• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fracture Properties of Thermoplastic Composites Manufactured Using Additive Manufacturing

Ravi Prame, Manush January 2017 (has links)
No description available.
12

Designing Acrylic Block Copolymers with Multiple Hydrogen Bonding or Multiple Ionic Bonding

Chen, Xi 05 September 2018 (has links)
The dynamic characteristics of hydrogen and ionic bonding contributes to the reversible properties of acrylic polymers, opening new avenues for designing materials with mechanical strength and processability. These non-covalent interactions function as physical crosslinks, which provide enhanced structural and mechanical integrity to acrylic block copolymers. The strong hydrogen bonding or ionic interaction also directs self-assembly to hierarchical microstructures, which enables many applications including thermoplastic elastomers and energy storage devices. Inspired by complementary hydrogen bonding interactions between nucleobase pairs in DNA, a series of bioinspired nucleobase-acrylate monomers such as adenine acrylate (AdA), thymine acrylate (ThA), cytosine acrylate (CyA) were designed, whose synthesis were afforded by aza-Michael addition. Among those nucleobases, cytosine arises as a unique category. It is not only able to self-associate via weak hydrogen bonds, but also forms quadruple hydrogen-bond bearing units (ureido-cytosine) when functionalized with isocyanates. Reversible addition-fragmentation chain transfer polymerization (RAFT) yielded acrylic ABA triblock copolymers with CyA external hard blocks. A subsequent post-functionalization using hexyl-isocyanate generated the corresponding ureido-cytosine acrylate(UCyA)-containing triblock copolymers. The self-complementary quadruple hydrogen bonding in the UCyA polymers achieved a broader service temperature window, while the alkyl chain ends of UCyA units allowed tunability of the mechanical strength to apply as thermoplastic elastomers. In addition, quadruple hydrogen bonding induced stronger propensity of self-assembly and denser packing of the polymers, which contributed to a well-defined ordered morphology and enhanced resistance to moisture uptake. A facile 2-step synthesis provided doubly-charged styrenic DABCO salt monomer(VBDC₁₈BrCl) containing an octadecyl tail. RAFT polymerization allowed the preparation of DABCO ABA block copolymers with defined molecular weights and low polydispersity. Thermal analysis revealed a melting transition of the VBDC₁₈BrCl block copolymer resulting from the side-chain crystallization of the long alkyl tail. Systematic mechanical comparisons between DABCO salt-containing copolymers and the corresponding singly-charged polymer controls demonstrated superior mechanical properties attributable to a stronger ionic interaction between the doubly-charged groups. Morphological characterizations revealed a well-ordered lamellar microstructure and a unique three-phase morphology of the DABCO block copolymers, which involve a soft phase, a hard phase, and an ionic aggregates domain dispersed within the hard domain. / Master of Science
13

Additively Manufactured On-Package Multipolar Antenna Systems for Harsh Communication Channels

