• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 10
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 168
  • 168
  • 50
  • 36
  • 34
  • 27
  • 24
  • 24
  • 24
  • 24
  • 23
  • 21
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Nonlinear optical interactions in focused beams and nanosized structures

Amber, Zeeshan H., Spychala, Kai J., Eng, Lukas M., Rüsing, Michael 02 February 2024 (has links)
Thin-film materials from μm thickness down to single-atomic-layered 2D materials play a central role in many novel electronic and optical applications. Coherent, nonlinear optical (NLO) μ-spectroscopy offers insight into the local thickness, stacking order, symmetry, or electronic and vibrational properties. Thin films and 2D materials are usually supported on multi-layered substrates leading to (multi-) reflections, interference, or phase jumps at interfaces during μ-spectroscopy, which all can make the interpretation of experiments particularly challenging. The disentanglement of the influence parameters can be achieved via rigorous theoretical analysis. In this work, we compare two self-developed modeling approaches, a semi-analytical and a fully vectorial model, to experiments carried out in thin-film geometry for two archetypal NLO processes, second-harmonic and third-harmonic generation. In particular, we demonstrate that thin-film interference and phase matching do heavily influence the signal strength. Furthermore, we work out key differences between three and four photon processes, such as the role of the Gouy-phase shift and the focal position. Last, we can show that a relatively simple semi-analytical model, despite its limitations, is able to accurately describe experiments at a significantly lower computational cost as compared to a full vectorial modeling. This study lays the groundwork for performing quantitative NLO μ-spectroscopy on thin films and 2D materials, as it identifies and quantifies the impact of the corresponding sample and setup parameters on the NLO signal, in order to distinguish them from genuine material properties.
152

Memristors for Neuromorphic Logic

Petropoulos, Dimitrios Petros January 2022 (has links)
Novel devices are being investigated as artificial synapse candidates for neuromorphic computing. These memory devices share the characteristics of an electronic element called memristor. The memristor can be regarded as a resistor with a history dependent resistance, which mimics the plasticity of a biological synapse. The present work presents various types of candidate devices that have been proposed in neuromorphic research, describes how they mimic a biological synapse and how they can be employed in artificial neuron network architectures.
153

NANO-MATERIALS FOR MICROWAVE AND TERAHERTZ APPLICATIONS

Myers, Joshua 21 December 2015 (has links)
No description available.
154

Physical Vapor Deposition of Materials for Flexible Two Dimensional Electronic Devices

Hagerty, Phillip 17 May 2016 (has links)
No description available.
155

Synthesis of Vinylene-Linked Two-Dimensional Conjugated Polymers via the Horner–Wadsworth–Emmons Reaction

Pastoetter, Dominik L., Xu, Shunqi, Borrelli, Mino, Addicoat, Matthew, Biswal, Bishnu P., Paasch, Silvia, Dianat, Arezoo, Thomas, Heidi, Berger, Reinhard, Reineke, Sebastian, Brunner, Eike, Cuniberti, Gianaurelio, Richter, Marcus, Feng, Xinliang 21 May 2024 (has links)
In this work, we demonstrate the first synthesis of vinylene-linked 2D CPs, namely, 2D poly(phenylenequinoxalinevinylene)s 2D-PPQV1 and 2D-PPQV2, via the Horner–Wadsworth–Emmons (HWE) reaction of C2-symmetric 1,4-bis(diethylphosphonomethyl)benzene or 4,4′-bis(diethylphosphonomethyl)biphenyl with C3-symmetric 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino[2,3-a:2′,3′-c]phenazine as monomers. Density functional theory (DFT) simulations unveil the crucial role of the initial reversible C−C single bond formation for the synthesis of crystalline 2D CPs. Powder X-ray diffraction (PXRD) studies and nitrogen adsorption-desorption measurements demonstrate the formation of proclaimed crystalline, dual-pore structures with surface areas of up to 440 m2 g−1. More importantly, the optoelectronic properties of the obtained 2D-PPQV1 (Eg=2.2 eV) and 2D-PPQV2 (Eg=2.2 eV) are compared with those of cyano-vinylene-linked 2D-CN-PPQV1 (Eg=2.4 eV) produced by the Knoevenagel reaction and imine-linked 2D COF analog (2D-C=N-PPQV1, Eg=2.3 eV), unambiguously proving the superior conjugation of the vinylene-linked 2D CPs using the HWE reaction.
156

Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic Devices

Bandyopadhyay, Avra Sankar 12 1900 (has links)
In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1. We also examined the large exciton binding energy present in WSe2 through temperature-dependent Raman and photoluminescence spectroscopy, where localized exciton states perpetuated at 78 K that are gaining increasing attention for single photon emitters for quantum information processing. The exciton and phonon dynamics in 2D WSe2 were further analyzed to unveil other multi-body states besides localized excitons, such as trions whose population densities also evolved with temperature. The phonon lifetime, which is another interesting aspect of phonon dynamics, is calculated in 2D layered WSe2 using Raman spectroscopy for the first time and the influence of external stimuli such as temperature and laser power on the phonon behavior was also studied. Furthermore, we investigated the thermal properties in 2D WSe2 in a suspended architecture platform, and the thermal conductivity in suspended WSe2 was found to be ~ 1940 W/mK which was enhanced by ~ 4X when compared with substrate supported regions. We also studied the use of halide-assisted low-pressure chemical vapor deposition (CVD) with NaCl to help to reduce the growth temperature to ∼750 °C, which is lower than the typical temperatures needed with conventional CVD for realizing 1L WSe2. The synthesis of monolayer WSe2 with high crystalline and optical quality using a halide assisted CVD method was successfully demonstrated where the role of substrate was deemed to play an important role to control the optical quality of the as-grown 2D WSe2. For example, the crystalline, optical and optoelectronics quality in CVD-grown monolayer WSe2 found to improve when sapphire was used as the substrate. Our work provides fundamental insights into the electronic, optoelectronic and quantum properties of WSe2 to pave the way for high-performance electronic, optoelectronic, and quantum-optoelectronic devices using scalable synthesis routes.
157

Transition Metal Dichalcogenide Based Memory Devices and Transistors

Feng Zhang (7046639) 16 August 2019 (has links)
<div>Silicon based semiconductor technology is facing more and more challenges to continue the Moore's law due to its fundamental scaling limitations. To continue the pace of progress of device performance for both logic and memory devices, researchers are exploring new low-dimensional materials, e.g. nanowire, nanotube, graphene and hexagonal boron nitride. Transition metal dichalcogenides (TMDs) are attracted considerable attention due their atomically thin nature and proper bandgap at the initial study. Recently, more and more interesting properties are found in these materials, which will bring out more potential usefulness for electronic applications. Competing with the silicon device performance is not the only goal in the potential path finding of beyond silicon. Low-dimensional materials may have other outstanding performances as an alternative materials in many application realms. </div><div><br></div><div>This thesis explores the potential of TMD based devices in memory and logic applications. For the memory application, TMD based vertical devices are fully studied. Two-terminal vertical transition metal dichalcogenide (TMD) based memory selectors were firstly built and characterized, exhibiting better overall performance compared with some traditional selectors. Polymorphism is one of unique properties in TMD materials. 2D phase engineering in TMDs attracted great attention. While electric switching between semiconductor phase to metallic phase is the most desirable. In this thesis, electric field induced structural transition in MoTe<sub>2</sub> and Mo<sub>1-x</sub>W<sub>x</sub>Te<sub>2</sub> is firstly presented. Reproducible bipolar resistive random access (RRAM) behavior is observed in MoTe<sub>2</sub> and Mo<sub>1-x</sub>W<sub>x</sub>Te<sub>2</sub> based vertical devices. Direct confirmation of a phase transition from a 2H semiconductor to a distorted 2H<sub>d</sub> metallic phase was obtained after applying an electric field. Set voltage is changed with flake thickness, and switching speed is less than 5 ns. Different from conventional RRAM devices based on ionic migration, the MoTe<sub>2</sub>-based RRAMs offer intrinsically better reliability and control. In comparison to phase change memory (PCM)-based devices that operate based on a change between an amorphous and a crystalline structure, our MoTe<sub>2</sub>-based RRAM devices allow faster switching due to a transition between two crystalline states. Moreover, utilization of atomically thin 2D materials allows for aggressive scaling and high-performance flexible electronics applications. Both of the studies shine lights on the new application in the memory field with two-dimensional materials.<br></div><div><br></div><div>For the logic application, the ultra thin body nature of TMDs allows for more aggressive scaling compared with bulk material - silicon. Two aspects of scaling properties in TMD based devices are discussed, channel length scaling and channel width scaling. A tunability of short channel effects in MoS<sub>2</sub> field effect transistor (FET) is reported. The electrical performance of MoS<sub>2</sub> flakes is governed by an unexpected dependence on the effective body thickness of the device which in turn depends on the amount of intercalated water molecules that exist in the layered structure. In particular, we observe that the doping stage of a MoS<sub>2</sub> FET strongly depends on the environment (air/vacuum). For the channel width scaling, the impact of edge states in three types of TMDs, metallic T<sub>d</sub>-phase WTe<sub>2</sub> as well as semiconducting 2H-phase MoTe<sub>2</sub> and MoS<sub>2</sub> were explored, by patterning thin flakes into ribbons with varying channel widths. No obvious charge depletion at the edges is observed for any of these three materials, which is different from what has been observed in graphene nanoribbon devices. </div>
158

