61 |
Erweiterung des CRC-Karten-Konzeptes um RollenHamann, Markus 11 January 2018 (has links) (PDF)
Die rollenbasierte Modellierung ist ein aktueller Forschungszweig, welcher Verfahren für die Analyse und die Lehre benötigt. Zu diesem Zweck präsentiert die Arbeit eine Erweiterung des klassischen, objektorientierten CRC-Karten-Verfahrens um rollenbasierte Konzepte. Diese basiert auf grundlegenden Eigenschaften rollenbasierter Elemente, wie Rollen, Objekte und Kontexte, welche modular in das CRC-Karten- Verfahren eingebunden werden. Weiterhin soll anhand einer empirische Studie ermittelt werden, wie gut das rollenerweiterte R-CRC-Karten-Verfahren für die Aufgaben in Analyse und Lehre geeignet ist. Das R-CRC-Karten-Verfahren soll letztendlich eine effiziente Möglichkeit bieten, Problemstellungen rollenbasiert zu analysieren und rollenbasierte Konzepte in der Lehre zu vermitteln.
|
62 |
Scalable High Efficiency Video Coding : Cross-layer optimizationHägg, Ragnar January 2015 (has links)
In July 2014, the second version of the HEVC/H.265 video coding standard was announced, and it included the Scalable High efficiency Video Coding (SHVC) extension. SHVC is used for coding a video stream with subset streams of the same video with lower quality, and it supports spatial, temporal and SNR scalability among others. This is used to enable easy adaption of a video stream, by dropping or adding packages, to devices with different screen sizes, computing power and bandwidth. In this project SHVC has been implemented in Ericsson's research encoder C65. Some cross-layer optimizations have also been implemented and evaluated. The main goal of these optimizations are to make better decisions when choosing the reference layer's motion parameters and QP, by doing multi-pass coding and using the coded enhancement layer information from the first pass.
|
63 |
Managing and Consuming Completeness Information for RDF Data SourcesDarari, Fariz 04 July 2017 (has links) (PDF)
The ever increasing amount of Semantic Web data gives rise to the question: How complete is the data? Though generally data on the Semantic Web is incomplete, many parts of data are indeed complete, such as the children of Barack Obama and the crew of Apollo 11. This thesis aims to study how to manage and consume completeness information about Semantic Web data. In particular, we first discuss how completeness information can guarantee the completeness of query answering. Next, we propose optimization techniques of completeness reasoning and conduct experimental evaluations to show the feasibility of our approaches. We also provide a technique to check the soundness of queries with negation via reduction to query completeness checking. We further enrich completeness information with timestamps, enabling query answers to be checked up to when they are complete. We then introduce two demonstrators, i.e., CORNER and COOL-WD, to show how our completeness framework can be realized. Finally, we investigate an automated method to generate completeness statements from text on the Web via relation cardinality extraction.
|
64 |
兩晉南北朝南北文化文流的途徑及其對文學的影響 = A study of cultural exchanges of the southern and northern culture during the two Jin, and the Southern and Northern dynastics and their influence in literature簡漢乾, 01 January 2012 (has links)
No description available.
|
65 |
Distance-based methods for the analysis of Next-Generation sequencing dataOtto, Raik 14 September 2021 (has links)
Die Analyse von NGS Daten ist ein zentraler Aspekt der modernen genomischen Forschung. Bei der Extraktion von Daten aus den beiden am häufigsten verwendeten Quellorganismen bestehen jedoch vielfältige Problemstellungen.
Im ersten Kapitel wird ein neuartiger Ansatz vorgestellt welcher einen Abstand zwischen Krebszellinienkulturen auf Grundlage ihrer kleinen genomischen Varianten bestimmt um die Kulturen zu identifizieren. Eine Voll-Exom sequenzierte Kultur wird durch paarweise Vergleiche zu Referenzdatensätzen identifiziert so ein gemessener Abstand geringer ist als dies bei nicht verwandten Kulturen zu erwarten wäre. Die Wirksamkeit der Methode wurde verifiziert, jedoch verbleiben Einschränkung da nur das Sequenzierformat des Voll-Exoms unterstützt wird.
Daher wird im zweiten Kapitel eine publizierte Modifikation des Ansatzes vorgestellt welcher die Unterstützung der weitläufig genutzten Bulk RNA sowie der Panel-Sequenzierung ermöglicht. Die Ausweitung der Technologiebasis führt jedoch zu einer Verstärkung von Störeffekten welche zu Verletzungen der mathematischen Konditionen einer Abstandsmetrik führen. Daher werden die entstandenen Verletzungen durch statistische Verfahren zuerst quantifiziert und danach durch dynamische Schwellwertanpassungen erfolgreich kompensiert.
