• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 10
  • 10
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

BCC metals in extreme environments : modelling the structure and evolution of defects

Gilbert, Mark R. January 2010 (has links)
Designing materials for fusion applications is a very challenging problem, requiring detailed understanding of the behaviour of materials under the kinds of extreme conditions expected in a fusion environment. During the lifetime of fusion-reactor components, materials will be subjected to high levels of neutron irradiation, but must still perform effectively at high operating temperatures and under significant loading conditions. Body-centred cubic (bcc) transition metals are some of the most promising candidates for structural materials in fusion because of their relatively high density, which allows for effective neutron-shielding with the minimum volume and mass of material. In this work we perform atomistic simulations on two of the most important of these, Fe and W. In this thesis we describe atomic-scale simulations of defects found in bcc systems. In part I we consider the vacancy and interstitial loop defects that are produced and accumulated as a result of irradiation-induced displacement cascades. We show that vacancy dislocation loops have a critical size below which they are highly unstable relative to planar void defects, and thus offer an explanation as to why they are so rarely seen in TEM observations of irradiated bcc metals. Additionally, we compare the diffusion rates of these vacancy loops to their interstitial counterparts and find that, while interstitial loops are more mobile, the difference in mobility is not as significant as might have been expected. In part II we study screw dislocations, which, as the rate limiting carriers of plastic deformation, are significantly responsible for the strength of materials. We present results from large-scale finite temperature molecular dynamics simulations of screw dislocations under stress and observe the thermally-activated kink-pair formation regime at low stress, which appears to be superseded by a frictional regime at higher stresses. The mobility functions fitted to the results are vital components in simulations of dislocation networks and other large-scale phenomena. Lastly, we develop a multi-string Frenkel-Kontorova model that allows us to study the core structure of screw dislocations. Subtle changes in the form of the interaction laws used in this model demonstrate the difference between the non-degenerate and degenerate core structures. We provide simple criteria to guarantee the correct structure when developing interatomic potentials for bcc metals.
12

Atomistic Simulations of Deformation Mechanisms in Ultra-Light Weight Mg-Li Alloys

Karewar, Shivraj 05 1900 (has links)
Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg using atomistic simulations. In the first part, I create a reliable and transferable concentration dependent embedded atom method (CD-EAM) potential for my molecular dynamics study of deformation. This potential describes the Mg-Li phase diagram, which accurately describes the phase stability as a function of Li concentration and temperature. Also, it reproduces the heat of mixing, lattice parameters, and bulk moduli of the alloy as a function of Li concentration. Most importantly, our CD-EAM potential reproduces the variation of stacking fault energy for basal, prismatic, and pyramidal slip systems that influences the deformation mechanisms as a function of Li concentration. This success of CD-EAM Mg-Li potential in reproducing different properties, as compared to literature data, shows its reliability and transferability. Next, I use this newly created potential to study the effect of Li addition on deformation mechanisms in Mg-Li nanocrystalline (NC) alloys. Mg-Li NC alloys show basal slip, pyramidal type-I slip, tension twinning, and two-compression twinning deformation modes. Li addition reduces the plastic anisotropy between basal and non-basal slip systems by modifying the energetics of Mg-Li alloys. This causes the solid solution softening. The inverse relationship between strength and ductility therefore suggests a concomitant increase in alloy ductility. A comparison of the NC results with single crystal deformation results helps to understand the qualitative and quantitative effect of Li addition in Mg on nucleation stress and fault energies of each deformation mode. The nucleation stress and fault energies of basal dislocations and compression twins in single crystal Mg-Li alloy increase while those for pyramidal dislocations and tension twinning decrease. This variation in respective values explains the reduction in plastic anisotropy and increase in ductility for Mg-Li alloys.
13