Adding a novel material to the 2D toolbox

Büchner, Christin 18 July 2016 (has links)
Die Sammlung der zwei-dimensionalen (2D) Materialien ist begrenzt, da sehr wenige Verbindungen stabil bleiben, sobald sie nur aus Oberflächen bestehen. Aufgrund ihrer außergewöhnlichen Eigenschaften sind 2D Materialien jedoch nach wie vor überaus begehrt. Vor kurzem wurden atomar definierte, chemisch gesättigte SiO2 Bilagen auf verschiedenen Metalloberflächen präpariert. Eine solche ultradünne Silika-Lage wäre eine vielversprechende Ergänzung zur Familie der 2D Materialien, wenn sie unter Strukturerhalt vom Wachstumssubstrat isoliert werden kann. In dieser Arbeit untersuchen wir die Eigenschaften einer Silika-Bilage im Zusammenhang mit Anwendungen von 2D Materialien. Die Bilage besitzt kristalline und amorphe Regionen, die beide atomar glatt sind. Die kristalline Region besitzt ein hexagonales Gitter mit gleichmäßiger Porengröße, während die amorphe Region einer komplexeren Beschreibung bedarf. In einer Studie von Baublöcken zeigen wir, dass mittelreichweitige Struktureinheiten in Korrelation mit einem Parameter für die Bindungswinkelfrustration auftreten. Das Netzwerk verschiedener Nanoporen stellt eine größenselektive Membran dar, wie wir in einer Adsorptionsstudie zeigen. Pd- und Au-Atome durchdringen den Silikafilm abhängig von der Größe der zur Verfügung stehenden Nanoporen. Der ultradünne Film hält der Einwirkung verschiedener Lösungsmittel stand und die Beständigkeit der Struktur in Wasser wird analysiert. Diese Studien deuten die außergewöhnliche Stabilität dieser Struktur an. Wir entwickeln eine polymerbasierte mechanische Exfoliation, um den Film von seinem Wachstumssubstrat zu entfernen, und zeigen, dass der Film als intakte Einheit vom Substrat abgelöst wird. Wir präsentieren anschließend den Transfer des Silikafilms auf ein TEM-Gitter, wo er schraubenartig gewundene Formen annimmt. Weiterhin wurde der Film auf ein Pt(111)-Substrat transferiert. In diesem Fall wird unter Erhalt der Struktur ein Transfer in der Größenordnung von Millimetern erreicht. / The library of two-dimensional (2D) materials is limited, since only very few compounds remain stable when they consist of only surfaces. Yet, due to their extraordinary properties, the hunt for new 2D materials continues. Recently, an atomically defined, self-saturated SiO2 bilayer has been prepared on several metal surfaces. This ultrathin silica sheet would be a promising addition to the family of 2D materials, if it can be isolated from its growth substrate without compromising its structure. In this work, we explore the properties of a silica bilayer grown on Ru(0001) in the context of 2D technology applications. The bilayer sheet exhibits crystalline and amorphous regions, both being atomically flat. The crystalline region possesses a hexagonal lattice with uniform pore size, while the amorphous region requires a more complex description. In a building block study of the amorphous region, we find that medium range structural patterns correlate with a parameter describing the bond angle frustration. The resulting network of different nanopores represents a size-selective membrane, as illustrated in an adsorption study. Pd and Au atoms are shown to penetrate the silica film selectively, depending on the presence of appropriately sized nanopores. The ultrathin silica film is shown to withstand exposure to different solvents and the stability of the structure in water is analyzed. These studies indicate extraordinary stability of this nanostructure. We develop a polymer assisted mechanical exfoliation method for removing the film from the growth substrate, providing evidence that the film is removed as an intact sheet from the growth substrate. We subsequently present the transfer of the silica bilayer to a TEM grid, where it forms micro-ribbons. Further, the film is transferred to a Pt(111) substrate, where mm-scale transfer under retention of the structure is achieved.
159