Das dritte Kapitel stellt eine neuartige Daten-Aufwertungsmethode (Data-Augmentation) vor welche das Trainieren von maschinellen Lernmodellen in Abwesenheit von neoplastischen Trainingsdaten ermöglicht. Ein abstraktes Abstandsmaß wird zwischen neoplastischen Entitäten sowie Entitäten gesundem Ursprungs mittels einer transkriptomischen Dekonvolution hergestellt. Die Ausgabe der Dekonvolution erlaubt dann das effektive Vorhersagen von klinischen Eigenschaften von seltenen jedoch biologisch vielfältigen Krebsarten wobei die prädiktive Kraft des Verfahrens der des etablierten Goldstandard ebenbürtig ist. / The analysis of NGS data is a central aspect of modern Molecular Genetics and Oncology.
The first scientific contribution is the development of a method which identifies Whole-exome-sequenced CCL via the quantification of a distance between their sets of small genomic variants. A distinguishing aspect of the method is that it was designed for the computer-based identification of NGS-sequenced CCL. An identification of an unknown CCL occurs when its abstract distance to a known CCL is smaller than is expected due to chance. The method performed favorably during benchmarks but only supported the Whole-exome-sequencing technology.
The second contribution therefore extended the identification method by additionally supporting the Bulk mRNA-sequencing technology and Panel-sequencing format. However, the technological extension incurred predictive biases which detrimentally affected the quantification of abstract distances. Hence, statistical methods were introduced to quantify and compensate for confounding factors. The method revealed a heterogeneity-robust benchmark performance at the trade-off of a slightly reduced sensitivity compared to the Whole-exome-sequencing method.
The third contribution is a method which trains Machine-Learning models for rare and diverse cancer types. Machine-Learning models are subsequently trained on these distances to predict clinically relevant characteristics. The performance of such-trained models was comparable to that of models trained on both the substituted neoplastic data and the gold-standard biomarker Ki-67. No proliferation rate-indicative features were utilized to predict clinical characteristics which is why the method can complement the proliferation rate-oriented pathological assessment of biopsies.
The thesis revealed that the quantification of an abstract distance can address sources of erroneous NGS data analysis.
|
66 |
Scalable time series similarity search for data analyticsSchäfer, Patrick 26 October 2015 (has links)
Eine Zeitreihe ist eine zeitlich geordnete Folge von Datenpunkten. Zeitreihen werden typischerweise über Sensormessungen oder Experimente erfasst. Sensoren sind so preiswert geworden, dass sie praktisch allgegenwärtig sind. Während dadurch die Menge an Zeitreihen regelrecht explodiert, lag der Schwerpunkt der Forschung in den letzten Jahrzehnten auf der Analyse von (a) vorgefilterten und (b) kleinen Zeitreihendatensätzen. Die Analyse realer Zeitreihendatensätze wirft zwei Probleme auf: Erstens setzen aktuelle Ähnlichkeitsmodelle eine Vorfilterung der Zeitreihen voraus. Das beinhaltet die Extraktion charakteristischer Teilsequenzen und das Entfernen von Rauschen. Diese Vorverarbeitung muss durch einen Spezialisten erfolgen. Sie kann zeit- und kostenintensiver als die anschließende Analyse und für große Datensätze unrentabel werden. Zweitens führte die Verbesserung der Genauigkeit aktueller Ähnlichkeitsmodelle zu einem unverhältnismäßig hohen Anstieg der Komplexität (quadratisch bis biquadratisch). Diese Dissertation behandelt beide Probleme. Es wird eine symbolische Zeitreihenrepräsentation vorgestellt. Darauf aufbauend werden drei verschiedene Ähnlichkeitsmodelle eingeführt. Diese erweitern den aktuellen Stand der Forschung insbesondere dadurch, dass sie vorverarbeitungsfrei, unempfindlich gegenüber Rauschen und skalierbar sind. Anhand von 91 realen Datensätzen und Benchmarkdatensätzen wird zusätzlich gezeigt, dass die hier eingeführten Modelle auf den meisten Datenätzen die höchste Genauigkeit im Vergleich zu 15 aktuellen Ähnlichkeitsmodellen liefern. Sie sind teilweise drei Größenordnungen schneller und benötigen kaum Vorfilterung. / A time series is a collection of values sequentially recorded from sensors or live observations over time. Sensors for recording time series have become cheap and omnipresent. While data volumes explode, research in the field of time series data analytics has focused on the availability of (a) pre-processed and (b) moderately sized time series datasets in the last decades. The analysis of real world datasets raises two major problems: Firstly, state-of-the-art similarity models require the time series to be pre-processed. Pre-processing aims at extracting approximately aligned characteristic subsequences and reducing noise. It is typically performed by a domain expert, may be more time consuming than the data mining part itself, and simply does not scale to large data volumes. Secondly, time series research has been driven by accuracy metrics and not by reasonable execution times for large data volumes. This results in quadratic to biquadratic computational complexities of state-of-the-art similarity models. This dissertation addresses both issues by introducing a symbolic time series representation and three different similarity models. These contribute to state of the art by being pre-processing-free, noise-robust, and scalable. Our experimental evaluation on 91 real-world and benchmark datasets shows that our methods provide higher accuracy for most datasets when compared to 15 state-of-the-art similarity models. Meanwhile they are up to three orders of magnitude faster, require less pre-processing for noise or alignment, or scale to large data volumes.
