• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 13
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analytical design of a parallel hybrid electric powertrain for sports utility vehicles and heavy trucks

Madireddy, Madhava Rao January 2003 (has links)
No description available.
22

Experimental and Analytical strategies to assess the seismic performance of auxiliary power systems in critical infrastructure

Ghith, Ahmed January 2020 (has links)
The performance of nonstructural components in critical infrastructure, such as nuclear power plants (NPPs), has been primarily based on experience and historical data. This topic has been attracting increased interest from researchers following the Fukushima Daiichi nuclear disaster in 2011. This disaster demonstrated the importance of using batteries in NPPs as an auxiliary power system, where such systems can provide the necessary power to mitigate the risk of serious accidents. However, little research has been conducted on such nonstructural components to evaluate their performance following the post- Fukushima safety requirements, recommended by several nuclear regulators worldwide [e.g., Nuclear Regulatory Commission (NRC), and Nuclear Safety Commission (NSC)]. To address this research gap, this dissertation investigates the lateral performance of an auxiliary battery power system (ABPS) similar to those currently existing/operational in NPPs in Canada. The ABPS was experimentally tested under displacement-controlled quasi-static cyclic fully-reversed loading that simulates lateral seismic demands. Due to the presence of sliding batteries, the ABPS was then tested dynamically under increased ground motion levels on a shake table. The experimental results demonstrated that the design guidelines and fragility curves currently assigned to battery rack systems in the FEMA P58 prestandards do not encompass all possible failure mechanisms. A 3D numerical model was also developed using OpenSees software. The model was validated using the experimental results. The model results showed that the lateral performance of ABPS with different configurations (i.e. different lengths, tiers, and seismic categories) is influenced by the capacity of the L-shaped connection between the side rails and the end rail. However, the model was not able to predict all the damage states from the dynamic experimental tests, since the rocking/sliding/impact behavior of the batteries is a highly complex nonlinear problem by nature and beyond the scope of this study. The model presented is limited to the assessment of the lateral performance of different ABPS statically. This dissertation demonstrated the difference between the observed behavior of laboratory-controlled lateral performance tests of ABPSs operational/existing in NPPs and the behavior of ABPSs found in the literature that relied on limited historical and experience data. Finally, this dissertation laid the foundations for the need to further investigate the behavior of other safety-related components in NPPs and assess their compliance with new post-Fukushima design requirements. / Thesis / Doctor of Philosophy (PhD)
23

Rhodium diesel-reforming catalysts for fuel cell applications

Karatzas, Xanthias January 2011 (has links)
Heavy-duty diesel truck engines are routinely idled at standstill to provide cab heating or air conditioning, and in addition to supply electricity to comfort units such as radio and TV. Idling is an inefficient and unfavorable process resulting in increased fuel consumption, increased emissions, shortened engine life, impaired driver rest and health, and elevated noise. Hydrogen-fueled, polymer-electrolyte fuel-cell auxiliary power unit (PEFC-APU) as a silent external power supply, working independently of the main engine, is proposed as viable solution for better fuel economy and abatement of idling emissions. In a diesel PEFC-APU, the hydrogen storage problem is circumvented as hydrogen can be generated onboard from diesel by using a catalytic reformer. In order to make catalytic diesel PEFC-APU systems viable for commercialization research is still needed. Two key areas are the development of reforming catalyst and reformer design, which both are the scope of this thesis. For diesel-reforming catalysts, low loadings of Rh and RhPt alloys have proven to exhibit excellent reforming and hydrogen selectivity properties. For the development of a stable reforming catalyst, more studies have to be conducted in order to find suitable promoters and support materials to optimize and sustain the long-term performance of the Rh catalyst. The next step will be full-scale tests carried out at realistic operating conditions in order to fully comprehend the overall reforming process and to validate promising Rh catalysts. This thesis can be divided into two parts; the first part addresses the development of catalysts in the form of washcoated cordierite monoliths for autothermal reforming (ATR) of diesel. A variety of catalyst compositions were developed containing Rh or RhPt as active metals, CeO2, La2O3, MgO, Y2O3 as promoters and Al2O3, CeO2-ZrO2, SiO2 and TiO2 as support materials. The catalysts were tested in a bench-scale reactor and characterized by using N2-BET, XRD, H2 chemisorption, H2-TPR, O2-TPO, XPS and TEM analyses. The second part addresses the development and testing of full-scale reformers at various realistic operating conditions using promising Rh catalysts. The thesis shows that a variety of Rh on alumina catalysts was successfully tested for ATR of diesel (Papers I-IV). Also, zone-coating, meaning adding two washcoats on specific parts of the monolith, was found to have beneficial effects on the ATR catalyst performance (Paper II). In addition, RhPt supported on CeO2-ZrO2 was found to be one of the most active and promising catalyst candidates for ATR of diesel. The superior performance may be attributed to higher reducibility of RhiOx species and greater dispersion of Rh and Pt on the support (Paper IV). Finally, two full-scale diesel reformers were successfully developed and proven capable of providing high fuel conversion and hydrogen production from commercial diesel over selected Rh catalysts (Papers II-III, V-VI). / QC 20110418
24