MODELAGEM DE ANTI-PEROVSKITAS DE LÍTIO SUPERIÔNICAS / MODELING OF ANTI-PEROVSKITE OF SUPERIÔNICAS LITHIUM

Prado, Rodolpho Mouta Monte 26 September 2013 (has links)
Made available in DSpace on 2016-08-18T18:19:32Z (GMT). No. of bitstreams: 1 Dissertacao Rodolfo.pdf: 3035327 bytes, checksum: 28c097fd866c13df0338e35be81b42bc (MD5) Previous issue date: 2013-09-26 / FUNDAÇÃO DE AMPARO À PESQUISA E AO DESENVOLVIMENTO CIENTIFICO E TECNOLÓGICO DO MARANHÃO / In this work we investigated the temperature dependence of point defects in Li₃OCl anti-perovskites using static atomistic simulations. The interionic interactions were modeled by pairwise Buckingham-type pairwise potentials, while the shell model was employed to describe the ions, except the lithium ions that was assumed as a spherical rigid ion. The defects were calculated according to the Mott-Littleton approach for several temperatures between 0 and 600 K. The main intrinsic defects investigated were Schottky, pseudo-Schottky LiCl and Li₂O and Frenkel defects. Results show the most likely defect is the LiCl pseudo-Schottky one, which formation enthalpy is 0,98 eV about at 300 K . The calculated lithium vacancies concentration did not reach values above 10ˉ7, indicating that most of vacancies might be generated by aliovalent extrinsic impurities. The calculated vacancy migration energy agrees very well with that obtained experimentally (0,26 eV ) and it shows that the main ionic conductivity mechanism in is due to the lithium vacancies, occurring along the octahedron vertices. / Neste trabalho empregamos simulações atomísticas estáticas para investigar os defeitos pontuais em anti-perovskitas Li₃OCl de em função da temperatura. Para tanto assumimos um modelo de potencial interiônico de Buckingham para as interações entre os íons e o modelo de casca esférica para tratar as polarizações dos íons, com exceção do lítio que foi descrito pelo modelo de íon rígido. Os defeitos foram calculados seguindo a metodologia de Mott-Littletlon. Os principais defeitos intrínsecos investigados foram os defeitos de Schottky, pseudo-Schottky de LiCl e Li₂O , e Frenkel. Os resultados mostram que o defeito mais provável é o de pseudo-Schottky de LiCl, cuja entalpia de formação é de 0,98 eV cerca de a 300 K. A concentração de vacâncias de lítio calculada assumiu valores inferiores a 10ˉ7, indicando que a maioria das vacâncias deve ser gerada por impurezas aliovalentes extrínsecas. A energia de migração de vacâncias de lítio calculada concorda com as medidas experimentais ( 0,26 eV) e mostra que este é o principal mecanismo de condução iônica neste material, ocorrendo ao longo dos vértices dos octaedros de OLi₆.
14

Simulações atomísticas do gálio super-resfriado / Atomistic simulations of supercooled gallium