|
67 |
Performance Optimizations and Operator Semantics for Streaming Data Flow ProgramsSax, Matthias J. 01 July 2020 (has links)
Unternehmen sammeln mehr Daten als je zuvor und müssen auf diese Informationen zeitnah reagieren. Relationale Datenbanken eignen sich nicht für die latenzfreie Verarbeitung dieser oft unstrukturierten Daten. Um diesen Anforderungen zu begegnen, haben sich in der Datenbankforschung seit dem Anfang der 2000er Jahre zwei neue Forschungsrichtungen etabliert: skalierbare Verarbeitung unstrukturierter Daten und latenzfreie Datenstromverarbeitung.
Skalierbare Verarbeitung unstrukturierter Daten, auch bekannt unter dem Begriff "Big Data"-Verarbeitung, hat in der Industrie schnell Einzug erhalten. Gleichzeitig wurden in der Forschung Systeme zur latenzfreien Datenstromverarbeitung entwickelt, die auf eine verteilte Architektur, Skalierbarkeit und datenparallele Verarbeitung setzen. Obwohl diese Systeme in der Industrie vermehrt zum Einsatz kommen, gibt es immer noch große Herausforderungen im praktischen Einsatz.
Diese Dissertation verfolgt zwei Hauptziele: Zuerst wird das Laufzeitverhalten von hochskalierbaren datenparallelen Datenstromverarbeitungssystemen untersucht. Im zweiten Hauptteil wird das "Dual Streaming Model" eingeführt, das eine Semantik zur gleichzeitigen Verarbeitung von Datenströmen und Tabellen beschreibt.
Das Ziel unserer Untersuchung ist ein besseres Verständnis über das Laufzeitverhalten dieser Systeme zu erhalten und dieses Wissen zu nutzen um Anfragen automatisch ausreichende Rechenkapazität zuzuweisen. Dazu werden ein Kostenmodell und darauf aufbauende Optimierungsalgorithmen für Datenstromanfragen eingeführt, die Datengruppierung und Datenparallelität einbeziehen.
Das vorgestellte Datenstromverarbeitungsmodell beschreibt das Ergebnis eines Operators als kontinuierlichen Strom von Veränderugen auf einer Ergebnistabelle. Dabei behandelt unser Modell die Diskrepanz der physikalischen und logischen Ordnung von Datenelementen inhärent und erreicht damit eine deterministische Semantik und eine minimale Verarbeitungslatenz. / Modern companies are able to collect more data and require insights from it faster than ever before. Relational databases do not meet the requirements for processing the often unstructured data sets with reasonable performance. The database research community started to address these trends in the early 2000s. Two new research directions have attracted major interest since: large-scale non-relational data processing as well as low-latency data stream processing.
Large-scale non-relational data processing, commonly known as "Big Data" processing, was quickly adopted in the industry. In parallel, low latency data stream processing was mainly driven by the research community developing new systems that embrace a distributed architecture, scalability, and exploits data parallelism. While these systems have gained more and more attention in the industry, there are still major challenges to operate them at large scale.
The goal of this dissertation is two-fold: First, to investigate runtime characteristics of large scale data-parallel distributed streaming systems.
And second, to propose the "Dual Streaming Model" to express semantics of continuous queries over data streams and tables.
Our goal is to improve the understanding of system and query runtime behavior with the aim to provision queries automatically. We introduce a cost model for streaming data flow programs taking into account the two techniques of record batching and data parallelization. Additionally, we introduce optimization algorithms that leverage our model for cost-based query provisioning.