Projeto e desenvolvimento de fontes auxiliares para transformadores de estado sólido / Design and development of auxiliary power supply for solid state transformers

Kehler, Leandro Becker 31 August 2015 (has links)
This master thesis presents the development of an auxiliary power supply to provide energy to sensors, gate drivers, instrumentation circuits and control of a three-stage Solid State Transformer (SST). These devices require an insulated power supply of ±15V and 5V. For reason of reliability and modularity, a distributed auxiliary source is proposed. Thus, it is necessary a power supply to provide energy to the low voltage (LV) side and another to the medium voltage (MV) side. With this proposal, the auxiliary power supply does not need to have the same galvanic insulation of the SST, 25kV. However, a local power supply must operate at high voltage levels and, consequently, contain a high step-down voltage gain. Relative to LV side, the most generally used topologies as an auxiliary power supply are discussed. However, these topologies cannot be used at the MV converters, due to the high voltage stress levels involved. A study of topologies used on medium and high voltage and which enable to reach a high step-down voltage gain is realized, and two interesting topologies for this application were found. One of them uses a Flying capacitor converter connected in cascade with a Double-Ended Flyback converter. The Flying capacitor converter lowers the DC bus voltage in a controlled manner to low voltage levels. So the Double-ended Flyback converter operates in LV and provides the insulated outputs to command circuits of SST. The other topology is a unidirectional four-level NPC converter operating as Double-ended Flyback converter. For this case, a modulation strategy that allows the converter to reach a high step-down voltage gain was also proposed. These topologies were evaluated and the one which showed the best result was the four-level Double-ended Flyback converter. This converter was implemented and the experimental results prove to be effective. For the LV side, a Half-bridge LLC resonant converter as auxiliary power supply was used. This converter operates in ZVS and performs the output voltage regulation through the operating frequency variation. The experimental results of this converter are also presented. / Este trabalho de mestrado apresenta o desenvolvimento de fontes auxiliares para alimentar sensores, circuitos de comando, instrumentação e o controle de um Transformador de Estado Sólido (SST) de três estágios. Estes dispositivos necessitam de alimentação isolada com tensões de ±15V e 5V e por questões de confiabilidade e modularidade, propõe-se a utilização de fontes auxiliares distribuídas. Assim, emprega-se uma fonte auxiliar para alimentar o lado de média tensão (MT) e outra para alimentar o lado de baixa tensão (BT). Com essa proposta, as fontes auxiliares não necessitam ter a mesma isolação galvânica do SST, 25kV. Entretanto, uma das fontes locais deve operar em níveis de tensão elevados e, por consequência, apresentar baixo ganho estático. No lado de BT, as principais topologias normalmente utilizadas como fonte auxiliar são discutidas. No entanto, devido aos altos níveis de tensão envolvidos, estas topologias não podem ser aplicadas ao conversor que opera em MT. Um estudo sobre topologias aplicadas a média tensão e que possibilitam alcançar um baixo ganho estático é realizado, sendo que duas topologias se mostram interessantes para esta aplicação. Uma consiste na utilização de um conversor de capacitores flutuantes conectado em cascata com um conversor Double-Ended Flyback. O conversor de capacitores flutuantes rebaixa a tensão do barramento CC, de forma controlada, para baixa tensão. Assim o Double-Ended Flyback opera em BT e fornece as saídas isoladas para alimentar os circuitos de comando do SST. A outra topologia trata-se de um conversor NPC de quatro níveis unidirecional operando como conversor Double-Ended Flyback. Para este caso, também foi proposta uma estratégia de modulação que permite o conversor alcançar o baixo ganho estático. Essas topologias foram avaliadas, apresentando melhor resultado a esta aplicação o conversor Double-ended Flyback de quatro níveis, conforme será demonstrado neste trabalho. Esse conversor foi implementado e os resultados experimentais comprovam o seu funcionamento. Para a fonte do lado de BT utilizou-se um conversor Half-Bridge LLC ressonante que opera em ZVS e realiza a regulação da tensão de saída pela variação da frequência de operação. Os resultados experimentais deste conversor também são apresentados.
25