Ramirez-Hernandez, Ramiro A. 29 June 2018 (has links)
Four main aspects are studied and explored throughout this dissertation: (1) On-Package Multipolar antenna system design for integration with commercial wireless sensor nodes for machine-to-machine communication applications; (2) Development of a novel MMIC packaging process and subsequent antenna integration for chip-to-chip communication applications, (3) Design and characterization of additively manufactured lumped passive elements for integration with MMIC and hybrid circuits, (4) Design and characterization of antennas for on- and off-metal radio frequency identification (RFID) applications. This work presents the design of different 3-D printed tripolar antenna systems operating at 2.4 GHz. The antennas are designed for integration with commercial wireless nodes with the purpose of mitigating multipath and depolarization channel effects that might be present in many machine-to-machine (M2M) deployments. The antennas are fabricated utilizing an additive manufacturing (AM) approach that combines fused deposition modeling (FDM) of ABS plastic for dielectric parts and micro-dispensing of silver paste Du-Pont CB028 for conductive layers as the majority of the devices presented in this work. Over the air testing demonstrates a 1% channel improvement of up to 14 dB, achieved in a highly-reflective, Rayleigh-like fading environment by implementing selection diversity between three mutually orthogonal monopoles. This improvement leads to better bit error rate (BER) performance (as is also shown). Additionally, RSSI measurements show significant improvement when the prototype antenna system is integrated with commercial wireless sensor hardware. Implications of tripolar antenna integration on M2M systems include reduction in energy use, longer communication link distances, and/or greater link reliability. In order to incorporate the proposed multipolar selection diversity technique into short range wireless chip-to-chip communications, a novel and versatile 3D printed on-chip integration approach using laser machining is subsequently demonstrated for microwave and mm-wave systems in a process herein referred to as Laser Enhanced or Laser Assisted Direct Print Additive Manufacturing (LE-DPAM). The integration process extends interconnects laterally from a MMIC to a chip carrier. Picosecond laser machining is applied and characterized to enhance the 3D printing quality. Specifically, the width of micro-dispensed printed traces is accurately controlled within micrometer range (e.g. laser cuts ~12 μm wide), additionally, 150 μm probe pads are cut in order to facilitate RF measurement. The S-parameters of a distributed amplifier integrated into the package are simulated and measured from 2 to 30 GHz. It is seen how the overall performance is significantly better than a traditional wirebonded QFN package and previously reported AM MMIC interconnections. The attenuation of the microstrip line including interconnects is only 0.2 dB/mm at 20 GHz and return loss with the package is less than 10 dB throughout the operating frequency band A 17 GHz package integrated linearly polarized patch antenna, fabricated with a multi-layer and multi-material LE-DPAM process is then introduced for vertical interconnection with a MMIC die. Performance is successfully measured and characterized achieving a return loss greater than 19 dB at the desired design frequency. Good agreement between simulated and measured radiation patterns is also obtained with a peak gain of 4.2 dBi. Another section of this work utilizes LE-DPAM to fabricate lumped capacitors and inductors for coplanar waveguide (CPW) circuits, especially useful for filtering and matching network implementation. Laser machining is used to achieve ~12 µm slots on printed conductors, producing aspect ratios greater than 2:1, as well as to fabricate vertical interconnects or vias that allow for the fabrication of the multilayer inductors. Inductances in the range of 0.4-3 nH are achieved, with a maximum quality factor of 21, self-resonance frequencies up to 88 GHz, and an inductance per unit of area of 5.3 nH/mm2. Interdigital capacitors in the range of 0.05-0.5 pF are fabricated, having a maximum quality factor of 750 and self-resonances up to 120 GHz. All the components are made on the center line of a CPW that is 836 µm wide. The results show that LE-DPAM enables the fabrication of compact passive circuits that can be easily interconnected with MMIC dies, which at the same time, can be manufactured as part of a larger component. This enables the fabrication of structural electronics that are functional into the mm-wave frequency range. A final aspect of this work goes through antenna designs for specific RFID (radio frequency identification) applications. RFID tag design is generally focused specifically on either off-metal or on-metal configurations. In this work passive 2D and 3D RFID tags are presented which perform similarly in both configurations. The presented tags operate in the ISM RFID UHF bands that cover 864-868 MHz and 902-928 MHz. A matching loop consisting of two parallel stubs to ground is used for impedance matching to a passive integrated circuit, which has -18 dBm sensitivity. A planar 2D tag with a footprint of 13126.5 mm2 is first introduced, showing a simulated gain of approximately 3 dBi and a measured read range of 10 m (for 31 dBm transmit power from the reader) in both on-metal and off-metal conditions. The tag is miniaturized into a 3D geometry with a footprint of 2524.25 mm2 (520% reduction) and achieves the same broadside simulated on-metal gain. The antennas are fabricated using a DPAM process, and a meshed ground configuration is explored in order to accomplish a 50% conductive paste reduction without disrupting the performance. The proposed tags are compared with commercially available tags as well as previously published tags in terms of read range and size. The tags in this work present an improvement in terms of read range, gain, and area with respect to previous designs covering the ISM RFID UHF bands. Moreover, the performance of these tags is maintained in on- and off-metal conditions, achieving comparable performance and a reduction in volume of 11482% with respect to the best tag reported.
14