The proposed Dual Streaming Model expresses the result of a streaming operator as a stream of successive updates to a result table, inducing a duality between streams and tables. Our model handles the inconsistency of the logical and the physical order of records within a data stream natively,
which allows for deterministic semantics as well as low latency query execution.
|
68 |
Cuneiform / A Functional Language for Large-Scale Data AnalysisBrandt, Jörgen 29 January 2021 (has links)
In der Bioinformatik und der Next-Generation Sequenzierung benötigen wir oft große und komplexe Verarbeitungsabläufe um Daten zu analysieren. Die Werkzeuge und Bibliotheken, die hierin die Verarbeitungsschritte bilden, stammen aus unterschiedlichen Quellen und exponieren unterschiedliche Schnittstellen, was ihre Integration in Datenanalyseplattformen erschwert. Hinzu kommt, dass diese Verarbeitungsabläufe meist große Datenmengen prozessieren weshalb Forscher erwarten, dass unabhängige Verarbeitungsschritte parallel laufen. Der Stand der Technik im Feld der wissenschaftlichen Datenverarbeitung für Bioinformatik und Next-Generation Sequenzierung sind wissenschaftliche Workflowsysteme. Ein wissenschaftliches Workflowsystem erlaubt es Forschern Verarbeitungsabläufe als Workflow auszudrücken. Solch ein Workflow erfasst die Datenabhängigkeiten in einem Verarbeitungsablauf, integriert externe Software und erlaubt es unabhängige Verarbeitungsschritte zu erkennen, um sie parallel auszuführen.
In dieser Arbeit präsentieren wir Cuneiform, eine Workflowsprache, und ihre verteilte Ausführungsumgebung. Für Cuneiform's Design nehmen wir die Perspektive der Programmiersprachentheorie ein. Wir lassen Methoden der funktionalen Programmierung einfließen um Komposition und Datenabhängigkeiten auszudrücken. Wir nutzen operationelle Semantiken um zu definieren, wann ein Workflow wohlgeformt und konsistent ist und um Reduktion zu erklären. Für das Design der verteilten Ausführungsumgebung nehmen wir die Perspektive der verteilten Systeme ein. Wir nutzen Petri Netze um die Kommunikationsstruktur der im System beteiligten Agenten zu erklären. / Bioinformatics and next-generation sequencing data analyses often form large and complex pipelines. The tools and libraries making up the processing steps in these pipelines come from different sources and have different interfaces which hampers integrating them into data analysis frameworks. Also, these pipelines process large data sets. Thus, users need to parallelize independent processing steps. The state of the art in large-scale scientific data analysis for bioinformatics and next-generation sequencing are scientific workflow systems. A scientific workflow system allows researchers to describe a data analysis pipeline as a scientific workflow which integrates external software, defines the data dependencies forming a data analysis pipeline, and parallelizes independent processing steps. Scientific workflow systems consist of a workflow language providing a user interface, and an execution environment. The workflow language determines how users express workflows, reuse and compose workflow fragments, integrate external software, how the scientific workflow system identifies independent processing steps, and how we derive optimizations from a workflow's structure. The execution environment schedules and runs data processing operations.
In this thesis we present Cuneiform, a workflow language, and its distributed execution environment. For Cuneiform's design we take the perspective of programming languages. We adopt methods from functional programming towards composition and expressing data dependencies. We apply operational semantics and type systems to define well-formedness, consistency, and reduction of Cuneiform workflows. For the design of the distributed execution environment we take the perspective of distributed systems. We apply Petri nets to define the communication patterns among the distributed execution environment's agents.
|
69 |
State Management for Efficient Event Pattern DetectionZhao, Bo 20 May 2022 (has links)
Event Stream Processing (ESP) Systeme überwachen kontinuierliche Datenströme, um benutzerdefinierte Queries auszuwerten. Die Herausforderung besteht darin, dass die Queryverarbeitung zustandsbehaftet ist und die Anzahl von Teilübereinstimmungen mit der Größe der verarbeiteten Events exponentiell anwächst.
Die Dynamik von Streams und die Notwendigkeit, entfernte Daten zu integrieren, erschweren die Zustandsverwaltung. Erstens liefern heterogene Eventquellen Streams mit unvorhersehbaren Eingaberaten und Queryselektivitäten. Während Spitzenzeiten ist eine erschöpfende Verarbeitung unmöglich, und die Systeme müssen auf eine Best-Effort-Verarbeitung zurückgreifen. Zweitens erfordern Queries möglicherweise externe Daten, um ein bestimmtes Event für eine Query auszuwählen. Solche Abhängigkeiten sind problematisch: Das Abrufen der Daten unterbricht die Stream-Verarbeitung. Ohne eine Eventauswahl auf Grundlage externer Daten wird das Wachstum von Teilübereinstimmungen verstärkt.