Development of a Reduced Computational Model to Replicate Inlet Distortion in an APU-Style Inlet of a Centrifugal Compressor

Evan Henry Bond (12455190) 25 April 2022 (has links)
<p>The purpose of this research was to determine what components of a complex centrifugal  compression system inlet needed to be modelled to accurately predict the swirl and total pressure  distortions at the compressor face. Two computational models were developed. A full-fidelity case  where all the inlet geometry was modelled and a reduced model where a small portion of the inlet  was considered. Both the numerical cases were compared with experimental data from a research  compressor rig developed by Honeywell Aerospace. The test apparatus was designed with a  modular inlet system to develop swirl distortion patterns. The modular inlet system utilized  transposable baffles within the radial-to-axial section of the inlet and blockage plates of varying  sizes and geometries at the inlet to this section.  Discerning the dominant inlet component that dictates distortion behavior at the compressor  face would allow the reduced modelling of inlet components for compression systems and would  allow coupling with more tortuous systems. Furthermore, it would reduce the design iteration and  simulation time of the inlet systems. Several investigations utilizing a reduced model only  considering a radial-to-axial inlet are available in literature, but no comprehensive justification has  been presented as to the impact this has on the distortion behavior.   Experimental surveys of flow conditions just upstream of the inducer of the centrifugal  compressor were conducted at several operating conditions. The highest and lowest mass flow  rates of these operating points were simulated using ANSYS CFX 2020R1 for both the  computational models. Multiple inlet configurations were simulated to test the robustness of the  reduced model in comparison to the full fidelity. The numerical simulations highlighted  shortcomings of the instrumentation used to characterize the experimental flow field at the inducer,  particularly with respect to total pressure distortion. Furthermore, transient pressure data were  measured in experiment and indicated unsteady fluctuations in the inlet that would not be captured  by steady computational fluid dynamic simulations. These data matched locations of disagreement  with swirl distortion behavior at high mass flow rates. This suggested that transient vortex  movement occured at the aerodynamic interface plane in certain configurations.   The total pressure distortion metrics between the two models were remarkably comparable.  Furthermore, the simplified model accurately predicted the mixing losses associated with the  blockage plates at the inlet to the radial-to-axial inlet using a simple inlet extension. Swirl  18  distortion was dictated by the radial-to-axial inlet. The reduced model data trends were comparable  with experiment for both the baffle and blocker plate configurations. The swirl intensities for all  configurations were comparable between the two models. The reduced model swirl directivity  trends matched those of experiment. The most notable deviations between the full-fidelity model  and the reduced model were observed with swirl directivity numerics. </p>
26

