Spelling suggestions: "subject:"algèbre"" "subject:"algèbres""
341 |
Enlarged Krylov Subspace Methods and Preconditioners for Avoiding Communication / Méthodes de sous-espace de krylov élargis et préconditionneurs pour réduire les communicationsMoufawad, Sophie 19 December 2014 (has links)
La performance d'un algorithme sur une architecture donnée dépend à la fois de la vitesse à laquelle le processeur effectue des opérations à virgule flottante (flops) et de la vitesse d'accès à la mémoire et au disque. Etant donné que le coût de la communication est beaucoup plus élevé que celui des opérations arithmétiques, celle-là forme un goulot d'étranglement dans les algorithmes numériques. Récemment, des méthodes de sous-espace de Krylov basées sur les méthodes 's-step' ont été développées pour réduire les communications. En effet, très peu de préconditionneurs existent pour ces méthodes, ce qui constitue une importante limitation. Dans cette thèse, nous présentons le préconditionneur nommé ''Communication-Avoiding ILU0'', pour la résolution des systèmes d’équations linéaires (Ax=b) de très grandes tailles. Nous proposons une nouvelle renumérotation de la matrice A ('alternating min-max layers'), avec laquelle nous montrons que le préconditionneur en question réduit la communication. Il est ainsi possible d’effectuer « s » itérations d’une méthode itérative préconditionnée sans communication. Nous présentons aussi deux nouvelles méthodes itératives, que nous nommons 'multiple search direction with orthogonalization CG' (MSDO-CG) et 'long recurrence enlarged CG' (LRE-CG). Ces dernières servent à la résolution des systèmes linéaires d’équations de très grandes tailles, et sont basées sur l’enrichissement de l’espace de Krylov par la décomposition du domaine de la matrice A. / The performance of an algorithm on any architecture is dependent on the processing unit’s speed for performing floating point operations (flops) and the speed of accessing memory and disk. As the cost of communication is much higher than arithmetic operations, and since this gap is expected to continue to increase exponentially, communication is often the bottleneck in numerical algorithms. In a quest to address the communication problem, recent research has focused on communication avoiding Krylov subspace methods based on the so called s-step methods. However there are very few communication avoiding preconditioners, and this represents a serious limitation of these methods. In this thesis, we present a communication avoiding ILU0 preconditioner for solving large systems of linear equations (Ax=b) by using iterative Krylov subspace methods. Our preconditioner allows to perform s iterations of the iterative method with no communication, by applying a heuristic alternating min-max layers reordering to the input matrix A, and through ghosting some of the input data and performing redundant computation. We also introduce a new approach for reducing communication in the Krylov subspace methods, that consists of enlarging the Krylov subspace by a maximum of t vectors per iteration, based on the domain decomposition of the graph of A. The enlarged Krylov projection subspace methods lead to faster convergence in terms of iterations and to parallelizable algorithms with less communication, with respect to Krylov methods. We discuss two new versions of Conjugate Gradient, multiple search direction with orthogonalization CG (MSDO-CG) and long recurrence enlarged CG (LRE-CG).
|
342 |
Equations Singulières de type KPZ / Singular KPZ Type EquationsBruned, Yvain 14 December 2015 (has links)
Dans cette thèse, on s'intéresse à l'existence et à l'unicité d'une solution pour l'équation KPZ généralisée. On utilise la théorie récente des structures de régularité inspirée des chemins rugueux et introduite par Martin Hairer afin de donner sens à ce type d'équations singulières. La procédure de résolution comporte une partie algébrique à travers la définition du groupe de renormalisation et une partie stochastique avec la convergence de processus stochastiques renormalisés. Une des améliorations notoire de ce travail apportée aux structures de régularité est la définition du groupe de renormalisation par le biais d'une algèbre de Hopf sur des arbres labellés. Cette nouvelle construction permet d'obtenir des formules simples pour les processus stochastiques renormalisés. Ensuite, la convergence est obtenue par un traitement efficace de diagrammes de Feynman. / In this thesis, we investigate the existence and the uniqueness of the solution of the generalised KPZ equation. We use the recent theory of regularity structures inspired from the rough path and introduced by Martin Hairer in order to give a meaning to this singular equation. The procedure contains an algebraic part through the renormalisation group and a stochastic part with the computation of renormalised stochastic processes. One major improvement in the theory of the regularity structures is the definition of the renormalisation group using a Hopf algebra on some labelled trees. This new construction paves the way to simple formulas very useful for the renormalised stochastic processes. Then the convergence is obtained by an efficient treatment of some Feynman diagrams.