Carvajal Jara, Diego Alejandro 13 August 2018 (has links)
Orientador: Maurice de Koning / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-13T12:16:33Z (GMT). No. of bitstreams: 1 CarvajalJara_DiegoAlejandro_M.pdf: 4649880 bytes, checksum: d014cd5c835938e4643e478fa70353be (MD5) Previous issue date: 2009 / Resumo: Recentemente tem sido proposta a existência de uma transição líquido-líquido em substâncias puras com o propósito de explicar alguns comportamentos anômalos como os incrementos de funções resposta (compressibilidade isotérmica, coeficiente de expansão térmica, calor específico) ao diminuir a temperatura de um líquido. A existência deste tipo de transição foi demostrada experimentalmente para o fósforo por dispersão de raios X, e através de simulações atomísticas ou de primeiros princípios para a água, o silício, o carbono, etc. A compreensão detalhada deste tipo de transição está intimamente relacionada à questão fundamental de quais fatores físicos controlam as propriedades de um líquido, e portanto o estudo desta é de grande importância para o desenvolvimento de novas tecnologias, a síntese de novos materiais e o controle de suas propriedades. Neste trabalho realizamos simulações atomísticas sobre um sistema de 1152 partículas de Gálio submetidas a um potencial semi-empírico MEAM, com condições periódicas de contorno. Com estas simulações procuramos uma transição líquido-líquido no Gálio através de um processo de eliminação de três teorias. Inicialmente mostramos que o limite de metaestabilidade do líquido super-aquecido tem um comportamento monótono decrescente no plano de fase P-T. Posteriormente nosso sistema apresenta histerese, uma descontinuidade no volume, estruturas locais diferentes, duas fases que fluem, e um calor latente característico de uma transição de fase de primeira ordem. Por todas estas razões concluímos que o sistema simulado apresenta um transição líquido-líquido de primeira ordem. Adicionalmente foram realizadas compressões e expansões isotérmicas para temperaturas diferentes, observando que estes processos também apresentam histerese e que ela diminui com o aumento da temperatura, indicando assim a possível existência de um segundo ponto crítico e a finalização da transição líquido-líquido. Finalizamos o trabalho com a obtenção e a caracterização de uma possível nova fase cristalina do Gálio cuja estrutura ainda não tem sido obtida experimentalmente. Esta fase foi obtida por casualidade durante o estudo da existência de uma transição líquido-líquido no Gálio ao tencionar o Gálio a -1.6GPa. Sua estrutura é do tipo ortorrômbica com uma simetria Cmcm (grupo espacial 63) e sua principal diferença do Gálio-I é a orientação dos dímeros de Gálio, que nesta nova fase estão dispostos paralelamente. Simulações por DFT mostraram que esta nova fase é metaestável a pressão nula e chega a ser estável a pressões negativas abaixo de ~ 1.5GPa. / Abstract: Recently, the existence of a liquid-liquid transition in pure substances has been proposed as an explanation of anomalous behaviors such as the increase of response functions (isothermal compressibility, coefficient of thermal expansion, specific heat) with decreasing temperature displayed by some liquids. The existence of this type of transition has been demonstrated experimentally for phosphorous by X-ray diÿraction, and through atomistic simulations for water, silicon and carbon. The detailed understanding of this type of transition is closely related to the fundamental question of which physical factors control the properties of a liquid. Therefore, the study of this phenomenon is of great importance for the development of new technologies, the synthesis of new materials and the control of their properties. In this work, we carry out a series of atomistic simulations of a system containing 1152 Gallium atoms described by a semi-empirical Modified Embedded-Atom Model subject to periodic boundary conditions. By means of these simulations we search for a liquid-liquid transition in Gallium by means of a process of elimination of three theories. Initially we show that the limit of metastability of the superheated liquid has a decreasing monotonous behavior in the pressure-temperature phase diagram. Subsequently, our system presents hysteresis, a discontinuity in volume, two phases that have different local atomic structures and display diffusion, and a latent heat, all characteristic of a first-order phase transition. For all these reasons we conclude that the simulated system presents a liquid-liquid phase transition of first-order in the supercooled regime. In addition, we carried out several simulations of isothermal compressions and expansions for different temperatures. These results also show hysteresis although it is found to decrease with increasing temperature, thus indicating the possible existence of a second critical point at which the liquid-liquid transition ends. We finish our studies with the discovery and characterization of a crystalline phase of Gallium whose structure has not been observed experimentally. This phase was obtained by chance during the study of the existence of a liquid-liquid transition in Gallium under tension of -1.6GPa. Its structure is of the orthorhombic type with Cmcm symmetry (space group 63). Its main difference with respect to the Gallium-I phase is that in the new phase the Gallium dimers are disposed in a parallel fashion. Subsequent DFT simulations show that this new phase is metastable at zero pressure and predict it to become stable with respect to Gallium-I arrives at negative pressures below ~1.5GPa. / Mestrado / Física da Matéria Condensada / Mestre em Física
15