Engineered Nanocomposite Materials for Microwave/Millimeter-Wave Applications of Fused Deposition Modeling

Castro, Juan De Dios 13 March 2017 (has links)
A variety of high-permittivity (high-k) and low-loss ceramic-thermoplastic composite materials as fused deposition modeling (FDM) feedstock, based on cyclo-olefin polymer (COP) embedded with sintered ceramic fillers, have been developed and investigated for direct digital manufacturing (DDM) of microwave components. The composites presented in this dissertation use a high-temperature sintering process up to 1500°C to further enhance the dielectric properties of the ceramic fillers. The electromagnetic (EM) properties of these newly developed FDM composites were characterized up to the Ku-band by using the cavity perturbation technique. Several models for prediction of the effective relative dielectric permittivity of composites based on the filler loading volume fraction have been evaluated, among which Hanai-Bruggeman and Maxwell models have shown the best accuracy with less than 2% and 5% discrepancies, respectively. The 30 vol. % COP-TiO2 FDM-ready composites with fillers sintered at 1200°C have exhibited a relative permittivity (εr) of 4.78 and a dielectric loss tangent (tan δd) lower than 0.0012 at 17 GHz. Meanwhile, the 30 vol. % COP-MgCaTiO2 composites with fillers sintered at 1200°C have exhibited a εr of 4.82 and a tan δd lower than 0.0018. The DDM approach combines FDM of the engineered EM composites and micro-dispensing for deposition of conductive traces to fabricate by 3D-printing edge-fed patch antennas operating at 17.2 GHz and 16.5 GHz. These antennas were demonstrated by employing a 25 vol. % COP-MgCaTiO2 composite FDM filament with the fillers sintered at 1100°C and a pure COP filament, which were both prepared and extruded following the process described in this dissertation. The low dielectric loss of the 25 vol. % COP-MgCaTiO2 composite material (tan δd lower than 0.0018) has been leveraged to achieve a peak realized gain of 6 dBi. Also, the high-permittivity (εr of 4.74), which corresponds to an index of refraction of 2.17, results in a patch area miniaturization of 50% when compared with an antenna designed and DPAM-printed over a Rogers RT/duroid® 5870 laminate core through micro-dispensing of CB028 silver paste. This reference antenna exhibited a measured peak realized gain of 6.27 dBi that is comparable. Also, two low-loss FDM-ready composite materials for DDM technologies are presented and characterized at V-band mm-wave frequencies. Pure COP thermoplastic exhibits a relative permittivity εr of 2.1 and a dielectric loss tangent tan δd below 0.0011 at 69 GHz, whereas 30 vol. % COP-MgCaTiO2 composites with fillers sintered at 1200°C exhibit a εr of 4.88 and a tan δd below 0.0070 at 66 GHz. To the best of my knowledge, these EM properties (combination of high-k and low-loss) are superior to other 3D-printable microwave materials reported by the scientific microwave community and are on par with materials developed for high-performance microwave laminates by RF/microwave industry as shown in Chapter 5 and Chapter 7 and summarized in Table 5.4 and Table 7.1. Meanwhile, the linear coefficient of thermal expansion (CTE) from -25°C to 100°C of the reinforced 30 vol. % COP-MgCaTiO2 composite with fillers sintered at 1200°C is 64.42 ppm/°C, which is about 20 ppm/°C lower when compared with pure ABS and 10 ppm/°C lower as compared to high-temperature polyetherimide (PEI) ULTEM™ 9085 resin from Stratasys, Ltd. The CTE at 20°C of the same composite material is 84.8 ppm/°C which is about 20 ppm/°C lower when compared with pure ABS that is widely used by the research community for 3D printed RF/microwave devices by FDM. The electromagnetic (EM) composites with tailored EM properties studied by this work have a great potential for enabling the next generation of high-performance 3D-printed RF/microwave devices and antennas operating at the Ku-band, K-band, and mm-wave frequencies.
15