|
343 |
Structures de Clifford paires et résonances quantiques / Even Clifford structures and Quantum ResonancesHadfield, Charles 19 June 2017 (has links)
Ce manuscrit se compose de deux parties indépendantes. La première partie de cette thèse étudie les structures de Clifford paires. Pour une variété riemannienne munie d’une structure de Clifford paire, nous introduisons l’espace de twisteurs en généralisant la construction d’un tel espace dans le cas d’une variété quaternion-hermitienne. Nous construisons une structure presque-complexe sur l’espace de twisteurs et considérons son intégrabilité lorsque la structure de Clifford est parallèle. Dans certains cas, nous pouvons aussi le fournir d’une métriquekählerienne ou, correspondant à une structure presque-complexe alternative, d’une métrique “nearly Kähler”. Dans un second temps, nous introduisons une structure appelée Clifford-Weyl sur une variété conforme. Il s’agit d’une structure de Clifford paireq ui est parallèle par rapport au produit tensoriel d’une connexion métrique sur le fibré de Clifford et une connexion de Weyl. Nous démontrons que la connexion de Weyl est fermée sauf dans certains cas génériques de basse dimension où nous arrivons à décrire des exemples explicites où les structures de Clifford-Weyl sont non-fermées. La seconde partie de cette thèse étudie des résonances quantiques. Au-dessus d’une variété asymptotiquement hyperbolique paire, nous considérons le laplacien de Lichnerowicz agissant sur les sections du fibré des formes multilinéaires symétriques.Lorsqu’il s’agit de formes bilinéaires symétriques, nous obtenonsune extension méromorphe de la résolvante dudit laplacien à l’ensemble du plan complexe si la variété est Einstein. Cela définit les résonances quantiques pour ce laplacien. Pour les formes multilinéaires symétriques en général, une telle extension méromorphe est possible si la variété est convexe-cocompacte. Dans les deux cas, nous devons restreindre le laplacien aux sections qui sont de trace et de divergence nulles. Nous utilisons ce deuxième résultat afin d’établir une correspondance classique-quantique pour les variétés hyperboliques convexescocompactes.La correspondance identifie le spectre du flot géodésique (les résonances de Ruelle) avec les spectres des laplaciens agissant sur les tenseurs symétriques qui sont de trace et de divergence nulles (les résonances quantiques). / We study independently even Clfford structures on Riemannian manifolds and quantum resonances on asymptotically hyperbolic manifolds. In the first part of this thesis, we study even Clifford structures.First, we introduce the twistor space of a Riemannian manifold with an even Clifford structure. This notion generalises the twistor space of quaternion-Hermitian manifolds. We construct almost complex structures on the twistor space and check their integrability when the even Clifford structure is parallel. In some cases we give Kähler and nearly-Kähler metrics to these spaces. Second, we introduce the concept of a Clifford-Weyl structure on a conformal manifold. This consists of an even Clifford structure parallel with respect to the tensor product of a metric connection on the Clifford bundle and a Weyl structure on the manifold. We show that the Weyl structure is necessarily closed except for some “generic” low-dimensional instances,where explicit examples of non-closed Clifford-Weyl structures are constructed. In the second part of this thesis, we study quantum resonances. First, we consider the Lichnerowicz Laplacian acting on symmetric 2-tensors on manifolds with an even Riemannian conformally compact Einstein metric. The resolvent of the Laplacian,upon restriction to trace-free, divergence-free tensors, is shown to have a meromorphic continuation to the complex plane. This defines quantum resonances for this Laplacian. For higher rank symmetric tensors, a similar result is proved for convex cocompact quotients of hyperbolic space. Second, we apply this result to establish a direct classical-quantum correspondence on convex cocompact hyperbolic manifolds. The correspondence identifies the spectrum of the geodesic flow with the spectrum of the Laplacian acting on trace-free, divergence-free symmetric tensors. This extends the correspondence previously obtained for cocompact quotients
|
344 |
Hybridization of FETI Methods / Hybridation de méthodes FETIMolina-Sepulveda, Roberto 19 December 2017 (has links)
