Spelling suggestions: "subject:"airplanes -- bperformance."" "subject:"airplanes -- deperformance.""
1 |
THE USE OF VARIATIONAL TECHNIQUES IN THE OPTIMIZATION OF FLIGHT TRAJECTORIESVincent, Thomas L. January 1963 (has links)
No description available.
|
2 |
A closed loop technique for aircraft performance optimizationBerry, Robert L. January 1970 (has links)
No description available.
|
3 |
An investigation of the performance requirements needed to fly optimum flight trajectoriesCormier, David Richard, 1939- January 1964 (has links)
No description available.
|
4 |
A process for function based architecture definition and modelingArmstrong, Michael James. January 2008 (has links)
Thesis (M. S.)--Aerospace Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Mavris, Dimitri; Committee Member: Garcia, Elena; Committee Member: Soban, Danielle. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
5 |
Data transmission via satellites for aircraft malfunction detection and predictionFontaine, Bernard Alain 05 1900 (has links)
No description available.
|
6 |
A process for function based architecture definition and modelingArmstrong, Michael James 01 April 2008 (has links)
Developments in electric technologies have the potential to increase the efficiency and performance of commercial aircraft. However, without proper architecture innovation, technology developments at the subsystem level are not sufficient to ensure successful integration. Adaptations to existing architectures work well when trades are made strictly between equivalent systems which fulfill and induce the same functional requirements. However, this approach does not provide the architect with adequate flexibility to integrate technologies with differing functional and physical interfaces. Architecture redefinition is required for proper implementation of non-traditional and innovative architectural elements.
A function-based process for innovative architecture design was developed to provide flexibility in the definition of candidate architectural concepts. Tools and methods were developed which facilitate the definition and exploration of a function-based architectural design space. These include functional decomposition, functional induction, dynamic morphology, adaptive functional mapping, reconfigurable mission definition, and concept level system installation. The Architecture Design Environment (ADEN) was built to integrate these tools and to facilitate the definition of physics-based models in evaluating the performance of candidate architectures.
Using functions as the foundation of this process assists in mitigating assumptions which traditionally govern architecture structures and offers a promising approach to architecting through flexible conceptualization and integration. This toolset provides the framework wherein knowledge from conceptual, preliminary, and detailed design efforts can be linked in the definition of revolutionary architectures.
|
7 |
Die Genauigkeit einer vereinfachten Berechnung der Steigzeit von FlugzeugenMutschall, Marcel January 2018 (has links) (PDF)
Ziel - Die Zeit die ein Flugzeug benötigt, um auf eine bestimmte Höhe zu steigen (die
Steigzeit) kann mit einer Formel berechnet werden, die vereinfachend annimmt, dass die
Steiggeschwindigkeit über dem gesamten Steigflug mit zunehmender Höhe linear abnimmt.
Ziel der Untersuchung ist, zu ermitteln, ob die Annahme einer linear abnehmenden
Steiggeschwindigkeit realistisch ist bzw. welche Fehler sich aus der Annahme ergeben.
-----
Methode - Mit der Höhe ändern sich Parameter wie Luftdichte, Widerstand, Schub und damit
auch die optimale Fluggeschwindigkeit für den Steigflug. Die Parameter beeinflussen sich
dabei gegenseitig. Der Schub wird dabei nach drei unterschiedlichen Methoden berechnet,
gegeben von Bräunling, Scholz und Howe. Analysiert wird der Verlauf des Schubes mit der
Höhe und der Verlauf der Steiggeschwindigkeit mit der Höhe für jede der drei
Schubberechnungen. Abschließend wird für jede Schubberechnung die Steigzeit verglichen
wie sie sich ergibt a) aus der einfachen Formel und b) aus einer Integrationsberechnung, bei
der der Verlauf der Steiggeschwindigkeit durch eine Funktion beschrieben wird.
-----
Ergebnisse - Die drei Schubberechnungen liefern ausgehend vom gleichen Startschub
unterschiedliche Schübe in der Höhe. In die Methode nach Bräunling gehen mehr Parameter
ein als in die anderen beiden Methoden. Es kann angenommen werden, dass die Methode
nach Bräunling genauer ist, der Beweis kann aber nicht geführt werden. Der Schub nach
Scholz und Howe fällt nahezu linear mit der Höhe ab. Der Schubverlauf nach Bräunling zeigt
eine deutliche Nichtlinearität. Es wird die Steigzeit von 0 km auf 11 km Höhe berechnet nach
a) und b), mit jeder der drei Schubberechnungen. Dabei wird jeweils der Unterschied in der
Steigzeit ermittelt. Aufgrund der Nichtlinearität im Schubverlauf zeigt die Methode nach
Bräunling dann auch den größten Unterschied zwischen den Berechnungsmethoden von
7,1 %. Bei einer Schubberechnung nach Scholz ergeben sich 1,7 % und nach Howe 1,4 %.
