de frittage de poudres de silicium en vue d'applications photovoltaïques

Lebrun, Jean-marie 24 October 2012 (has links) (PDF)
La conversion photovoltaïque présente de nombreux avantages. Actuellement, les technologiesbasées sur l'élaboration de wafers de silicium cristallins dominent le marché, mais sont responsablesde pertes de matières importantes, très néfastes au coût de production des cellules. Le défi à releverest donc la réalisation de matériaux bas coûts en silicium par un procédé de métallurgie des poudres.Cependant, le frittage du silicium est dominé par des mécanismes de grossissement de grains quirendent la densification difficile par frittage naturel. Dans la littérature, l'identification de cesmécanismes est sujette à controverse. En particulier, le rôle de la couche d'oxyde natif (SiO2) à lasurface des particules de silicium reste inexploré. Dans ce manuscrit, l'influence de l'atmosphère surla réduction de cette couche de silice au cours du frittage est étudiée par analysethermogravimétrique. Les cinétiques de réduction sont en accord avec un modèle thermochimiqueprenant en compte, les quantités d'oxygène initialement présentes dans poudre, la pression partielleen espèces oxydantes autour de l'échantillon et l'évolution de la porosité du fritté. Pour la premièrefois, des données expérimentales permettent de montrer que la couche de silice inhibe legrossissement de grain. Des nouveaux procédés, basés sur un contrôle de l'atmosphère enmonoxyde de silicium (SiO(g)) autour de l'échantillon, sont alors proposés afin de maitriser la stabilitéde cette couche. Bien que la couche d'oxyde retarde les cinétiques de diffusion en volume, sonmaintien à des températures de 1300 - 1400 °C permet d'améliorer significativement la densification.Dans ces conditions, le comportement au frittage du silicium peut être séparé en deux étapes,clairement mises en évidences par la présence de deux pics de retrait sur les courbes de dilatométrie.Ce résultat est inhabituel compte tenu de l'aspect monophasé du matériau étudié. Cependant, il peutêtre expliqué à l'aide d'un modèle cinétique de frittage, basé sur des simplifications géométriques enaccord avec l'évolution microstructurale du matériau.
100

Evolution de la microstructure lors du frittage de capacités céramiques multicouches : nanotomographie et simulations discrètes.

Yan, Zilin 17 October 2013 (has links) (PDF)
Les condensateurs multicouches en céramique (Multilayer Ceramic Capacitors, MLCCs) sont des composants passifs clés de l'électronique moderne. Les MLCCs sont constitués d'une alternance d'électrodes métalliques et de couches diélectriques de céramique. Les puces ultraminces sont composées de mélanges de couches micrométriques métalliques et céramiques et d'additifs de céramique de taille nano. Un certain nombre de défauts tels que des fissures, des délaminations des couches et des discontinuités au sein de l'électrode, peuvent survenir dans la fabrication de ces MLCCs ultraminces. Un dispositif expérimental à rayons X (TXM, Transmission X-ray Microscope) avec une résolution spatiale de 30 nm au synchrotron APS (Advanced Photon Source, USA) a été utilisé pour caractériser un volume cylindrique représentatif de Ø 20 µm × 20 µm extrait d'une puce 0603 (1,6 mm × 0,8 mm) au nickel (Ni) + titanate de baryum (BaTiO3, ou BT) avant et après frittage sous argon hydrogéné (2%). La tomographie 3D de la microstructure montre que les discontinuités de l'électrode finale sont liées à des hétérogénéités initiales dans les couches d'électrodes. La radiographie in-situ aux rayons X pendant le frittage (vitesse de chauffage de 10 °C/mn, température de maintien à 1200 °C pendant 1 heure, puis refroidissement à 15 oC/min) d'un volume représentatif d'électrode au palladium (+ baryum-néodyme-titanate) confirme bien que les discontinuités dans l'électrode proviennent de l'hétérogénéité initiale de la poudre, qui est lié à la nature du compactage d'un matériau particulaire. La discontinuité se produit à l'étape précoce du cycle de frittage. A ce stade, l'électrode métallique commence à fritter tandis que le matériau diélectrique peut être considéré comme un substrat inerte qui contraint le frittage de l'électrode.Des études corrélatives utilisant un FIB-SEM (Focused Ion Beam Scanning Electron-microscopie) en tomographie à haute résolution (5 × 5 × 5 nm3) ont été effectuées sur des échantillons MLCC à vert et frittés. Elles confirment que la résolution de la nanotomographie X est suffisante pour étudier l'évolution des hétérogénéités. Cependant la tomographie par FIB permet à la nanotomographie X d'être réinterprétée avec plus de précision. D'autre part, le FIB fournit les paramètres des particules pour les simulations DEM.La méthode des éléments discrets (DEM) a été utilisée pour simuler la microstructure du système multicouche lors du frittage. Tout d'abord, le frittage de la matrice de nickel avec inclusions BT a été simulé en utilisant le code dp3D. Nous avons pu montrer que la vitesse de densification de la matrice diminue avec l'augmentation la fraction volumique d'inclusions et avec la diminution de la taille des inclusions. Pour une fraction volumique donnée, et une taille d'inclusions donnée, une meilleure dispersion des inclusions conduit à un retard plus marqué de la densification du frittage de la matrice de nickel.Le co-frittage de multicouches de BT/Ni/BT a été simulé en tenant compte des informations collectées à partir de la tomographie FIB-SEM à résolution élevée (taille des particules, distribution de taille, hétérogénéités, et pores). On constate que les discontinuités d'électrodes proviennent des hétérogénéités initiales dans le comprimé à vert et se forment au début de frittage sous contrainte. Ces résultats de simulation sont en bonne correspondance avec les observations expérimentales. Une étude paramétrique indique que les discontinuités d'électrodes peuvent être minimisées par l'homogénéisation de la compacité, par l'augmentation de l'épaisseur des électrodes et par l'utilisation d'un chauffage rapide.A partir des résultats expérimentaux et des simulations DEM, une conclusion générale peut être avancée: la discontinuité finale provient de l'hétérogénéité initiale dans les couches d'électrodes et survient à un stade précoce de frittage lorsque les couches diélectriques contraignent les couches d'électrodes

Page generated in 0.0623 seconds