Dans le présent travail, des nouvelles méthodes de décomposition de domaine et des nouvelles implémentations pour des méthodes existantes sont développées. Une nouvelle méthode basée sur les méthodes antérieures de décomposition du domaine est formulée. Les méthodes classiques FETI plus FETI-2LM sont utilisées pour construire le nouveau Hybrid-FETI. L'idée de base est de développer un nouvel algorithme qui peut utiliser les deux méthodes en même temps en choisissant dans chaque interface l'état le plus adapté en fonction des caractéristiques du problème. En faisant cela, nous recherchons un code plus rapide et plus robuste qui peut fonctionner avec des configurations selon lesquelles les méthodes de base ne le géreront pas de manière optimale par lui-même. La performance est testée sur un problème de contact. La partie suivante implique le développement d'une nouvelle implémentation pour la méthode S-FETI, l'idée est de réduire l'utilisation de la mémoire de cette méthode, afin de pouvoir fonctionner dans des problèmes de taille plus important. Différentes variantes pour cette méthode sont également proposées, tout en cherchant la réduction des directions stockées chaque itération de la méthode itérative. Finalement, une extension de la méthode FETI-2LM à sa version en bloc comme dans S-FETI, est développée. Les résultats numériques pour les différents algorithmes sont présentés. / In this work new domain decomposition methods and new implementations for existing methods are developed. A new method based on previous domain decomposition methods is formulated. The classic FETI plus FETI-2LM methods are used to build the new Hybrid-FETI. The basic idea is to develop a new algorithm that can use both methods at the same time by choosing in each interface the most suited condition depending on the characteristics of the problem. By doing this we search to have a faster and more robust code that can work with configurations that the base methods will not handle it optimally by himself. The performance is tested on a contact problem. The following part involves the development of a new implementation for the S-FETI method, the idea is to reduce the memory usage of this method, to make it able to work in larger problem. Different variation for this method are also proposed, all searching the reduction of directions stored each iteration of the iterative method. Finally, an extension of the FETI-2LM method to his block version as in S-FETI, is developed. Numerical results for the different algorithms are presented.
|
345 |
About E-infinity-structures in L-algebras / Sur les E-infini-structures dans les L-algèbresSánchez, Jesús 06 December 2016 (has links)
Dans cette thèse nous rappelons la notion de L-algèbre, qui a pour objet d'être un modèle algébrique des types d'homotopie. L'objectif principal de cette thèse est la description d'une structure de E-infini-coalgèbre sur l'élément principal d'une L-algèbre. Ceci peut être vu comme une généralisation de la structure de E-infini-coalgèbre sur le complexe des chaînes d'un ensemble simplicial, telle que décrite par Smith dans Iterating the cobar construction, 1994. Nous construisons une E-infini-opérade, notée K, utilisée pour construire la E-infini-coalgèbre sur l'élément principal d'une L-algèbre. Cette structure de E-infini-coalgèbre montre que la L-algèbre canoniquement associée à un ensemble simplicial contient au moins autant d'information homotopique que la E-infini-coalgèbre couramment associée à un ensemble simplicial / In this thesis we recall the notion of L-algebra. L-algebras are intended as algebraic models for homotopy types. L-algebras were introduced by Alain Prouté in several talks since the eighties. The principal objective of this thesis is the description of an E-infinity-coalgebra structure on the main element of an L-algebra. This can be seen as a generalization of the E-infinity-coalgebra structure on the chain complex associated to a simplicial set given by Smith in Iterating the cobar construction, 1994. We construct an E-inifity-operad, denoted K, used to construct the E-inifity-coalgebra on the main element of a L-algebra. This E-inifity-coalgebra structure shows that the canonical L-algebra associated to a simplicial set contains at least as much homotopy information as the E-inifity-coalgebras usually associated to simplicial sets.
