11 |
Computer-Aided Drug Design for Membrane Channel Proteins / Computergestützte Medikamentenentwicklung für MembrankanalproteineWacker, Sören 07 August 2012 (has links)
No description available.
|
12 |
Identification of Genes in the Dorsal Raphe Nucleus Regulated by Chronic Stress and Citalopram / Identifizierung von Genen im Nucleus Raphe Dorsalis: Regulation durch Chronischen Stress und CitalopramAbumaria, Nashat 04 May 2006 (has links)
No description available.
|
13 |
UV Emitting Nanoscale Scintillators for Biomedical ApplicationsEspinoza Villalba, Sara 26 November 2019 (has links)
In the medical field, the applications of ultraviolet (UV) radiation are limited to skin or reachable sites due to its low penetration depth into biological tissue. Contrary to UV radiation, X-rays can penetrate the body with almost no attenuation, but they result in toxic side effects. Inorganic scintillators absorb X-rays and convert them into UV or visible photons and are usually used for medical imaging. We propose the use of high density inorganic nanoscale scintillators with the ability to absorb externally applied ionizing radiation directly at the site of application, e.g., inside a tumor, and to convert this ionizing radiation into UV photons in situ, enabling new
biomedical applications inside the body.
In this thesis, two specific new biomedical applications are discussed in detail: The first application is the use of UV-B emitting nanoscale scintillators for highly localized drugs released or activation of photoactivable therapeutics using only X-rays. The second novel approach is the use of UV-C emitting nanoscale scintillators as
radiation sensitizers. However, size-reduction of inorganic scintillators, and most inorganic phosphors in general, usually result in quenching of the photoluminescence properties, defects on the surface of the particles, and a decrease of radiation hardness.
Colloidal solutions of nearly monodisperse LaPO4:Gd nanocrystals (5nm) were shown to strongly emit UV radiation upon excitation with X-rays or vacuum UV radiation (160nm). The UV emission of the particles consisted mainly of a single line at 311nm. This UV-B emission of the particles was used to excite the fluorescence of laser dyes dissolved in the colloids. The emission of the dyes was also observed in the case of high dye concentrations, proving that the concept of using radiation with a high penetration depth (X-rays) to excite fluorescence emission with a low penetration depth (UV-B) wavelength is feasible.
Pr-doped LuPO4 emits UV-C radiation between 225 and 280nm, where DNA shows strong absorption bands. Therefore, a systematic study of the luminescence of LuPO4:Pr was performed: Different doping concentrations, particle sizes, and excitation sources were compared. Furthermore, it was found that Pr and Nd co-doped LuPO4 results in increased UV-C emission independent of excitation source due to energy transfer. The highest UV-C emission intensity was observed for LuPO4:Pr,Nd(1%,2.5%) upon X-ray irradiation. Finally, LuPO4:Pr,Nd
nanoparticles were synthesized, and the biological efficacy of the combined approach (X-rays and UV-C) was assessed using the colony formation assay. Cell culture experiments confirm increased cell death compared to X-rays alone due to the formation of UV-specific DNA damages, supporting the application of the herein synthesized particles as radiation sensitizers.
|
14 |
Expression und Wirkungsmechanismen von Gonadotropin-Releasing Hormon Typ II (GnRH-II) und seines Rezeptors in humanen Ovarial- und Endometriumkarzinomen / Expression and mechanism of gonadotropin-releasing hormon type II (GnRH-II) and its receptor in human ovarian- and endometrial cancersEicke, Nicola 02 May 2006 (has links)
No description available.
|
15 |
Effects of Wnt and different TLR stimulations on microglia-induced invasion of breast cancer cellsChuang, Eugenia Han-Ning 04 July 2011 (has links)
No description available.