Tuning Electronic Properties of Low Dimensional Materials

Bhattacharyya, Swastibrata January 2014 (has links) (PDF)
Discovery of grapheme has paved way for experimental realization of many physical phenomena such as massless Dirac fermions, quantum hall effect and zero-field conductivity. Search for other two dimensional (2D) materials led to the discovery of boron nitride, transition metal dichalcogenides(TMDs),transition metal oxides(MO2)and silicene. All of these materials exhibit different electronic and transport properties and are very promising for nanodevices such as nano-electromechanical-systems(NEMS), field effect transistors(FETs),sensors, hydrogen storage, nano photonics and many more. For practical utility of these materials in electronic and photonic applications, varying the band gap is very essential. Tuning of band gap has been achieved by doping, functionalization, lateral confinement, formation of hybrid structures and application of electric field. However, most of these techniques have limitations in practical applications. While, there is a lack of effective method of doping or functionalization in a controlled fashion, growth of specific sized nanostructures (e.g., nanoribbons and quantum dots),freestanding or embedded is yet to be achieved experimentally. The requirement of high electric field as well as the need for an extra electrode is another disadvantage in electric field induced tuning of band gap in low dimensional materials. Development of simpler yet effective methods is thus necessary to achieve this goal experimentally for potential application of these materials in various nano-devices. In this thesis, novel methods for tuning band gap of few 2D materials, based on strain and stacking, have been proposed theoretically using first principles based density functional theory(DFT) calculations. Electronic properties of few layered nanomaterials are studied subjected to mechanical and chemical strain of various kinds along with the effect of stacking pattern. These methods offer promising ways for controlled tuning of band gap in low dimensional materials. Detailed methodology of these proposed methods and their effect on electronic, structural or vibrational properties have also been studied. The thesis has been organized as follows: Chapter1 provides a general introduction to the low dimensional materials: their importance and potential application. An overview of the systems studied here is also given along with the traditional methods followed in the literature to tune their electronic properties. The motivation of the current research work has also been highlighted in this chapter. Chapter 2 describes the theoretical methodology adopted in this work. It gives brief understanding of first principles based Density Functional Theory(DFT) and various exchange and correlation energy functionals used here to obtain electronic, structural, vibrational and magnetic properties of the concerned materials. Chapter 3 deals with finding the origin of a novel experimental phenomenon, where electromechanical oscillations were observed on an array of buckled multiwalled carbon nanotubes (MWCNTs)subjected to axial compression. The effect of structural changes in CNTs in terms of buckling on electronic properties was studied. Contribution from intra-as well as inter-wall interactions was investigated separately by using single-and double-walled CNTs. Chapter 4 presents a method to manipulate electronic and transport properties of graphene bilayer by sliding one of the layers. Sliding caused breaking of symmetry in the graphene bilayer, which resulted in change in dispersion in the low energy bands. A transition from linear dispersion in AA stacking to parabolic dispersion in AB stacking is discussed in details. This shows a possibility to use these slid bilayers to tailor graphene based devices. Chapter 5 develops a method to tune band gap of bilayers of semiconducting transition metal dichalcogenides(TMDs) by the application of normal compressive strain. A reversible semiconductor to metal(S-M) transition was reported in this chapter for bilayers of TMDs. Chapter 6 shows the evolution of S-M transition from few layers to the bulk MoS2 under various in-plane and out of plane strains. S-M transition as a function of layer number has been studied for different strain types. A comparison between the in-plan and normal strain on modifying electronic properties is also presented. Chapter 7 discusses the electronic phase transition of bulk MoS2 under hydrostatic pressure. A hydrostatic pressure includes a combined effect of both in-plane and normal strain on the structure. The origin of metallic transition under pressure has been studied here in terms of electronic structure, density of states and charge analysis. Chapter 8 studies the chemical strain present in boron nitride nanoribbons and its effect on structural, electronic and magnetic properties of these ribbons. Properties of two achiral (armchair and zig-zag) edges have been analyzed in terms of edge energy and edge stress to predict stability of the edges. Chapter9 summarizes and concludes the work presented in this thesis.
160

Luminiscence polovodičů studovaná rastrovací optickou mikroskopií v blízkém poli / Luminescence of semiconductors studied by scanning near-field optical microscopy

Těšík, Jan January 2017 (has links)
This work is focused on the study of luminescence of atomic thin layers of transition metal chalkogenides (eg. MoS2). In the experimental part, the work deals with the preparation of atomic thin layers of semiconducting chalcogenides and the subsequent manufacturing of plasmonic interference structures around these layers. The illumination of the interference structure will create a standing plasmonic wave that will excite the photoluminescence of the semiconductor. Photoluminescence was studied both by far-field spectroscopy and near-field optical microscopy.

Page generated in 0.0595 seconds