|
346 |
Méthodes de génération automatique de code appliquées à l’algèbre linéaire numérique dans le calcul haute performance / Automatic code generation methods applied to numerical linear algebra in high performance computingMasliah, Ian 26 September 2016 (has links)
Les architectures parallèles sont aujourd'hui présentes dans tous les systèmes informatiques, allant des smartphones aux supercalculateurs en passant par les ordinateurs de bureau. Programmer efficacement ces architectures en fonction des applications requiert un effort pluridisciplinaire portant sur les langages dédiés (Domain Specific Languages - DSL), les techniques de génération de code et d'optimisation, et les algorithmes numériques propres aux applications. Dans cette thèse, nous présentons une méthode de programmation haut niveau prenant en compte les caractéristiques des architectures hétérogènes et les propriétés existantes des matrices pour produire un solveur générique d'algèbre linéaire dense. Notre modèle de programmation supporte les transferts explicites et implicites entre un processeur (CPU) et un processeur graphique qui peut être généraliste (GPU) ou intégré (IGP). Dans la mesure où les GPU sont devenus un outil important pour le calcul haute performance, il est essentiel d'intégrer leur usage dans les plateformes de calcul. Une architecture récente telle que l'IGP requiert des connaissances supplémentaires pour pouvoir être programmée efficacement. Notre méthodologie a pour but de simplifier le développement sur ces architectures parallèles en utilisant des outils de programmation haut niveau. À titre d'exemple, nous avons développé un solveur de moindres carrés en précision mixte basé sur les équations semi-normales qui n'existait pas dans les bibliothèques actuelles. Nous avons par la suite étendu nos travaux à un modèle de programmation multi-étape ("multi-stage") pour résoudre les problèmes d'interopérabilité entre les modèles de programmation CPU et GPU. Nous utilisons cette technique pour générer automatiquement du code pour accélérateur à partir d'un code effectuant des opérations point par point ou utilisant des squelettes algorithmiques. L'approche multi-étape nous assure que le typage du code généré est valide. Nous avons ensuite montré que notre méthode est applicable à d'autres architectures et algorithmes. Les routines développées ont été intégrées dans une bibliothèque de calcul appelée NT2.Enfin, nous montrons comment la programmation haut niveau peut être appliquée à des calculs groupés et des contractions de tenseurs. Tout d'abord, nous expliquons comment concevoir un modèle de container en utilisant des techniques de programmation basées sur le C++ moderne (C++-14). Ensuite, nous avons implémenté un produit de matrices optimisé pour des matrices de petites tailles en utilisant des instructions SIMD. Pour ce faire, nous avons pris en compte les multiples problèmes liés au calcul groupé ainsi que les problèmes de localité mémoire et de vectorisation. En combinant la programmation haut niveau avec des techniques avancées de programmation parallèle, nous montrons qu'il est possible d'obtenir de meilleures performances que celles des bibliothèques numériques actuelles. / Parallelism in today's computer architectures is ubiquitous whether it be in supercomputers, workstations or on portable devices such as smartphones. Exploiting efficiently these systems for a specific application requires a multidisciplinary effort that concerns Domain Specific Languages (DSL), code generation and optimization techniques and application-specific numerical algorithms. In this PhD thesis, we present a method of high level programming that takes into account the features of heterogenous architectures and the properties of matrices to build a generic dense linear algebra solver. Our programming model supports both implicit or explicit data transfers to and from General-Purpose Graphics Processing Units (GPGPU) and Integrated Graphic Processors (IGPs). As GPUs have become an asset in high performance computing, incorporating their use in general solvers is an important issue. Recent architectures such as IGPs also require further knowledge to program them efficiently. Our methodology aims at simplifying the development on parallel architectures through the use of high level programming techniques. As an example, we developed a least-squares solver based on semi-normal equations in mixed precision that cannot be found in current libraries. This solver achieves similar performance as other mixed-precision algorithms. We extend our approach to a new multistage programming model that alleviates the interoperability problems between the CPU and GPU programming models. Our multistage approach is used to automatically generate GPU code for CPU-based element-wise expressions and parallel skeletons while allowing for type-safe program generation. We illustrate that this work can be applied to recent architectures and algorithms. The resulting code has been incorporated into a C++ library called NT2. Finally, we investigate how to apply high level programming techniques to batched computations and tensor contractions. We start by explaining how to design a simple data container using modern C++14 programming techniques. Then, we study the issues around batched computations, memory locality and code vectorization to implement a highly optimized matrix-matrix product for small sizes using SIMD instructions. By combining a high level programming approach and advanced parallel programming techniques, we show that we can outperform state of the art numerical libraries.