Energy use in the operational cycle of passenger rail vehicles / Energianvändning i passagerarjärnvägsfordons driftcykel

Vinberg, Erik Magni January 2018 (has links)
This master thesis investigates and analyzes the energy use for traction and auxiliary equipment in passenger rail vehicles. It covers both the train service with passengers and when the trains are going through other stages in the everyday operation. The operational cycle and associated operational situations are introduced as a way of describing the varying use of a train over time. The descriptions focus on the most common activities and situations, such as stabling and parking, regular cleaning, inspections and maintenance. Also how these situations affect energy use by their need for different auxiliary systems to be active. An energy model is developed based on the operational cycle as a primary input, together with relevant vehicle parameters and climate conditions. The latter proving to be a major influence on the energy used by the auxiliary equipment. The model is applied in two case studies, on SJ's X55 and Västtrafik's X61 trains. Both are modern electric multiple units equipped with energy meters. Model input is gathered from available technical documentation, previous studies and by measurements and parameter estimations. Operational cycle input is collected through different planning systems and rolling stock rosters. Climate input is finally compiled from open meteorological data banks. The results of the case studies show that the method and models are useful for studying the energy used by the trains in their operational cycles. With the possibility to distinguish the energy used by the auxiliary equipment, both during and outside the time the trains are in service with passengers. With this it's also possible to further investigate and study potential energy saving measures for the auxiliary equipment. Simulations of new ventilation control functions and improved use of existing operating modes on the trains show that considerable energy savings could be achieved with potentially very small investments or changes to the trains. The results generally show the importance of a continued investigation of the auxiliary equipment's energy use, as well as how the different operational situations other than the train service affect the total energy use. / Detta examensarbete utreder och analyserar energianvändningen för passagerarjärnvägsfordons traktion- och hjälpkraftssystem, både under tågdriften med passagerare och andra delmoment som tågen genomgår under den normala dagliga driften. För detta introduceras driftcykeln och tillhörande driftsituationer som ett sätt att beskriva användningen av ett tåg över tiden. Syftet är att beskriva de vanligast förekommande aktiviteterna och situationerna, såsom uppställning och parkering, regelbundna inspektioner, klargörningar och underhåll. Även hur dessa situationer påverkar energianvändningen genom ett varierande behov av hjälpkraft och aktiva funktioner i tågen. En energimodell baserad på driftcykeln som huvudsaklig indata, tillsammans med tågets egenskaper samt det omgivande klimatet, tas fram. Klimatet visar sig vara en avgörande faktor i hjälpkraftens energianvändning. Modellen utvärderas i typstudier på SJs X55 och Västtrafiks X61. Båda är elektriska motorvagnståg utrustade med energimätare. Indata till modellen samlas in genom tillgänglig teknisk dokumentation, tidigare studier och genom mätningar samt parameterestimering. Driftcyklerna för tågtyperna sammanställs med hjälp av olika planeringssystem och omloppsplaner. Väder- och klimatdata samlas slutligen in från öppna databaser för metrologiska data. Resultaten från typstudierna visar att metoden och modellerna är användbara verktyg för att kunna beskriva tågens energianvändning i deras driftcykler. Med möjligheten att särskilja hjälpkraftssystemens energianvändning vid tågdriften med passagerare men även i de övriga situationerna. Med detta blir det också möjligt att undersöka potentiella energibesparingsåtgärder för hjälpkraftssystemen. Simulering av förbättrade styrfunktioner för ventilationen och förbättrat utnyttjade av redan inbygga energibesparande driftlägen på tågen visar att betydande energibesparingar kan fås med relativt små medel och få förändringar på fordonen. De sammantagna resultaten av arbetet visar på vikten av att fortsätta undersöka och utreda hjälpkraftens energianvändning samt hur driftsituationerna utanför tågdriften med passagerare påverkar den totala energianvändningen.

Page generated in 0.0577 seconds