Wenn bereits zu Beginn Vereinfachungen, z.B. bezüglich des Triebwerksschubes,
vorgenommen wurden, ist es in Hinblick auf den Aufwand und die zu erreicheneden
Ergebnisse möglich, und zum Teil sinnvoll, die Berechnungen der Steigzeit mittels linearer
Abnahme der vertikalen Geschwindigkeit durchzuführen. Es wird ausdrücklich darauf
hingewiesen, dass es hier um den Vergleich von zwei Methoden zur Berechnung der Steigzeit
geht und nicht um die Bewertung von Methoden zur Schubberechnung (für die keine
Vergleichswerte vorlagen).
-----
Praktischer Nutzen - Es konnte festgestellt werden, dass eine einfache Formel zur
Berechnung der Steigzeit mit geringem Fehler angewandt werden kann - insbesondere wenn
Methoden zur Schubberechnung vorliegen, bei denen der Schub annähernd linear mit der
Höhe abnimmt. Bei großem Aufwand und realitätsnaher Betrachtung, z.B. nach Bräunling,
führt der lineare Ansatz jedoch zu einem zu großen Fehler. Hierfür sollte die Berechnung der
Steigzeit mittels Integration durchgeführt werden.
|
8 |
Characteristics of the Specific Fuel Consumption for Jet EnginesBensel, Artur January 2018 (has links) (PDF)
Purpose of this project is a) the evaluation of the Thrust Specific Fuel Consumption (TSFC) of jet engines in cruise as a function of flight altitude, speed and thrust and b) the determination of the optimum cruise speed for maximum range of jet airplanes based on TSFC characteristics from a). Related to a) a literature review shows different models for the influence of altitude and speed on TSFC. A simple model describing the influence of thrust on TSFC seems not to exist in the literature. Here, openly available data was collected and evaluated. TSFC versus thrust is described by the so-called bucket curve with lowest TSFC at the bucket point at a certain thrust setting. A new simple equation was devised approximating the influence of thrust on TSFC. It was found that the influence of thrust as well as of altitude on TSFC is small and can be neglected in cruise conditions in many cases. However, TSFC is roughly a linear function of speed. This follows already from first principles. Related to b) it was found that the academically taught optimum flight speed (1.316 times minimum drag speed) for maximum range of jet airplanes is inaccurate, because the derivation is based on the unrealistic assumption of TSFC being constant with speed. Taking account of the influence of speed on TSFC and on drag, the optimum flight speed is only about 1.05 to 1.11 the minimum drag speed depending on aircraft weight. The amount of actual engine data was extremely limited in this project and the results will, therefore, only be as accurate as the input data. Results may only have a limited universal validity, because only four jet engine types were analyzed. One of the project's original value is the new simple polynomial function to estimate variations in TSFC from variations in thrust while maintaining constant speed and altitude.
|
9 |
Aircraft Fuel Consumption - Estimation and VisualizationBurzlaff, Marcus January 2017 (has links) (PDF)
In order to uncover the best kept secret in today's commercial aviation, this project deals with the calculation of fuel consumption of aircraft. With only the reference of the aircraft manufacturer's information, given within the airport planning documents, a method is established that allows computing values for the fuel consumption of every aircraft in question. The aircraft's fuel consumption per passenger and 100 flown kilometers decreases rapidly with range, until a near constant level is reached around the aircraft's average range. At longer range, where payload reduction becomes necessary, fuel consumption increases significantly. Numerical results are visualized, explained, and discussed. With regard to today's increasing number of long-haul flights, the results are investigated in terms of efficiency and viability. The environmental impact of burning fuel is not considered in this report. The presented method allows calculating aircraft type specific fuel consumption based on publicly available information. In this way, the fuel consumption of every aircraft can be investigated and can be discussed openly.
|
10 |
Conditions for Passenger Aircraft Minimum Fuel Consumption, Direct Operating Costs and Environmental ImpactCaers, Brecht January 2019 (has links) (PDF)
Purpose - Find optimal flight and design parameters for three objectives: minimum fuel consumption, Direct Operating Costs (DOC), and environmental impact of a passenger jet aircraft. ---
Approach - Combining multiple models (this includes aerodynamics, specific fuel consumption, DOC, and equivalent CO2 mass) into one generic model. In this combined model, each objective's importance is determined by a weighting factor. Additionally, the possibility of further optimizing this model by altering an aircraft's wing loading is analyzed. ---
Research limitations - Most models use estimating equations based on first principles and statistical data. ---
Practical implications - The optimal cruise altitude and speed for a specific objective can be approximated for any passenger jet aircraft. ---
Social implications - By using a simple approach, the discussion of optimizing aircraft opens up to a level where everyone can participate. ---
Value - To find a general answer on how to optimize aviation, operational and design-wise, by using a simple approach.
|
Page generated in 0.0643 seconds