|
347 |
Application de Riemann-Hilbert-Birkhoff / Riemann-Hilbert-Birkhoff mapPaolantoni, Thibault 20 December 2017 (has links)
L'application exponentielle duale est une façon d'encoder les matrices de Stokes d'une connexion sur un fibré trivial sur la sphère de Riemann avec deux pôles : un pôle double en 0 et un pôle simple en l'infini.On donne ici une formule pour l'application exponentielle duale comme une série formelle non commutative. D'autres généralisations de cette formule sont données. / The exponential dual map is a way to encode Stokes data of a connection on a trivial vector bundle on the Riemann sphere with two poles: one double pole at 0 and one simple pole at infinity.We give here a formula for the exponential dual map expressed as a non commutative serie. Others generalizations of this formula are given.
|
348 |
Conception et mise à l’essai d’une séquence de situations engageant un travail de communication en algèbre en 2e secondaire : des apports pour l’élève comme pour l’enseignant?Labrosse, Philippe 10 1900 (has links)
Nous appuyant sur le fait que la communication est essentielle à l’activité mathématique et qu’elle apparaît pourtant souvent négligée dans l’enseignement secondaire, nous avons cherché à concevoir et à mettre à l’essai une séquence de situations en algèbre pour des élèves de 2e secondaire visant à ce qu’ils développent et déploient une communication mathématique en classe. Nous avons fait l’hypothèse que cette communication pourrait offrir, du même coup, un matériau utile à l’enseignant pour rétroagir. Une séquence de six situations portant sur l’algèbre (principalement la mise en équation et la résolution d’équations) a ainsi été conçue. Une analyse a priori a permis de formuler des hypothèses quant au potentiel des valeurs des variables didactiques identifiées pour solliciter une communication mathématique. Ces situations ont été ensuite préexpérimentées afin de les améliorer et pour développer une grille permettant d’analyser le travail de communication des élèves au sein de l’activité mathématique. Elles ont, par la suite, été expérimentées auprès de deux classes d’une même enseignante. Les résultats montrent que le jeu sur certaines variables, notamment la position attribuée à l’élève et celle de son interlocuteur, apparaissent des leviers intéressants pour permettre à l’élève de déployer une communication riche. La position « d’élève-enseignant », par exemple, joue sur la responsabilité de la validation du résultat assumée par l’élève et, en conséquence, sur le caractère a-didactique de la situation. Les résultats montrent aussi que la mise en œuvre des situations a donné à l’enseignante un accès renouvelé aux raisonnements des élèves lui offrant un matériau qu’il lui a été possible d’exploiter en classe. / Given the fact that communication is essential in the mathematical activity, and since it appears to be often neglected at the secondary school level, we wanted to create and put to the test a sequence of algebra situations for students in the second year of their secondary education in order for them to develop and expand their mathematical communication in class. We made the assumption that such a communication could offer, at the same time, a useful tool for the teacher to retroact. A sequence of six situations, based on algebra (mostly putting into equations and solving equations) was thus created. An a priori analysis made it possible to formulate hypothesises related to the potential of didactical variables values to encourage a mathematical communication. These situations were then pre-experimented as a means to improve them, if deemed necessary, and to create a grid that would serve to analyse the students’ communication within the mathematical activity. They were then tested in two classes under the same teacher. Results show that some values of variables, among others the respective positions of student and teacher, appear to be interesting triggers that help the student in getting into a rich communication. The “student-teacher” position, for instance, has an incidence on the responsibility of the validation of the result assumed by the student and, consequently, on the a-didactical character of the situation. Results also show that the implementation of the situations offered the teacher a renewed access to the students reasoning, thus providing her material that she was able to use in her class.