PROPRIEDADES VIBRACIONAIS E DIELÉTRICAS DA MULITA Bi2Mn4O10 / VIBRATIONAL PROPERTIES AND DIELECTRIC OF MULITA Bi2Mn4O10

Silva Júnior, Flávio Moura e 30 November 2010 (has links)
Made available in DSpace on 2016-08-18T18:19:28Z (GMT). No. of bitstreams: 1 FLAVIO MOURA E SILVA JUNIOR.pdf: 1775384 bytes, checksum: b430b5a1969defb4733efc6cf63b21d0 (MD5) Previous issue date: 2010-11-30 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / In this work we investigated the vibrational properties of ceramics Bi2Mn4O10 (BMO) at room temperature by the Raman and Infrared spectroscopies, the phonons were classified by FG matrix method of Wilson. The dielectric properties of the material, in turn, were studied using the impedance spectroscopy in a range of 22 ° C to 275 ° C. Furthermore, static atomistic simulations were performed at BMO in the range 0.0 to 10 GPa with a step of 0.5 GPa. Concerning the Raman modes, ten out forty eight modes predicted by the group theory, were observed in our experimental spectrum while the spectrum of the imaginary part of inverse dielectric constant, we observe 19 LO modes active in infrared. By using the method of FG Wilson saw that the modes in the range of 600-760 cm-1 are stretching into the ab plane to the octahedral chains MnO6. Libration and bending modes were predicted to 400-570 cm-1 and 300-400 cm-1, respectively. It was further observed that the low-frequency modes are mainly due to translations of the Bi ions. The analysis of the impedance spectroscopy measurements led to the conclusion that the relaxing process of BMO are associated with conductive mechanisms, these being due to movement of polarons. The frequencies, for which the imaginary parts of the module (M '' ) and impedance ( Z '' ) exhibit a maximum, obeyed the Arrhenius law in its dependence on the reciprocal temperature, and the calculated activation energies were 0.57 eV and 0.63 eV for each case, respectively. The frequency dependent peaks that appeared in the Bode plot of the real part of dielectric constant were attributed to thermal relaxation processes associated with activated jumps of polarons. The simulations showed that the compound is quite stable, showing no structural phase transition in the pressure range investigated / Neste trabalho foram investigadas as propriedades vibracionais da cerâmica Bi2Mn4O10 (BMO) à temperatura ambiente através das espectroscopias Raman e no Infravermelho. Os fônons foram classificados através do método FG de Wilson. As propriedades dielétricas do material, por sua vez, foram estudadas com o uso da espectroscopia de Impedância num intervalo de 22°C a 275°C. Além disso, simulações atomísticas estáticas foram feitas no BMO no intervalo de 0 a 10 GPa com passo de 0,5 GPa. No que concerne aos modos Raman, dos 48 previstos pela teoria de grupos, apenas dez deles foram observados em nosso espectro experimental enquanto que no espectro da parte imaginária do inverso da constante dielétrica, observamos 19 modos LO ativos no infravermelho. Através do uso do método FG de Wilson vimos que os modos no intervalo de 600-760 cm-1 são estiramento no plano ab para as cadeias octaédricas MnO6. Modos dobramento angular e de libração foram previstos para 400-570 cm-1 e 300-400 cm-1, respectivamente. Constatou-se ainda que os modos de baixa freqüência devem-se principalmente às translações dos íons Bi. As análises das medidas de espectroscopia de Impedância levaram a conclusão de que os processos relaxativos do BMO são associados a mecanismos condutivos, sendo esses devido a movimentos de polarons. As freqüências, para as quais as partes imaginárias do módulo ( M '' ) e da impedância ( Z '' ) exibiram máximos, obedeceram a uma lei tipo Arrhenius em sua dependência com o recíproco da temperatura, sendo que as energias de ativação calculadas foram de 0,57 eV e 0,63 eV para cada caso, respectivamente. Os picos dependentes da freqüência que apareceram no gráfico de Bode da parte real da constante dielétrica foram atribuídos a processos relaxativos termicamente ativados associados a saltos de polarons. As simulações realizadas mostraram que o composto é bastante estável não apresentando transição de fase estrutural no intervalo de pressão investigado.
16

Influence de la plasticité sur le délaminage et le flambage de films minces déposés sur substrats / Influence of the placity on the delamination and the buckling of thin films deposited on substrates

Ruffini, Antoine 09 October 2013 (has links)
Ce travail de thèse a pour objet l'étude de l'influence de la plasticité sur le délaminage et le flambage de films minces déposés sur substrats. Il repose sur une approche mixte combinant des simulations atomistiques et des calculs analytiques basés sur la théorie des plaques minces de Föppl-von Kármán (FvK). Les simulations ont permis de caractériser, au cours de la formation d'une ride droite, un mécanisme de glissement localisé dans l'interface en pied de cloque entraînant une augmentation de la déflexionmaximale de la ride. Ce mécanisme de glissement est également présent lorsque le délaminage piloté par le flambage du film mince est lui aussi observé. En l'intégrant dans le modèle élastique de FvK, la forme de la ride droite ainsi que le processus de délaminage ont ensuite été caractérisés. Le bon accord trouvé entre les simulations atomistiques et le modèle explique notamment le délaminage des cloques sans introduire de dépendance entre l'énergie d'adhésion et la mixité modale. L'initiation du cloquage à partir d'une marche d'interface créée par des dislocations venant du substrat a également été étudiée.Les simulations révèlent qu'avant flambage, le film se décolle à la fois sur le haut et sur le bas de la marche. Un mécanisme de glissement est là aussi identifié. Une déformation critique de flambage qui tient compte de ces phénomènes a été déterminée en modélisant le film mince sur la marche dans le formalisme de FvK. Les résultats des simulations couplés au modèle élastique expliquent, comme il est par ailleurs observé expérimentalement, pourquoi les cloques se forment préférentiellement au-dessus dedéfauts tels que des marches. / The purpose of this thesis is to study the influence of plasticity on the delamination and buckling of thin films deposited on substrates. Combining atomistic simulations and analytic calculations performed in the framework of continuum mechanics, the microscopic processes consisting in the sliding of the atoms located at the base of the blister has been characterized during the formation of a straight-sided blister. This sliding effect has been found to increase the maximum deflection of the buckling structure. It also modifies the delamination process of the interface. Taking into account this sliding into the Föppl-von Kármán theory of thin plates (FvK), the shape of the straight-sided blister and the delamination process have been then characterized. The agreement found between the atomistic simulations and the model explains how the buckling-driven delaminationproceeds without introducing any dependence between the adhesion energy and the mode of mixity. The initiation of the buckling from a dislocation-induced interface step has been also investigated. The simulations show that, before buckling, the film delaminates on both sides of the step and a sliding mechanism is also observed. A critical buckling strain accounting for thesephenomena has been analytically determined in the FvK framework. The simulation results and the elastic model explain, as it has also been experimentally observed, why blistering preferentially occurs above step-like defects.
17