|
16 |
Eine deutschlandweite Potenzialanalyse für die Onshore-Windenergie mittels GIS einschließlich der Bewertung von SiedlungsdistanzenänderungenMasurowski, Frank 11 July 2016 (has links)
Die Windenergie an Land (Onshore-Windenergie) ist neben der Photovoltaik eine der tragenden Säulen der Energiewende in Deutschland. Wie schon in der Vergangenheit
wird auch zukünftig der Ausbau der Onshore-Windenergie, mit dem Ziel eine umweltgerechte
und sichere Energieversorgung für zukünftige Generationen aufzubauen, durch die Politik massiv vorangetrieben. Für eine planvolle Umsetzung der Energiewende, insbesondere im Bereich der Windenergie, müssen Kenntnisse über den zur Verfügung stehenden Raum und der Wirkungsweise standortspezifischer Faktoren auf planungsrechtlicher Ebene vorhanden sein. In der vorliegenden Arbeit wurde die Region Deutschland auf das für dieWindenergie an Land nutzbare Flächenpotenzial analysiert, von diesem allgemein gültige Energiepotenziale abgeleitet und in einer Sensitivitätsanalyse die Einflüsse verschiedener Abstände zwischen den Windenergieanlagen und Siedlungsstrukturen auf das ermittelte Energiepotenzial untersucht. Des
Weiteren wurden für die beobachteten Zusammenhänge zwischen den Distanz- und
Energiepotenzialänderungen mathematische Formeln erstellt, mit deren Hilfe eine Energiepotenzialänderung in Abhängigkeit von spezifischen Siedlungsdistanzänderungen vorhersagbar sind. Die Analyse des Untersuchungsgebiets (USG) hinsichtlich des zur Verfügung stehenden Flächenpotenzials wurde anhand eines theoretischen Modells, welches die reale Landschaft mit ihren unterschiedlichen Landschaftstypen und Infrastrukturen widerspiegelt, umgesetzt. Auf Basis dieses Modells wurden so genannte „Basisflächen“ sowie für die Onshore-Windenergie nicht nutzbare Flächen (Tabu- oder Ausschlussflächen) identifiziert und mittels einer GIS-Software (Geographisches Informationssystem) verschnitten.
Die Identifizierung der Ausschlussflächen erfolgte über regionalisierte beziehungsweise
im gesamten USG geltende multifaktorielle Bestimmungen für die Platzierung von Windenergieanlagen (WEA). Zur Gewährleistung einer einheitlichen Konsistenz wurden die verschiedenen Regelungen, welche aus den unterschiedlichsten Quellen stammen, vereinheitlicht, vereinfacht und in einem so genannten „Regelkatalog“ festgeschrieben. Die Berechnung des im USG maximal möglichen Energiepotenzials erfolgte durch eine Referenzanlage, welche im USG räumlich verteilt platziert wurde. Die Energiepotenziale (Leistungs- und Ertragspotenzial) leiten sich dabei aus der Kombination der räumlichen Lage der WEA, den technischen Leistungsspezifikationen der Referenzanlage und dem regionalem Windangebot ab. Eine wesentliche Grundvoraussetzung für die Berechnung der Energiepotenziale lag in der im Vorfeld durchzuführenden Windenergieanlagenallokation auf den Potenzialflächen begründet. Zu diesem Zweck wurde die integrierte Systemlösung „MAXPLACE“ entwickelt. Mit dieser ist es möglich, WEA unter Berücksichtigung von anlagenspezifischen, wirtschaftlichen und sicherheitstechnischen Aspekten in einzelnen oder zusammenhängenden Untersuchungsregionen zu platzieren. Im Gegensatz zu bereits bestehenden Systemlösungen (Allokationsalgorithmen) aus anderen Windenergie-Potenzialanalysen zeichnet sich die integrierte Systemlösung „MAXPLACE“ durch eine sehr gute Effizienz, ein breites Anwendungsspektrum sowie eine einfache Handhabung aus.
Der Mindestabstand zwischen den WEA und den Siedlungsstrukturen stellt den größten Restriktionsfaktor für das ermittelte Energiepotenzial dar. Zur Bestimmung der Einflussnahme von Siedlungsdistanzänderungen auf das Energiepotenzial wurde mit Hilfe des erstellten Landschaftsmodells eine Sensitivitätsanalyse durchgeführt. In dieser wurden die vorherrschenden Landschafts- und Infrastrukturen analysiert und daraus standortbeschreibende Parameter abgeleitet. Neben der konkreten Benennung der Energiepotenzialänderungen, wurden für das gesamte USG mathematische Abstraktionen der beobachteten Zusammenhänge in Form von Regressionsformeln ermittelt. Diese Formeln ermöglichen es, ohne die in dieser Arbeit beschriebene aufwendige Methodik nachzuvollziehen, mit nur wenigen Parametern die Auswirkungen einer Siedlungsdistanzänderung auf das Energiepotenzial innerhalb des Untersuchungsgebiets zu berechnen.
|
Page generated in 0.0234 seconds