|
349 |
Bridging the Gap Between H-Matrices and Sparse Direct Methods for the Solution of Large Linear Systems / Combler l’écart entre H-Matrices et méthodes directes creuses pour la résolution de systèmes linéaires de grandes taillesFalco, Aurélien 24 June 2019 (has links)
De nombreux phénomènes physiques peuvent être étudiés au moyen de modélisations et de simulations numériques, courantes dans les applications scientifiques. Pour être calculable sur un ordinateur, des techniques de discrétisation appropriées doivent être considérées, conduisant souvent à un ensemble d’équations linéaires dont les caractéristiques dépendent des techniques de discrétisation. D’un côté, la méthode des éléments finis conduit généralement à des systèmes linéaires creux, tandis que les méthodes des éléments finis de frontière conduisent à des systèmes linéaires denses. La taille des systèmes linéaires en découlant dépend du domaine où le phénomène physique étudié se produit et tend à devenir de plus en plus grand à mesure que les performances des infrastructures informatiques augmentent. Pour des raisons de robustesse numérique, les techniques de solution basées sur la factorisation de la matrice associée au système linéaire sont la méthode de choix utilisée lorsqu’elle est abordable. A cet égard, les méthodes hiérarchiques basées sur de la compression de rang faible ont permis une importante réduction des ressources de calcul nécessaires pour la résolution de systèmes linéaires denses au cours des deux dernières décennies. Pour les systèmes linéaires creux, leur utilisation reste un défi qui a été étudié à la fois par la communauté des matrices hiérarchiques et la communauté des matrices creuses. D’une part, la communauté des matrices hiérarchiques a d’abord exploité la structure creuse du problème via l’utilisation de la dissection emboitée. Bien que cette approche bénéficie de la structure hiérarchique qui en résulte, elle n’est pas aussi efficace que les solveurs creux en ce qui concerne l’exploitation des zéros et la séparation structurelle des zéros et des non-zéros. D’autre part, la factorisation creuse est accomplie de telle sorte qu’elle aboutit à une séquence d’opérations plus petites et denses, ce qui incite les solveurs à utiliser cette propriété et à exploiter les techniques de compression des méthodes hiérarchiques afin de réduire le coût de calcul de ces opérations élémentaires. Néanmoins, la structure hiérarchique globale peut être perdue si la compression des méthodes hiérarchiques n’est utilisée que localement sur des sous-matrices denses. Nous passons en revue ici les principales techniques employées par ces deux communautés, en essayant de mettre en évidence leurs propriétés communes et leurs limites respectives, en mettant l’accent sur les études qui visent à combler l’écart qui les séparent. Partant de ces observations, nous proposons une classe d’algorithmes hiérarchiques basés sur l’analyse symbolique de la structure des facteurs d’une matrice creuse. Ces algorithmes s’appuient sur une information symbolique pour grouper les inconnues entre elles et construire une structure hiérarchique cohérente avec la disposition des non-zéros de la matrice. Nos méthodes s’appuient également sur la compression de rang faible pour réduire la consommation mémoire des sous-matrices les plus grandes ainsi que le temps que met le solveur à trouver une solution. Nous comparons également des techniques de renumérotation se fondant sur des propriétés géométriques ou topologiques. Enfin, nous ouvrons la discussion à un couplage entre la méthode des éléments finis et la méthode des éléments finis de frontière dans un cadre logiciel unique. / Many physical phenomena may be studied through modeling and numerical simulations, commonplace in scientific applications. To be tractable on a computer, appropriated discretization techniques must be considered, which often lead to a set of linear equations whose features depend on the discretization techniques. Among them, the Finite Element Method usually leads to sparse linear systems whereas the Boundary Element Method leads to dense linear systems. The size of the resulting linear systems depends on the domain where the studied