Étude des propriétés physicochimiques de verres borosilicatés et de borosilicates de lanthane par dynamique moléculaire à partir d’un champ de force polarisable / Simulating the physicochemical properties of borosilicate and lanthanum borosilicate glasses using a polarizable force field

Pacaud, Fabien 24 November 2016 (has links)
Dans le cadre de la vitrification de déchets nucléaires, la connaissance et la maîtrise des propriétés structurales et dynamiques des verres incluant les radioéléments sont importantes (dans le liquide et le solide). Elles influencent notamment la qualité du colis de verre, la durée de vie du procédé de vitrification et la quantité de produits de fission qu’il est possible d’introduire. Des simulations de dynamique moléculaire ont été réalisées afin d’analyser l’influence de la composition des matrices vitreuses sur les propriétés structurales et dynamiques. Le verre nucléaire industriel R7T7 étant composé d’un trop grand nombre d’oxydes (une trentaine) pour être simulé correctement, un verre simplifié, composé des oxydes SiO2, B2O3 et Na2O (majoritaires du verre R7T7) a été préféré. L’ajout de La2O3 permet de simuler l’impact des produits de fission et les actinides mineurs sur les propriétés de la matrice vitreuse. Les deux systèmes SiO2-B2O3-Na2O et SiO2-B2O3-Na2O-La2O3 ont permis d’étudier l’effet du sodium et du lanthane sur différentes propriétés. Au cours de ces travaux, un champ de force polarisable a été développé pour réaliser les simulations. Nos calculs à température ambiante ont permis de reproduire les résultats expérimentaux de la structure, de la répartition BIII/B IV, de la densité, avec un bon accord. Une étude a été menée dans le liquide pour l’analyse de la viscosité et de la conductivité électrique. La spéciation B IV/B III et l’influence des changements structuraux sur la densité avec l’augmentation de la température ont également été observées au cours de trempes thermiques. Les limites actuelles de cette approche sont également décrites. / As result of the nuclear waste vitrification, the knowledge and understanding of the dynamic and structural properties of glasses, including the behavior of radionuclides, is important (in liquid and solid phases). It can influence the glass waste properties, the lifetime of the vitrification process and the amount of radionuclides introduced in the glass matrix. Molecular dynamic simulations have been done to study the influence of the glass matrix composition into the structural and dynamic properties of the glass. A simplified glass, with 3 major oxides of the R7T7 glass such as SiO2, B2O3 and Na2O, have been used to simulate the R7T7 industrial nuclear glass (a 30 oxides glass). The inclusion of La2O3 allows us to simulate the impact of fission products and minor actinides into the properties of the glass matrix. Both systems, the SiO2-B2O3-Na2O and SiO2-B2O3-Na2O-La2O3, allow us to study the sodium and lanthanum effect on the properties of the glass. During this work, a polarizable force field has been developed to do these simulations. The results obtained at room temperature let us reproduce the experimental results of the structure, the distribution of BIII/BIV and the density. A study has been done on the viscosity and electrical conductivity of the liquid. The distribution BIV/BIII and the influence of the structural changes on the density along with the temperature have also been observed with thermal quenchings. The current limits of this approach are also described.
18

Atomistic simulations of defect nucleation and free volume in nanocrystalline materials