Playing with masks : an exploration of craft and performance

Kurz, Danielle Haskell 23 October 2014 (has links)
Collaboration between the playwright, director, designer and technicians is the backbone of theater. Costume designers, after discussion with the director and the other designers, rely on costume technicians to realize their ideas. The technician’s hands then realize the artistic vision. But what would the technicians try if there were no constraints? I am a technician, a craftsperson who is inspired not just by the play, but also by process, by methods. With every new technique I learn, I imagine the new ways it could be put to use, and the objects I would create if time and resources were not a factor. Imagined objects are seldom created. Once made, these objects exist without a performance, without a purpose. A costume not worn is an unfulfilled destiny. But maybe the pieces I want to make can be given a narrative after the act of construction, or during construction. I’m interested in exploring my ability to be a generative artist. How can my inspiration feed back into the theater community? Can a costume technician’s experimentation have a place in creating new theater? My thesis has two components, exploring my two interests. Those two interests are the creation of objects and the creation of a story. The first component, object creation, was an exploratory study of mask and headdress making techniques. I experimented with new techniques, such as 3-D printing, testing the limitations of new technology. The second component, story creation, was a collaborative process. My collaborator, Brian Oglesby, and I worked concurrently. Brian is a playwright, and as he wrote the play, I made the objects. Our processes mirrored each other. The narrative of the play incorporated the masks and headpieces I made. This project created a theater piece based on the experimentation of a costume technician, and presents a new way for future technicians to think about their work and to have their stories told. / text
16

Development of 3D inkjet printing heads for high viscosity fluids

Van Tonder, Petrus Jacobus Malan 07 1900 (has links)
D. Tech. (Department of Electronic Engineering, Faculty of Engineering and Technology) --Vaal University of Technology / Opening up local markets for worldwide competition has led to the fundamental change in the development of new products. In order for the manufacturers to stay globally competitive, they should be able to attain and sustain themselves as ‘World Class Manufacturers’. These ‘World Class Manufacturers’ should be able to:  Deliver products in fulfilling the total satisfaction of customers.  Provide high quality products.  Offer short delivery time.  Charge reasonable cost.  Comply with all environmental concern and safety requirements. When a design is created for a new product there is great uncertainty as to whether the new design will actually do what it is desired for. New designs often have unexpected problems, hence prototypes are part of the designing process. The prototype enables the engineers and designers to explore design alternatives, test theories and confirm performance prior to standing production of new products. Additive Manufacturing (AM) technologies enable the manufacturers to produce prototypes and products which meet the requirements mentioned above. However the disadvantage of AM technologies, is that the printing material which is required is limited to that of the supplier. When uncommon printing materials must be used to manufacture a prototype or product, the 3D printing process stood out above the rest owing to its printing method. However the printing heads used in current commercially available 3D printers are limited to specific fluid properties, which limits new and unique powder binder combinations. Owing to the problem mentioned, the need arose to develop a more ‘rugged’ printing head (RPH) which will be able to print with different fluid properties. The RPH could then be used to print using unique and new powderbinder combinations. The RPH was designed and constructed using the solenoid inkjet technology as reference. In order to determine the effect which the fluid properties have on the droplet formation, fourteen different glycerol-water test solutions were prepared. The fluid properties were different for each of the glycerol-water solutions. The fluid properties included the viscosity, density and surface tension of the solution. The control parameters of the RPH were theoretically calculated for each of the glycerol-water solutions and nozzle orifice diameter sizes. The control parameters of the RPH included the critical pressure and time. Using an experimental setup, droplets ejected from the RPH could be photographed in order to be analysed. It was determined that the theoretically calculated critical times could not be used in the RPH, as the pulse widths were much lower than the recommended minimum valve pulse width of the solenoid valve used. The control parameters were then determined practically for each of the different glycerol-water solutions as well as for each nozzle orifice diameter size. The practically determined control parameters were also compared to that of the theoretically determined parameters. A mathematical model was formulated for each of the practically determined critical pressure and time parameters. Non-glycerol-water solutions were also prepared in order to determine whether the control parameters could be calculated using the practically determined mathematical models. It was found that the practically determined mathematical models, used to calculate the control parameters, could not be used with non-glycerol-water solutions. Using the practically determined mathematical models, the drop formation process of the non-glycerol-water solutions was not optimized and satellite droplets occurred. Although the practically determined models did not work for non-glycerol-water solutions, the methods used to determine the control parameters for the glycerol-water solutions could still be used to determine the practical critical pressure and time for Newtonian solutions.
17