physical phenomenon develops and tends to become larger and larger as the performance of the computer facilities increases. For the sake of numerical robustness, the solution techniques based on the factorization of the matrix associated with the linear system are the methods of choice when affordable. In that respect, hierarchical methods based on low-rank compression have allowed a drastic reduction of the computational requirements for the solution of dense linear systems over the last two decades. For sparse linear systems, their application remains a challenge which has been studied by both the community of hierarchical matrices and the community of sparse matrices. On the one hand, the first step taken by the community of hierarchical matrices most often takes advantage of the sparsity of the problem through the use of nested dissection. While this approach benefits from the hierarchical structure, it is not, however, as efficient as sparse solvers regarding the exploitation of zeros and the structural separation of zeros from non-zeros. On the other hand, sparse factorization is organized so as to lead to a sequence of smaller dense operations, enticing sparse solvers to use this property and exploit compression techniques from hierarchical methods in order to reduce the computational cost of these elementary operations. Nonetheless, the globally hierarchical structure may be lost if the compression of hierarchical methods is used only locally on dense submatrices. We here review the main techniques that have been employed by both those communities, trying to highlight their common properties and their respective limits with a special emphasis on studies that have aimed to bridge the gap between them. With these observations in mind, we propose a class of hierarchical algorithms based on the symbolic analysis of the structure of the factors of a sparse matrix. These algorithms rely on a symbolic information to cluster and construct a hierarchical structure coherent with the non-zero pattern of the matrix. Moreover, the resulting hierarchical matrix relies on low-rank compression for the reduction of the memory consumption of large submatrices as well as the time to solution of the solver. We also compare multiple ordering techniques based on geometrical or topological properties. Finally, we open the discussion to a coupling between the Finite Element Method and the Boundary Element Method in a unified computational framework.
|
350 |
Exposants géométriques des modèles de boucles dilués et idempotents des TL-modules de la chaîne de spins XXZProvencher, Guillaume 12 1900 (has links)
Cette thèse porte sur les phénomènes critiques survenant dans les modèles bidimensionnels sur réseau. Les résultats sont l'objet de deux articles : le premier porte sur la mesure d'exposants critiques décrivant des objets géométriques du réseau et, le second, sur la construction d'idempotents projetant sur des modules indécomposables de l'algèbre de Temperley-Lieb pour la chaîne de spins XXZ.
Le premier article présente des expériences numériques Monte Carlo effectuées pour une famille de modèles de boucles en phase diluée. Baptisés "dilute loop models (DLM)", ceux-ci sont inspirés du modèle O(n) introduit par Nienhuis (1990). La famille est étiquetée par les entiers relativement premiers p et p' ainsi que par un paramètre d'anisotropie. Dans la limite thermodynamique, il est pressenti que le modèle DLM(p,p') soit décrit par une théorie logarithmique des champs conformes de charge centrale c(\kappa)=13-6(\kappa+1/\kappa), où \kappa=p/p' est lié à la fugacité du gaz de boucles \beta=-2\cos\pi/\kappa, pour toute valeur du paramètre d'anisotropie. Les mesures portent sur les exposants critiques représentant la loi d'échelle des objets géométriques suivants : l'interface, le périmètre externe et les liens rouges. L'algorithme Metropolis-Hastings employé, pour lequel nous avons introduit de nombreuses améliorations spécifiques aux modèles dilués, est détaillé. Un traitement statistique rigoureux des données permet des extrapolations coïncidant avec les prédictions théoriques à trois ou quatre chiffres significatifs, malgré des courbes d'extrapolation aux pentes abruptes.