Tucker, Garritt J. 20 May 2011 (has links)
Atomistic simulations are employed in this thesis to investigate defect nucleation and free volume of grain boundaries and nanocrystalline materials. Nanocrystalline materials are of particular interest due to their improved mechanical properties and alternative strain accommodation processes at the nanoscale. These processes, or deformation mechanisms, within nanocrystalline materials are strongly dictated by the larger volume fraction of grain boundaries and interfaces due to smaller average grain sizes. The behavior of grain boundaries within nanocrystalline materials is still largely unknown. One reason is that experimental investigation at this scale is often difficult, time consuming, expensive, or impossible with current resources. Atomistic simulations have shown the potential to probe fundamental behavior at these length scales and provide vital insight into material mechanisms. Therefore, work conducted in this thesis will utilize atomistic simulations to explore structure-property relationships of face-centered-cubic grain boundaries, and investigate the deformation of nanocrystalline copper as a function of average grain size. Volume-averaged kinematic metrics are formulated from continuum mechanics theory to estimate nonlocal deformation fields and probe the nanoscale features unique to strain accommodation mechanisms in nanocrystalline metals. The kinematic metrics are also leveraged to explore the tensile deformation of nanocrystalline copper at 10K. The distribution of different deformation mechanisms is calculated and we are able to partition the role of competing mechanisms in the overall strain of the nanocrystalline structure as a function of grain size. Grain boundaries are observed to be influential in smaller grained structures, while dislocation glide is more influential as grain size increases. Under compression, however, the resolved compressive normal stress on interfaces hinders grain boundary plasticity, leading to a tension-compression asymmetry in the strength of nanocrystalline copper. The mechanisms responsible for the asymmetry are probed with atomistic simulations and the volume-averaged metrics. Finally, the utility of the metrics in capturing nonlocal nanoscale deformation behavior and their potential to inform higher-scaled models is discussed.
19

Thermodynamic driving forces in protein regulation studied by molecular dynamics simulations / Molekulardynamische Studien zu thermodynamischen Triebkräfte von Proteinregulierung

Hensen, Ulf 22 January 2009 (has links)
No description available.
20

Computational investigations of molecular transport processes in nanotubular and nanocomposite materials

Konduri, Suchitra 12 February 2009 (has links)
The unique physical properties of nanomaterials, attributed to the combined effects of their size, shape, and composition, have sparked significant interest in the field of nanotechnology. Fabrication of nanodevices using nanomaterials as building-blocks are underway to enable novel technological applications. A fundamental understanding on the structure-property relationships and the mechanism of synthesizing nanomaterials with tailored physical properties is critical for a rationale design of functional nanodevices. In this thesis, molecular simulations that employ a detailed atomistic description of the nanoscopic structures were used to understand the structure-transport property relationships in two novel classes of porous nanomaterials, namely, polymer/porous inorganic layered nanocomposite materials and single-walled metal oxide nanotubes, and provide predictions for the design of nanodevices using these nanomaterials. We employed molecular dynamics to study transport of gas molecules (in particular He, H2, N2 and O2) through a polydimethylsiloxane/porous layered silicate (AMH-3) nanocomposite membrane material as a function of its composition. Gas separation performance of the nanocomposite was found to be substantially enhanced for H2/N2 and H2/O2 compared to pure polymeric material due to the molecular sieving effect of AMH-3, suggesting the possibility of developing a new class of superior separation devices. We also developed force field parameters for layered aluminophosphates that are emerging as potential inorganic layers for construction of nanocomposite materials. We presented preliminary work on developing Transition State Approach-Monte Carlo simulation method for calculating gas transport properties of nanocomposite materials. We investigated in detail the diameter control phenomenon in single-walled metal oxide nanotubes using molecular dynamics simulations and demonstrated the existence of a thermodynamic 'handle' for tuning the nanotube diameters and derived a unique correlation between nanotube energy, composition, and diameter to precisely predict nanotube diameters. Finally, using a combination of molecular dynamics, monte carlo and sorption experiments, we investigated adsorption and diffusion properties of water in single-walled aluminosilicate nanotubes. We predicted high water fluxes in these nanotubes, due to short lengths, hydrophilic interior and near-bulk-water diffusivities. Overall, my research represents two examples of the progress in developing a predictive basis for the design and analysis of nanostructures for applications in separations, nanofluidics, and fuel cell technology.

Page generated in 0.0851 seconds