In dieser Dissertation stelle ich Strategien für optimiertes Zustandsmanagement von ESP Systemen vor. Zuerst ermögliche ich eine Best-Effort-Verarbeitung mittels Load Shedding. Dabei werden sowohl Eingabeeevents als auch Teilübereinstimmungen systematisch verworfen, um eine Latenzschwelle mit minimalem Qualitätsverlust zu garantieren. Zweitens integriere ich externe Daten, indem ich das Abrufen dieser von der Verwendung in der Queryverarbeitung entkoppele. Mit einem effizienten Caching-Mechanismus vermeide ich Unterbrechungen durch Übertragungslatenzen. Dazu werden externe Daten basierend auf ihrer erwarteten Verwendung vorab abgerufen und mittels Lazy Evaluation bei der Eventauswahl berücksichtigt. Dabei wird ein Kostenmodell verwendet, um zu bestimmen, wann welche externen Daten abgerufen und wie lange sie im Cache aufbewahrt werden sollen. Ich habe die Effektivität und Effizienz der vorgeschlagenen Strategien anhand von synthetischen und realen Daten ausgewertet und unter Beweis gestellt. / Event stream processing systems continuously evaluate queries over event streams to detect user-specified patterns with low latency. However, the challenge is that query processing is stateful and it maintains partial matches that grow exponentially in the size of processed events.
State management is complicated by the dynamicity of streams and the need to integrate remote data. First, heterogeneous event sources yield dynamic streams with unpredictable input rates, data distributions, and query selectivities. During peak times, exhaustive processing is unreasonable, and systems shall resort to best-effort processing. Second, queries may require remote data to select a specific event for a pattern. Such dependencies are problematic: Fetching the remote data interrupts the stream processing. Yet, without event selection based on remote data, the growth of partial matches is amplified.
In this dissertation, I present strategies for optimised state management in event pattern detection. First, I enable best-effort processing with load shedding that discards both input events and partial matches. I carefully select the shedding elements to satisfy a latency bound while striving for a minimal loss in result quality. Second, to efficiently integrate remote data, I decouple the fetching of remote data from its use in query evaluation by a caching mechanism. To this end, I hide the transmission latency by prefetching remote data based on anticipated use and by lazy evaluation that postpones the event selection based on remote data to avoid interruptions. A cost model is used to determine when to fetch which remote data items and how long to keep them in the cache.
I evaluated the above techniques with queries over synthetic and real-world data. I show that the load shedding technique significantly improves the recall of pattern detection over baseline approaches, while the technique for remote data integration significantly reduces the pattern detection latency.
|
70 |
Querying a Web of Linked DataHartig, Olaf 28 July 2014 (has links)
In den letzten Jahren haben sich spezielle Prinzipien zur Veröffentlichung strukturierter Daten im World Wide Web (WWW) etabliert. Diese Prinzipien erlauben es, von den jeweils angebotenen Daten auf weitere, nach den selben Prinzipien veröffentlichten Daten zu verweisen. Die daraus resultierende Form von Web-Daten wird entsprechend als Linked Data bezeichnet. Mit der Veröffentlichung von Linked Data im WWW entsteht ein sehr großer Datenraum, welcher Daten verschiedenster Anbieter miteinander verbindet und neuartige Möglichkeiten für Web-basierte Anwendungen bietet. Als Basis für die Entwicklung solcher Anwendungen haben mehrere Forschungsgruppen begonnen, Ansätze zu untersuchen, welche diesen Datenraum als eine Art verteilte Datenbank auffassen und die Ausführung deklarativer Anfragen über dieser Datenbank ermöglichen. Forschungsarbeit zu theoretischen Grundlagen der untersuchten Ansätze fehlt jedoch nahezu vollständig. Die vorliegende Dissertation schließt diese Lücke. / During recent years a set of best practices for publishing and connecting structured data on the World Wide Web (WWW) has emerged. These best practices are referred to as the Linked Data principles and the resulting form of Web data is called Linked Data. The increasing adoption of these principles has lead to the creation of a globally distributed space of Linked Data that covers various domains such as government, libraries, life sciences, and media. Approaches that conceive this data space as a huge distributed database and enable an execution of declarative queries over this database hold an enormous potential; they allow users to benefit from a virtually unbounded set of up-to-date data. As a consequence, several research groups have started to study such approaches. However, the main focus of existing work is to address practical challenges that arise in this context. Research on the foundations of such approaches is largely missing. This dissertation closes this gap.
|
Page generated in 0.0421 seconds