Le deuxième article porte sur la décomposition de l'espace de Hilbert \otimes^nC^2 sur lequel la chaîne XXZ de n spins 1/2 agit. La version étudiée ici (Pasquier et Saleur (1990)) est décrite par un hamiltonien H_{XXZ}(q) dépendant d'un paramètre q\in C^\times et s'exprimant comme une somme d'éléments de l'algèbre de Temperley-Lieb TL_n(q). Comme pour les modèles dilués, le spectre de la limite continue de H_{XXZ}(q) semble relié aux théories des champs conformes, le paramètre q déterminant la charge centrale. Les idempotents primitifs de End_{TL_n}\otimes^nC^2 sont obtenus, pour tout q, en termes d'éléments de l'algèbre quantique U_qsl_2 (ou d'une extension) par la dualité de Schur-Weyl quantique. Ces idempotents permettent de construire explicitement les TL_n-modules indécomposables de \otimes^nC^2. Ceux-ci sont tous irréductibles, sauf si q est une racine de l'unité. Cette exception est traitée séparément du cas où q est générique.
Les problèmes résolus par ces articles nécessitent une grande variété de résultats et d'outils. Pour cette raison, la thèse comporte plusieurs chapitres préparatoires. Sa structure est la suivante. Le premier chapitre introduit certains concepts communs aux deux articles, notamment une description des phénomènes critiques et de la théorie des champs conformes. Le deuxième chapitre aborde brièvement la question des champs logarithmiques, l'évolution de Schramm-Loewner ainsi que l'algorithme de Metropolis-Hastings. Ces sujets sont nécessaires à la lecture de l'article "Geometric Exponents of Dilute Loop Models" au chapitre 3. Le quatrième chapitre présente les outils algébriques utilisés dans le deuxième article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2", constituant le chapitre 5. La thèse conclut par un résumé des résultats importants et la proposition d'avenues de recherche qui en découlent. / This thesis is concerned with the study of critical phenomena for two-dimensional models on the lattice. Its results are contained in two articles: A first one, devoted to measuring geometric exponents, and a second one to the construction of idempotents for the XXZ spin chain projecting on indecomposable modules of the Temperley-Lieb algebra.
Monte Carlo experiments, for a family of loop models in their dilute phase, are presented in the first article. Coined "dilute loop models (DLM)", this family is based upon an O(n) model introduced by Nienhuis (1990). It is defined by two coprime integers p,p' and an anisotropy parameter. In the continuum limit, DLM(p,p') is expected to yield a logarithmic conformal field theory of central charge c(\kappa)=13-6(\kappa+1/\kappa), where the ratio \kappa=p/p' is related to the loop gas fugacity \beta=-2\cos\pi/\kappa. Critical exponents pertaining to valuable geometrical objects, namely the hull, external perimeter and red bonds, were measured. The Metropolis-Hastings algorithm, as well as several methods improving its efficiency, are presented. Despite the extrapolation of curves presenting large slopes, values as close as three to four digits from the theoretical predictions were attained through rigorous statistical analysis.
The second article describes the decomposition of the XXZ spin chain Hilbert space \otimes^nC^2 using idempotents. The model of interest (Pasquier & Saleur (1990)) is described by a parameter-dependent Hamiltonian H_{XXZ}(q), q\in C^\times, expressible as a sum of elements of the Temperley-Lieb algebra TL_n(q). The spectrum of H_{XXZ}(q) in the continuum limit is also believed to be related to conformal field theories whose central charge is set by q. Using the quantum Schur-Weyl duality, an expression for the primitive idempotents of End_{TL_n}\otimes^nC^2, involving U_qsl_2 elements, is obtained. These idempotents allow for the explicit construction of the indecomposable TL_n-modules of \otimes^nC^2, all of which are irreducible except when q is a root of unity. This case, and the case where q is generic, are treated separately.
Since a wide variety of results and tools are required to tackle the problems stated above, this thesis contains many introductory chapters. Its layout is as follows. The first chapter introduces theoretical concepts common to both articles, in particular an overview of critical phenomena and conformal field theory. Before proceeding to the article entitled \emph{Geometric Exponents of Dilute Loop Models} constituting Chapter 3, the second chapter deals briefly with logarithmic conformal fields, Schramm-Loewner evolution and the Metropolis-Hastings algorithm. The fourth chapter defines some algebraic concepts used in the second article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2" of Chapter 5. A summary of the main results, as well as paths to unexplored questions, are suggested in a final chapter.
|
Page generated in 0.0394 seconds