<b>3D PRINTED FLEXIBLE SENSORS AND SOFT PNEUMATIC ACTUATORS WITH EMBEDDED DIELECTRIC ELECTROACTIVE POLYMERS FOR GRIPPING AND REHABILITATION APPLICATIONS</b>

Hernan David Moreno Rueda Sr (16929609) 23 April 2024 (has links)
<p dir="ltr">The present work expands the state of the art in the design of soft actuators and flexible sensors manufactured through fused deposition modelling (FDM) and direct ink writing (DIW). The first design consisted of flexible sensors for rehabilitation. Three different designs were tested and compared according to their sensitivity and accuracy. The flexible sensor successfully responded to deformation by changing its resistance. The first design of soft actuator was the Closed Dual Pneumatic Bellow Actuator. The soft actuator was manufactured using FDM and included an inner chamber in which the input air flows through and produces the actuation. The actuator also included dielectric electroactive polymer (DEAP) that showed response to pressure between the actuator and the object to be grasped. The electrodes of the DEAP were manufactured using commercial conductive TPU. A second soft actuator was designed with a circular shape and embedded DEAP. The electrodes in the DEAP consisted of conductive carbon grease. Previous tests were performed to assess the functionality of a DEAP structure using conductive carbon grease. The DEAP showed an increase in capacitance as pressure was applied on one side of the structure parallel to the electrodes and computational simulations validated such response. Future work using the sensors and actuators presented includes the implementation of a closed-loop system to the soft actuators, using the readouts of the sensors to adjust the input pressure and apply precise pressure on objects. The flexible sensor for rehabilitation has the potential to be implemented in each of the fingers of the hand and use the data to characterize the movement of the hand under different configurations providing feedback to patients in task-oriented therapy.</p>
18

3-D Printing, Characterizing and Evaluating the Mechanical Properties of 316L Stainless Steel Materials with Gradient Microstructure

Stephen, Juanita Peche 24 March 2021 (has links)
Making gradient in the microstructure of metals is proven to be a superior method for improving their mechanical properties. In this research, we 3D print, characterize and evaluate the mechanical properties of 316L Stainless Steel with a gradient in their microstructure. During 3D printing, the gradient in the microstructure is created by tailoring the processing parameters (hatch spacing, scanning speed, and laser power and scanning speed) of the Selective Laser Melting (SLM). The Materials with Graded Microstructure (MGMs) are characterized by optical and scanning electron microscopy (SEM). Image processing framework is utilized to reveal the distribution of cells and melt pools shapes and sizes in the volume of the material when the processing parameters change. It is shown that the laser power, scanning speed and the hatch spacing have a more significant effect on the size and shape of cells and melt pools compared to the speed. Multiple Dog bones are 3D printed with a microstructure that has smaller features (cells and melt polls) at the edges of the structure compared to the center. Tensile and fatigue tests are performed and compared for samples with constant and graded microstructures. / Master of Science / The mechanical performance of Selective Laser Melting (SLM) fabricated materials is an important topic in research. Strengthening the performance of these materials can be achieved through implementing a gradient within the microstructure, referred to as Materials with Graded Microstructure (MGMs). A complicated microstructure can weaken the microstructure, and this can be resolved by optimizing the microstructure during SLM 3D printing, in which the processing parameters are tailored. In this study, the mechanical properties of these MGMs were characterized and evaluated. The gradient in these materials were created by modifying SLM process parameters (scanning speed, hatch spacing, and laser power and scanning speed) during the build. Optical and scanning electron microscopy (SEM) was used to characterize these the microstructure of these MGMs, and image processing was used to examine the distribution of cells and melt pools characteristics throughout the region where the processing parameters changed. This investigation shows that laser power, scanning speed, and hatch spacing have a direct effect on the size and shape of the cells and melt pools, compared to scanning speed, which shows an effect on melt pools. Dog bone structures are 3-D printed with a graded microstructure that has small cells and melt pools at the edges, compared to the center, by changing the laser power and scanning speed. Tensile and fatigue analysis are performed and compared for samples with constant and graded microstructures, which reveal that the mechanical properties of the MGMs perform similar to the parameter at the edges, but differently in fracture mechanics.
19

Use of Digital Fabrication Tools and Curriculum with Gifted Students in Rural Middle Schools

Moore, Vince 12 1900 (has links)
This study focuses on the use of American Invention Kits from the Smithsonian Institute in conjunction with a 3D printer. In conjunction with a large dataset from a study funded by the National Science Foundation (NSF), this innovative research focuses on the effect the digital fabrication curriculum unit has on gifted and talented students' knowledge and affinity toward the fields of science, technology, engineering, and mathematics (STEM). Students from two rural middle schools in north-central Texas (N = 190) took part in this quantitative study; the students were divided among four subgroups: gifted-contrast (n = 12), gifted-treatment (n = 8), nongifted-contrast (n = 76), and nongifted-treatment (n = 94). The surveys utilized include the STEM Semantics Survey, TIMSS-Limited, and a knowledge assessment for the specific curriculum unit focused on the solenoid. The STEM Semantics Survey is divided into five subsets. Thirty-two separate one-way repeated measures ANOVAs were performed across the surveys and subgroups. Statistically significant results were found on four comparisons. This research holds implications in the areas of advocating for gifted education, collecting field data, utilizing large datasets, and understanding rural schools.
20

Проектирование цилиндрической линзы Люнеберга : магистерская диссертация / Design cylindrical Luneberg lens

Коротков, А. Н., Korotkov, A. N. January 2018 (has links)
Объектом исследования является конструкция цилиндрической линзы Люнеберга из однородного диэлектрика. Целью работы являлась разработка способа проектирования цилиндрической линзы Люнеберга на основе однородного материала. В работе были рассмотрены различные способы задания структуры цилиндрической линзы из однородного диэлектрика, описан процесс их моделирования, проведен анализ полученных результатов. В качестве способа изготовления была выбрана 3-D печать из пластика. Получена аппроксимирующая функция, позволяющая создать цилиндрическую линзу Люнеберга с плавным изменением эффективной диэлектрической проницаемости по радиальной координате. Приведены результаты ее моделирования. / The object of the research is the construction of a cylindrical Luneberg lens from a uniform dielectric. The aim of the work was to develop ways to design a cylindrical Luneberg lens based on a homogeneous material. In this paper, various ways of setting a cylindrical lens made of a uniform dielectric, the described process of modeling them were considered, and the results were analyzed. As a method of manufacturing was chosen 3-D printing from plastic. An approximating function is obtained, which makes it possible to create a cylindrical Ludberg lens with a smooth variation of the effective dielectric constant along the radial coordinate. The results of its modeling are given.

Page generated in 0.0654 seconds